Submitted:
07 January 2025
Posted:
08 January 2025
You are already at the latest version
Abstract
The oral cavity is known to harbor hundreds of microorganisms from various genera, constituting a peculiar flora called the oral microbiome. The change in the relative dis-tribution of the constituents of this microbial flora, due to any reason, leads to oral dysbiosis. Oral dysbiosis has been linked to the aetiopathogenesis of several medical illnesses, both locally and systemically, for centuries. Recently, aided by the advent of biotechnological capabilities, several reports have emerged on the role of oral dysbiosis in oral carcinogenesis, and numerous studies are currently exploring their association and plausible mechanisms. Some of the proposed mechanisms of oral dysbiosis-induced carcinogenesis (ODIC) include—bacteria induced chronic inflammatory state leading to direct cellular damage and inflammatory cytokines mediated promotion of cellular pro-liferation and invasion,—release of bacterial products that are carcinogenic, and—sup-pression of local immunity by altering the tumor microenvironment. However, the actual interactions between these cellular mechanisms are not yet fully understood. This review provides a comprehensive overview of the various hypotheses and mechanisms impli-cated in the ODIC, along with the corresponding molecular aberrations. Apart from discussing the usual constituents of the oral microbiome profile, the review also sum-marizes the various dysbiosis profiles implicated in ODIC. The review sheds light on the potential clinical implications of oral microbiome in the prevention, management, therapeutic responsiveness, and survival outcomes of oral cancer.
Keywords:
1. Introduction
2. Fundamentals of Microbiome
2.1. Origin of the Term ’Microbiome’
2.2. Human Microbiome, an Independent Organ System
2.3. Oral Microbiome
2.4. Oral Dysbiosis
3. Oral Dysbiosis in Oral Carcinogenesis
3.1. Profile of Oral Microbiota in Oral Cancer
3.2. Mechanisms of Oral Dysbiosis-Induced Oral Carcinogenesis
3.2.1. Molecular Mechanisms
3.2.2. Metabolites as an Intermediate Between Bacteria and Carcinogenesis
3.2.3. Acetaldehyde in Dysbiosis-Driven Oral Carcinogenesis
3.3. As a Biomarker and Therapeutic Significance
4. Unanswered Questions About Oral Dysbiosis in Oral Carcinogenesis
4.1. Causal Versus Casual Association
4.2. Role of Confounding Factors
4.3. Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABS | Auto-brewery syndrome |
| ADH | Alcohol dehydrogenase |
| ALDH | Acetaldehyde dehydrogenase |
| CDH1 | Cadherin-1 |
| CEACAM | Carcinoembryonic antigen-related cell adhesion molecule 1 |
| COX | Cyclooxygenases |
| CXCL2 | Chemokine (C-X-C motif) ligand 2 |
| CXCR2 | C-X-C motif chemokine receptor 2 |
| DNA | Deoxyribonucleic acid |
| EBV | Epstein Barr virus |
| EMT | Epithelial mesenchymal transition |
| FAK | Focal Adhesion Kinase |
| GLUT1 | Glucose transporter 1 |
| G2/M | Gap2/Mitosis |
| HIV | Human immunodeficiency virus |
| HMP | Human microbiome project |
| HOMD | Linear dichroism |
| HPV | Human papillomavirus |
| IL | Interleukin |
| JAK1 | Janus kinase 1 |
| miR | MicroRNA |
| NF-κB | Nuclear Factor—Kappa B |
| NK | Natural killer cells |
| OPMD | Oral potentially malignant disorder |
| PDCD4 | Programmed cell death factor 4 |
| PGE2 | Prostaglandin E₂ |
| PPL | Periodontal pathogen-low |
| PPH | Periodontal pathogen-high |
| RNA | Ribonucleic acid |
| STAT3 | Signal transducer and activator of transcription 3 |
| TGF-β | Transforming growth factor beta |
| TIGIT | T cell immunoglobulin and ITIM domain |
| TME | Tumor microenvironment |
| TNFα | Tumor necrosis factor alpha |
| TLR | Toll-Like receptor |
| ZEB1 | Zinc finger E-box-binding homeobox 1 |
References
- Gest, H. The Discovery of Microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, Fellows of the Royal Society. Notes Rec R Soc Lond 2004, 58, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Lane, N. The Unseen World: Reflections on Leeuwenhoek (1677) “Concerning Little Animals. ” Philos Trans R Soc Lond B Biol Sci 2015, 370, 20140344. [Google Scholar] [CrossRef] [PubMed]
- Ram, H.; Sarkar, J.; Kumar, H.; Konwar, R.; Bhatt, M.L.B.; Mohammad, S. Oral Cancer: Risk Factors and Molecular Pathogenesis. J Maxillofac Oral Surg 2011, 10, 132–137. [Google Scholar] [CrossRef]
- Devaraja, K.; Kabekkodu, S.P. Oral Microbiome; a Potential Game-Changer in the Management of Oral Cancer? Oral Oncology 2022, 127. [Google Scholar] [CrossRef]
- Devaraja, K. Current Prospects of Molecular Therapeutics in Head and Neck Squamous Cell Carcinoma. Pharmaceutical Medicine 2019, 33, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, K.; Aggarwal, S.; Singh, M. Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma-A Review. Vaccines (Basel) 2023, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2024. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Prabhash, K.; Babu, G.; Kuriakose, M.; Birur, P.; Anand, A.K.; Kaushal, A.; Mahajan, A.; Syiemlieh, J.; Singhal, M.; et al. Indian Clinical Practice Consensus Guidelines for the Management of Oral Cavity Cancer. Indian J Cancer 2020, 57, S6–S8. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Integrative HMP (iHMP) Research Network Consortium The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Masic, I. The Most Influential Scientists in the Development of Medical Informatics (12): Joshua Lederberg. Acta Inform Med 2016, 24, 220–221. [Google Scholar] [CrossRef] [PubMed]
- NIH HMP Working Group; Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; et al. The NIH Human Microbiome Project. Genome Res 2009, 19, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Sears, C.L. A Dynamic Partnership: Celebrating Our Gut Flora. Anaerobe 2005, 11, 247–251. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The Vocabulary of Microbiome Research: A Proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Microbiome. Yale J Biol Med 2016, 89, 275–276. [Google Scholar]
- Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the Human Microbiome. Nutr Rev 2012, 70 Suppl 1, S38–44. [Google Scholar] [CrossRef]
- Zhao, L. The Microbiome Is Redefining What It Means to Be Human. In Gongsheng Across Contexts: A Philosophy of Co-Becoming; Song, B., Zhan, Y., Eds.; Springer Nature: Singapore, 2024; pp. 157–169. ISBN 978-981-9973-25-5. [Google Scholar]
- Proctor, L.M. The National Institutes of Health Human Microbiome Project. Semin Fetal Neonatal Med 2016, 21, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J.; McCray, A.T. Ome SweetOmics--A Genealogical Treasury of Words. The scientist 2001, 15, 8–8. [Google Scholar]
- Eisen, J. What Does the Term Microbiome Mean? And Where Did It Come from? A Bit of a Surprise. In microBEnet: the microbiology of the Built Environment network; 2015. [Google Scholar]
- Microbiomes: An Origin Story Available online:. Available online: https://asm.org:443/Articles/2019/March/Microbiomes-An-Origin-Story (accessed on 25 December 2024).
- Whipps, J.M.; Lewis, K.; Cooke, R. Mycoparasitism and Plant Disease Control. Fungi in biological control systems 1988, 1988, 161–187. [Google Scholar]
- Lane-Petter, W. Provision of Pathogen-Free Animals. Proc R Soc Med 1962, 55, 253–256. [Google Scholar]
- Reynoso-García, J.; Miranda-Santiago, A.E.; Meléndez-Vázquez, N.M.; Acosta-Pagán, K.; Sánchez-Rosado, M.; Díaz-Rivera, J.; Rosado-Quiñones, A.M.; Acevedo-Márquez, L.; Cruz-Roldán, L.; Tosado-Rodríguez, E.L.; et al. A Complete Guide to Human Microbiomes: Body Niches, Transmission, Development, Dysbiosis, and Restoration. Front Syst Biol 2022, 2, 951403. [Google Scholar] [CrossRef] [PubMed]
- Lange, E.; Kranert, L.; Krüger, J.; Benndorf, D.; Heyer, R. Microbiome Modeling: A Beginner’s Guide. Front Microbiol 2024, 15, 1368377. [Google Scholar] [CrossRef]
- Dekaboruah, E.; Suryavanshi, M.V.; Chettri, D.; Verma, A.K. Human Microbiome: An Academic Update on Human Body Site Specific Surveillance and Its Possible Role. Arch Microbiol 2020, 202, 2147–2167. [Google Scholar] [CrossRef] [PubMed]
- Davenport, E.R.; Sanders, J.G.; Song, S.J.; Amato, K.R.; Clark, A.G.; Knight, R. The Human Microbiome in Evolution. BMC Biol 2017, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Minty, M.; Vinel, A.; Canceill, T.; Loubières, P.; Burcelin, R.; Kaddech, M.; Blasco-Baque, V.; Laurencin-Dalicieux, S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021, 11, 1376. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct Target Ther 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Zarco, M.F.; Vess, T.J.; Ginsburg, G.S. The Oral Microbiome in Health and Disease and the Potential Impact on Personalized Dental Medicine. Oral Dis 2012, 18, 109–120. [Google Scholar] [CrossRef]
- Tian, S.; Ding, T.; Li, H. Oral Microbiome in Human Health and Diseases. mLife 2024, 3, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Knight, R. Species Divergence and the Measurement of Microbial Diversity. FEMS Microbiol Rev 2008, 32, 557–578. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.E.; Martiny, J.B.H. Alpha-, Beta-, and Gamma-Diversity of Bacteria Varies across Habitats. PLoS One 2020, 15, e0233872. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate Dispersion as a Measure of Beta Diversity. Ecol Lett 2006, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.-H.; Lakshmanan, A.; Wade, W.G. The Human Oral Microbiome. J Bacteriol 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Yang, X.; Li, C.; Song, Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022, 13, 895537. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Kong, J.; Jia, P.; Wei, C.; Wang, Y.; Pan, Z.; Huang, W.; Li, L.; Chen, H.; Xiang, C. Analysis of Oral Microbiota in Children with Dental Caries by PCR-DGGE and Barcoded Pyrosequencing. Microb Ecol 2010, 60, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jiang, W. Application of High-Throughput Sequencing in Understanding Human Oral Microbiome Related with Health and Disease. Front Microbiol 2014, 5, 508. [Google Scholar] [CrossRef]
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the Oral Microbiome by Whole-Genome Sequencing and Resistome Analysis: The Complexity of the Healthy Picture. BMC Microbiol 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Zaura, E.; Keijser, B.J.F.; Huse, S.M.; Crielaard, W. Defining the Healthy “Core Microbiome” of Oral Microbial Communities. BMC Microbiol 2009, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the Normal Bacterial Flora of the Oral Cavity. J Clin Microbiol 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Burcham, Z.M.; Garneau, N.L.; Comstock, S.S.; Tucker, R.M.; Knight, R.; Metcalf, J.L. ; Genetics of Taste Lab Citizen Scientists Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study. Sci Rep 2020, 10, 2133. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.K.; Chan, J.Y.K.; Wong, M.C.S.; Wong, P.Y.; Lei, P.; Cai, L.; Lan, L.; Ho, W.C.S.; Yeung, A.C.M.; Chan, P.K.S.; et al. Determinants and Interactions of Oral Bacterial and Fungal Microbiota in Healthy Chinese Adults. Microbiol Spectr 2022, 10, e0241021. [Google Scholar] [CrossRef] [PubMed]
- Deo, P.N.; Deshmukh, R. Oral Microbiome: Unveiling the Fundamentals. J Oral Maxillofac Pathol 2019, 23, 122–128. [Google Scholar] [CrossRef]
- Watanabe, T.; Matsuura, M.; Seto, K. Enumeration, Isolation, and Species Identification of Mycoplasmas in Saliva Sampled from the Normal and Pathological Human Oral Cavity and Antibody Response to an Oral Mycoplasma (Mycoplasma Salivarium). J Clin Microbiol 1986, 23, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Haake, S.K.; Mannon, P.; Lemon, K.P.; Waldron, L.; Gevers, D.; Huttenhower, C.; Izard, J. Composition of the Adult Digestive Tract Bacterial Microbiome Based on Seven Mouth Surfaces, Tonsils, Throat and Stool Samples. Genome Biol 2012, 13, R42. [Google Scholar] [CrossRef]
- Mark Welch, J.L.; Dewhirst, F.E.; Borisy, G.G. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019, 73, 335–358. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.R.; Torres-Morales, J.; Dewhirst, F.E.; Borisy, G.G.; Mark Welch, J.L. Site-Tropism of Streptococci in the Oral Microbiome. Mol Oral Microbiol 2022, 37, 229–243. [Google Scholar] [CrossRef]
- Kuramitsu, H.K.; He, X.; Lux, R.; Anderson, M.H.; Shi, W. Interspecies Interactions within Oral Microbial Communities. Microbiol Mol Biol Rev 2007, 71, 653–670. [Google Scholar] [CrossRef]
- Pushalkar, S.; Mane, S.P.; Ji, X.; Li, Y.; Evans, C.; Crasta, O.R.; Morse, D.; Meagher, R.; Singh, A.; Saxena, D. Microbial Diversity in Saliva of Oral Squamous Cell Carcinoma. FEMS Immunol Med Microbiol 2011, 61, 269–277. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog 2010, 6, e1000713. [Google Scholar] [CrossRef]
- Peters, B.A.; Wu, J.; Hayes, R.B.; Ahn, J. The Oral Fungal Mycobiome: Characteristics and Relation to Periodontitis in a Pilot Study. BMC Microbiol 2017, 17, 157. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, Y.; Zhao, F. Phage-Bacteria Interaction Network in Human Oral Microbiome. Environ Microbiol 2016, 18, 2143–2158. [Google Scholar] [CrossRef] [PubMed]
- HOMD :: Human Oral Microbiome Database Available online:. Available online: https://www.homd.org/ (accessed on 28 December 2024).
- Hajishengallis, G.; Liang, S.; Payne, M.A.; Hashim, A.; Jotwani, R.; Eskan, M.A.; McIntosh, M.L.; Alsam, A.; Kirkwood, K.L.; Lambris, J.D.; et al. Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and Complement. Cell Host Microbe 2011, 10, 497–506. [Google Scholar] [CrossRef]
- Polak, D.; Wilensky, A.; Shapira, L.; Halabi, A.; Goldstein, D.; Weiss, E.I.; Houri-Haddad, Y. Mouse Model of Experimental Periodontitis Induced by Porphyromonas Gingivalis/Fusobacterium Nucleatum Infection: Bone Loss and Host Response. J Clin Periodontol 2009, 36, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Tang, C.Y.; Tan, T.-S.; Chen, K.-H.; Liao, K.-H.; Liou, M.-L. Subgingival Microbiota in Individuals with Severe Chronic Periodontitis. J Microbiol Immunol Infect 2018, 51, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Qiao, M.; Tian, Z.; Yu, Y.; Xu, B.; Lao, W.; Ma, X.; Li, W. Comparative Analyses of Subgingival Microbiome in Chronic Periodontitis Patients with and Without IgA Nephropathy by High Throughput 16S rRNA Sequencing. Cell Physiol Biochem 2018, 47, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Etta, I.; Kambham, S.; Girigosavi, K.B.; Panjiyar, B.K. Mouth-Heart Connection: A Systematic Review on the Impact of Periodontal Disease on Cardiovascular Health. Cureus 2023, 15, e46585. [Google Scholar] [CrossRef]
- Camen, G.C.; Caraivan, O.; Olteanu, M.; Camen, A.; Bunget, A.; Popescu, F.C.; Predescu, A. Inflammatory Reaction in Chronic Periodontopathies in Patients with Diabetes Mellitus. Histological and Immunohistochemical Study. Rom J Morphol Embryol 2012, 53, 55–60. [Google Scholar]
- Marincak Vrankova, Z.; Brenerova, P.; Bodokyova, L.; Bohm, J.; Ruzicka, F.; Borilova Linhartova, P. Tongue Microbiota in Relation to the Breathing Preference in Children Undergoing Orthodontic Treatment. BMC Oral Health 2024, 24, 1259. [Google Scholar] [CrossRef]
- Sureda, A.; Daglia, M.; Argüelles Castilla, S.; Sanadgol, N.; Fazel Nabavi, S.; Khan, H.; Belwal, T.; Jeandet, P.; Marchese, A.; Pistollato, F.; et al. Oral Microbiota and Alzheimer’s Disease: Do All Roads Lead to Rome? Pharmacol Res 2020, 151, 104582. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Wu, X.; Xu, X.; Ji, X.; Wang, B.; Zhang, P.; Li, H. Effects of Oral Health Intervention Strategies on Cognition and Microbiota Alterations in Patients with Mild Alzheimer’s Disease: A Randomized Controlled Trial. Geriatr Nurs 2022, 48, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H. Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and Recovery. Cells 2023, 12, 1213. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Bizzoca, M.E.; Cantore, S.; Caloro, G.A.; Musella, G.; Mastrangelo, F.; Lo Muzio, L.; Ballini, A. Impact of Cerebrovascular Stroke on Inflammatory Periodontal Indices: A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Case-Control Studies. Front Oral Health 2024, 5, 1473744. [Google Scholar] [CrossRef]
- Nurkolis, F.; Utami, T.W.; Alatas, A.I.; Wicaksono, D.; Kurniawan, R.; Ratmandhika, S.R.; Sukarno, K.T.; Pahu, Y.G.P.; Kim, B.; Tallei, T.E.; et al. Can Salivary and Skin Microbiome Become a Biodetector for Aging-Associated Diseases? Current Insights and Future Perspectives. Front Aging 2024, 5, 1462569. [Google Scholar] [CrossRef]
- Chen, X.; Winckler, B.; Lu, M.; Cheng, H.; Yuan, Z.; Yang, Y.; Jin, L.; Ye, W. Oral Microbiota and Risk for Esophageal Squamous Cell Carcinoma in a High-Risk Area of China. PLoS One 2015, 10, e0143603. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B. Mechanisms and Potential Clinical Implications of Oral Microbiome in Oral Squamous Cell Carcinoma. Curr Oncol 2023, 31, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Rao, Y.; Guo, X.; Liu, N.; Liu, S.; Wen, P.; Li, S.; Li, Y. Oral Microbiome in Patients with Oesophageal Squamous Cell Carcinoma. Sci Rep 2019, 9, 19055. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-W.; Yang, J.-J.; Lin, Y.-Y. Mapping the Scientific Landscape of Bacterial Influence on Oral Cancer: A Bibliometric Analysis of the Last Decade’s Medical Progress. Curr Oncol 2023, 30, 9004–9018. [Google Scholar] [CrossRef]
- Perera, M.; Al-Hebshi, N.N.; Perera, I.; Ipe, D.; Ulett, G.C.; Speicher, D.J.; Chen, T.; Johnson, N.W. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma. J Dent Res 2018, 97, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Bhatia, S.; Sodhi, A.S.; Batra, N. Oral Microbiome and Health. AIMS Microbiol 2018, 4, 42–66. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Chain, P.S.G.; Lo, C.-C.; Liu, K.-L.; Gans, J.; Merritt, J.; Qi, F. Community and Gene Composition of a Human Dental Plaque Microbiota Obtained by Metagenomic Sequencing. Mol Oral Microbiol 2010, 25, 391–405. [Google Scholar] [CrossRef]
- Schmidt, B.L.; Kuczynski, J.; Bhattacharya, A.; Huey, B.; Corby, P.M.; Queiroz, E.L.S.; Nightingale, K.; Kerr, A.R.; DeLacure, M.D.; Veeramachaneni, R.; et al. Changes in Abundance of Oral Microbiota Associated with Oral Cancer. PLoS One 2014, 9, e98741. [Google Scholar] [CrossRef]
- Chang, C.; Geng, F.; Shi, X.; Li, Y.; Zhang, X.; Zhao, X.; Pan, Y. The Prevalence Rate of Periodontal Pathogens and Its Association with Oral Squamous Cell Carcinoma. Appl Microbiol Biotechnol 2019, 103, 1393–1404. [Google Scholar] [CrossRef]
- Rai, A.K.; Panda, M.; Das, A.K.; Rahman, T.; Das, R.; Das, K.; Sarma, A.; Kataki, A.C.; Chattopadhyay, I. Dysbiosis of Salivary Microbiome and Cytokines Influence Oral Squamous Cell Carcinoma through Inflammation. Arch Microbiol 2021, 203, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Zheng, H.J.; Zhang, C.P. The Oral Microbiota May Have Influence on Oral Cancer. Front Cell Infect Microbiol 2019, 9, 476. [Google Scholar] [CrossRef]
- Yan, K.; Auger, S.; Diaz, A.; Naman, J.; Vemulapalli, R.; Hasina, R.; Izumchenko, E.; Shogan, B.; Agrawal, N. Microbial Changes Associated With Oral Cavity Cancer Progression. Otolaryngol Head Neck Surg 2023, 168, 1443–1452. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Yeh, Y.-M.; Yu, H.-Y.; Chin, C.-Y.; Hsu, C.-W.; Liu, H.; Huang, P.-J.; Hu, S.-N.; Liao, C.-T.; Chang, K.-P.; et al. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging. Front Microbiol 2018, 9, 862. [Google Scholar] [CrossRef]
- Guerrero-Preston, R.; Godoy-Vitorino, F.; Jedlicka, A.; Rodríguez-Hilario, A.; González, H.; Bondy, J.; Lawson, F.; Folawiyo, O.; Michailidi, C.; Dziedzic, A.; et al. 16S rRNA Amplicon Sequencing Identifies Microbiota Associated with Oral Cancer, Human Papilloma Virus Infection and Surgical Treatment. Oncotarget 2016, 7, 51320–51334. [Google Scholar] [CrossRef]
- Zhao, H.; Chu, M.; Huang, Z.; Yang, X.; Ran, S.; Hu, B.; Zhang, C.; Liang, J. Variations in Oral Microbiota Associated with Oral Cancer. Sci Rep 2017, 7, 11773. [Google Scholar] [CrossRef]
- van Dijk, M.C.; Petersen, J.F.; Raber-Durlacher, J.E.; Epstein, J.B.; Laheij, A.M.G.A. Diversity and Compositional Differences in the Oral Microbiome of Oral Squamous Cell Carcinoma Patients and Healthy Controls: A Scoping Review. Front Oral Health 2024, 5, 1366153. [Google Scholar] [CrossRef]
- Su Mun, L.; Wye Lum, S.; Kong Yuiin Sze, G.; Hock Yoong, C.; Ching Yung, K.; Kah Lok, L.; Gopinath, D. Association of Microbiome with Oral Squamous Cell Carcinoma: A Systematic Review of the Metagenomic Studies. Int J Environ Res Public Health 2021, 18, 7224. [Google Scholar] [CrossRef]
- Su, S.-C.; Chang, L.-C.; Huang, H.-D.; Peng, C.-Y.; Chuang, C.-Y.; Chen, Y.-T.; Lu, M.-Y.; Chiu, Y.-W.; Chen, P.-Y.; Yang, S.-F. Oral Microbial Dysbiosis and Its Performance in Predicting Oral Cancer. Carcinogenesis 2021, 42, 127–135. [Google Scholar] [CrossRef]
- Ganly, I.; Yang, L.; Giese, R.A.; Hao, Y.; Nossa, C.W.; Morris, L.G.T.; Rosenthal, M.; Migliacci, J.; Kelly, D.; Tseng, W.; et al. Periodontal Pathogens Are a Risk Factor of Oral Cavity Squamous Cell Carcinoma, Independent of Tobacco and Alcohol and Human Papillomavirus. Int J Cancer 2019, 145, 775–784. [Google Scholar] [CrossRef]
- Hsiao, J.-R.; Chang, C.-C.; Lee, W.-T.; Huang, C.-C.; Ou, C.-Y.; Tsai, S.-T.; Chen, K.-C.; Huang, J.-S.; Wong, T.-Y.; Lai, Y.-H.; et al. The Interplay between Oral Microbiome, Lifestyle Factors and Genetic Polymorphisms in the Risk of Oral Squamous Cell Carcinoma. Carcinogenesis 2018, 39, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Aparna, K.G.; Ravindra, J.; Chakraborty, G.; Ballamoole, K.K.; Vinaya Kumar, J.R.; Chakraborty, A. 16S rRNA Based Metagenomic Analysis Unveils Unique Oral Microbial Signatures in Oral Squamous Cell Carcinoma Cases from Coastal Karnataka, India. Acta Microbiol Immunol Hung 2024, 71, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Anjali, K.; Manzoor, M.; Suryavanshi, M.V.; Rudrapathy, P.; Rekha, P.D.; Das, R.; Hameed, A.; Arun, A.B. Dysbiosis of the Oral Microbiota Composition Is Associated with Oral Squamous Cell Carcinoma and the Impact of Radiotherapy: A Pilot Study. FEMS Microbiol Lett 2023, 370, fnad111. [Google Scholar] [CrossRef]
- Al-Hebshi, N.N.; Nasher, A.T.; Maryoud, M.Y.; Homeida, H.E.; Chen, T.; Idris, A.M.; Johnson, N.W. Inflammatory Bacteriome Featuring Fusobacterium Nucleatum and Pseudomonas Aeruginosa Identified in Association with Oral Squamous Cell Carcinoma. Sci Rep 2017, 7, 1834. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Wang, C.; Usyk, M.; Wu, F.; Freedman, N.D.; Huang, W.-Y.; McCullough, M.L.; Um, C.Y.; Shrubsole, M.J.; Cai, Q.; et al. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol 2024, 10, 1537–1547. [Google Scholar] [CrossRef]
- Eun, Y.-G.; Lee, J.-W.; Kim, S.W.; Hyun, D.-W.; Bae, J.-W.; Lee, Y.C. Oral Microbiome Associated with Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Sci Rep 2021, 11, 23176. [Google Scholar] [CrossRef] [PubMed]
- Ciani, L.; Libonati, A.; Dri, M.; Pomella, S.; Campanella, V.; Barillari, G. About a Possible Impact of Endodontic Infections by Fusobacterium Nucleatum or Porphyromonas Gingivalis on Oral Carcinogenesis: A Literature Overview. Int J Mol Sci 2024, 25, 5083. [Google Scholar] [CrossRef] [PubMed]
- Binder Gallimidi, A.; Fischman, S.; Revach, B.; Bulvik, R.; Maliutina, A.; Rubinstein, A.M.; Nussbaum, G.; Elkin, M. Periodontal Pathogens Porphyromonas Gingivalis and Fusobacterium Nucleatum Promote Tumor Progression in an Oral-Specific Chemical Carcinogenesis Model. Oncotarget 2015, 6, 22613–22623. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-C.; Jing, S.-L.; Jumatai, S.; Gong, Z.-C. Porphyromonas Gingivalis Promotes the Progression of Oral Squamous Cell Carcinoma by Activating the Neutrophil Chemotaxis in the Tumour Microenvironment. Cancer Immunol Immunother 2023, 72, 1523–1539. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Wang, H.; Liu, J.; Pan, C.; Zhang, D.; Li, X.; Pan, Y. Porphyromonas Gingivalis Infection Promoted the Proliferation of Oral Squamous Cell Carcinoma Cells through the miR-21/PDCD4/AP-1 Negative Signaling Pathway. ACS Infect Dis 2019, 5, 1336–1347. [Google Scholar] [CrossRef]
- Zhou, Y.; Sztukowska, M.; Wang, Q.; Inaba, H.; Potempa, J.; Scott, D.A.; Wang, H.; Lamont, R.J. Noncanonical Activation of β-Catenin by Porphyromonas Gingivalis. Infect Immun 2015, 83, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Han, X.; Lohner, H.; Hoyle, R.G.; Li, J.; Liang, S.; Wang, H. P. Gingivalis Infection Upregulates PD-L1 Expression on Dendritic Cells, Suppresses CD8+ T-Cell Responses, and Aggravates Oral Cancer. Cancer Immunol Res 2023, 11, 290–305. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Park, Y.; Hasegawa, Y.; Tribble, G.D.; James, C.E.; Handfield, M.; Stavropoulos, M.F.; Yilmaz, O.; Lamont, R.J. Intrinsic Apoptotic Pathways of Gingival Epithelial Cells Modulated by Porphyromonas Gingivalis. Cell Microbiol 2007, 9, 1997–2007. [Google Scholar] [CrossRef]
- Yilmaz, O.; Jungas, T.; Verbeke, P.; Ojcius, D.M. Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Contributes to Survival of Primary Epithelial Cells Infected with the Periodontal Pathogen Porphyromonas Gingivalis. Infect Immun 2004, 72, 3743–3751. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Jermanus, C.; Barbetta, B.; Choi, C.; Verbeke, P.; Ojcius, D.M.; Yilmaz, O. Porphyromonas Gingivalis Infection Sequesters Pro-Apoptotic Bad through Akt in Primary Gingival Epithelial Cells. Mol Oral Microbiol 2010, 25, 89–101. [Google Scholar] [CrossRef]
- Lee, J.; Roberts, J.S.; Atanasova, K.R.; Chowdhury, N.; Yilmaz, Ö. A Novel Kinase Function of a Nucleoside-Diphosphate-Kinase Homologue in Porphyromonas Gingivalis Is Critical in Subversion of Host Cell Apoptosis by Targeting Heat-Shock Protein 27. Cell Microbiol 2018, 20, e12825. [Google Scholar] [CrossRef]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 Protein of Fusobacterium Nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity 2015, 42, 344–355. [Google Scholar] [CrossRef]
- Gur, C.; Maalouf, N.; Shhadeh, A.; Berhani, O.; Singer, B.B.; Bachrach, G.; Mandelboim, O. Fusobacterium Nucleatum Supresses Anti-Tumor Immunity by Activating CEACAM1. Oncoimmunology 2019, 8, e1581531. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Wang, Q.; Liu, S.; Xiang, L.; Sun, M.; Zhang, X.; Liu, G.; Qu, X.; Wei, F. Neutrophils Infiltration in the Tongue Squamous Cell Carcinoma and Its Correlation with CEACAM1 Expression on Tumor Cells. PLoS One 2014, 9, e89991. [Google Scholar] [CrossRef] [PubMed]
- Harrandah, A.M.; Chukkapalli, S.S.; Bhattacharyya, I.; Progulske-Fox, A.; Chan, E.K.L. Fusobacteria Modulate Oral Carcinogenesis and Promote Cancer Progression. J Oral Microbiol 2020, 13, 1849493. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Zhang, Y.; Lu, Z.; Zhang, S.; Pan, Y. Fusobacterium Nucleatum Caused DNA Damage and Promoted Cell Proliferation by the Ku70/P53 Pathway in Oral Cancer Cells. DNA Cell Biol 2020, 39, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tang, Q.; Yu, S.; Xie, M.; Zheng, W.; Chen, G.; Yin, Y.; Huang, X.; Wo, K.; Lei, H.; et al. F. Nucleatum Facilitates Oral Squamous Cell Carcinoma Progression via GLUT1-Driven Lactate Production. EBioMedicine 2023, 88, 104444. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Huang, X.; Wang, Q.; Fu, R.; Wen, X.; Liu, J.; Zhang, L. F. Nucleatum Enhances Oral Squamous Cell Carcinoma Proliferation via E-Cadherin/β-Catenin Pathway. BMC Oral Health 2024, 24, 518. [Google Scholar] [CrossRef] [PubMed]
- Kamarajan, P.; Ateia, I.; Shin, J.M.; Fenno, J.C.; Le, C.; Zhan, L.; Chang, A.; Darveau, R.; Kapila, Y.L. Periodontal Pathogens Promote Cancer Aggressivity via TLR/MyD88 Triggered Activation of Integrin/FAK Signaling That Is Therapeutically Reversible by a Probiotic Bacteriocin. PLoS Pathog 2020, 16, e1008881. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.T.; Sun, Y.; Zhou, X.D.; Liu, S.Y.; Han, Q.; Cheng, L.; Peng, X. Treponema Denticola Promotes OSCC Development via the TGF-β Signaling Pathway. J Dent Res 2022, 101, 704–713. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Li, B.; Jiang, Y.; Zhou, X.; Chen, J.; Li, M.; Ren, B.; Peng, X.; Zhou, X.; et al. Staphylococcus Aureus Induces COX-2-Dependent Proliferation and Malignant Transformation in Oral Keratinocytes. J Oral Microbiol 2019, 11, 1643205. [Google Scholar] [CrossRef]
- Yost, S.; Stashenko, P.; Choi, Y.; Kukuruzinska, M.; Genco, C.A.; Salama, A.; Weinberg, E.O.; Kramer, C.D.; Frias-Lopez, J. Increased Virulence of the Oral Microbiome in Oral Squamous Cell Carcinoma Revealed by Metatranscriptome Analyses. Int J Oral Sci 2018, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.B.; Ahn, J.; Fan, X.; Peters, B.A.; Ma, Y.; Yang, L.; Agalliu, I.; Burk, R.D.; Ganly, I.; Purdue, M.P.; et al. Association of Oral Microbiome With Risk for Incident Head and Neck Squamous Cell Cancer. JAMA Oncol 2018, 4, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, K.; Aggarwal, S.; Verma, S.S.; Gupta, S.C. Clinico-Pathological Peculiarities of Human Papilloma Virus Driven Head and Neck Squamous Cell Carcinoma: A Comprehensive Update. Life Sciences 2020, 245. [Google Scholar] [CrossRef] [PubMed]
- Novo, V.M.; Feletti, M.P.; Maifrede, S.B.; da Fonseca, J.Z.; Cayô, R.; Gonçalves, S.S.; Grão-Velloso, T.R. Clinical and Mycological Analysis of Colonization by Candida Spp. in Oral Leukoplakia and Oral Lichen Planus. Braz J Microbiol 2024, 55, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Castillo, G.D.V.; Blanc, S.L. de; Sotomayor, C.E.; Azcurra, A.I. Study of Virulence Factor of Candida Species in Oral Lesions and Its Association with Potentially Malignant and Malignant Lesions. Arch Oral Biol 2018, 91, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Alnuaimi, A.D.; Ramdzan, A.N.; Wiesenfeld, D.; O’Brien-Simpson, N.M.; Kolev, S.D.; Reynolds, E.C.; McCullough, M.J. Candida Virulence and Ethanol-Derived Acetaldehyde Production in Oral Cancer and Non-Cancer Subjects. Oral Dis 2016, 22, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; et al. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Gapstur, S.M.; Bouvard, V.; Nethan, S.T.; Freudenheim, J.L.; Abnet, C.C.; English, D.R.; Rehm, J.; Balbo, S.; Buykx, P.; Crabb, D.; et al. The IARC Perspective on Alcohol Reduction or Cessation and Cancer Risk. N Engl J Med 2023, 389, 2486–2494. [Google Scholar] [CrossRef] [PubMed]
- Stornetta, A.; Guidolin, V.; Balbo, S. Alcohol-Derived Acetaldehyde Exposure in the Oral Cavity. Cancers (Basel) 2018, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Moritani, K.; Takeshita, T.; Shibata, Y.; Ninomiya, T.; Kiyohara, Y.; Yamashita, Y. Acetaldehyde Production by Major Oral Microbes. Oral Dis 2015, 21, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Muto, M.; Hitomi, Y.; Ohtsu, A.; Shimada, H.; Kashiwase, Y.; Sasaki, H.; Yoshida, S.; Esumi, H. Acetaldehyde Production by Non-Pathogenic Neisseria in Human Oral Microflora: Implications for Carcinogenesis in Upper Aerodigestive Tract. Int J Cancer 2000, 88, 342–350. [Google Scholar] [CrossRef]
- Kurkivuori, J.; Salaspuro, V.; Kaihovaara, P.; Kari, K.; Rautemaa, R.; Grönroos, L.; Meurman, J.H.; Salaspuro, M. Acetaldehyde Production from Ethanol by Oral Streptococci. Oral Oncol 2007, 43, 181–186. [Google Scholar] [CrossRef]
- Yokoyama, S.; Takeuchi, K.; Shibata, Y.; Kageyama, S.; Matsumi, R.; Takeshita, T.; Yamashita, Y. Characterization of Oral Microbiota and Acetaldehyde Production. J Oral Microbiol 2018, 10, 1492316. [Google Scholar] [CrossRef]
- Smędra, A.; Berent, J. The Influence of the Oral Microbiome on Oral Cancer: A Literature Review and a New Approach. Biomolecules 2023, 13, 815. [Google Scholar] [CrossRef] [PubMed]
- Homann, N.; Jousimies-Somer, H.; Jokelainen, K.; Heine, R.; Salaspuro, M. High Acetaldehyde Levels in Saliva after Ethanol Consumption: Methodological Aspects and Pathogenetic Implications. Carcinogenesis 1997, 18, 1739–1743. [Google Scholar] [CrossRef] [PubMed]
- Gainza-Cirauqui, M.L.; Nieminen, M.T.; Novak Frazer, L.; Aguirre-Urizar, J.M.; Moragues, M.D.; Rautemaa, R. Production of Carcinogenic Acetaldehyde by Candida Albicans from Patients with Potentially Malignant Oral Mucosal Disorders. J Oral Pathol Med 2013, 42, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.T.; Uittamo, J.; Salaspuro, M.; Rautemaa, R. Acetaldehyde Production from Ethanol and Glucose by Non-Candida Albicans Yeasts in Vitro. Oral Oncol 2009, 45, e245–248. [Google Scholar] [CrossRef] [PubMed]
- El-Hellani, A.; Adeniji, A.; Erythropel, H.C.; Wang, Q.; Lamb, T.; Mikheev, V.B.; Rahman, I.; Stepanov, I.; Strongin, R.M.; Wagener, T.L.; et al. Comparison of Emissions across Tobacco Products: A Slippery Slope in Tobacco Control. Tob Induc Dis 2024, 22. [Google Scholar] [CrossRef]
- Ward, G.; Wurster, J.I.; Lamb, P.S.; DeCost, G.; Belenky, P.; Monnig, M.A. Alcohol Consumption and Oral Microbiome Composition in a Sample of Healthy Young Adults. Alcohol Alcohol 2023, 58, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, G.; Hoshikawa, K.; Kan, S.; Akimaru, R.; Kodama, Y.; Sato, T.; Kakisaka, K.; Yamada, Y. Auto-Brewery Syndrome Caused by Oral Fungi and Periodontal Disease Bacteria. Acute Med Surg 2021, 8, e652. [Google Scholar] [CrossRef]
- Kaji, H.; Asanuma, Y.; Ide, H.; Saito, N.; Hisamura, M.; Murao, M.; Yoshida, T.; Takahashi, K. The Auto-Brewery Syndrome--the Repeated Attacks of Alcoholic Intoxication Due to the Overgrowth of Candida (Albicans) in the Gastrointestinal Tract. Mater Med Pol 1976, 8, 429–435. [Google Scholar] [PubMed]
- Tamama, K.; Kruckenberg, K.M.; DiMartini, A.F. Gut and Bladder Fermentation Syndromes: A Narrative Review. BMC Med 2024, 22, 26. [Google Scholar] [CrossRef]
- Cordell, B.J.; Kanodia, A.; Miller, G.K. Case-Control Research Study of Auto-Brewery Syndrome. Glob Adv Health Med 2019, 8, 2164956119837566. [Google Scholar] [CrossRef]
- Malik, F.; Wickremesinghe, P.; Saverimuttu, J. Case Report and Literature Review of Auto-Brewery Syndrome: Probably an Underdiagnosed Medical Condition. BMJ Open Gastroenterol 2019, 6, e000325. [Google Scholar] [CrossRef]
- Smędra, A.; Trzmielak, M.; Góralska, K.; Dzikowiec, M.; Brzeziańska-Lasota, E.; Berent, J. Oral Form of Auto-Brewery Syndrome. J Forensic Leg Med 2022, 87, 102333. [Google Scholar] [CrossRef] [PubMed]
- Dashko, S.; Zhou, N.; Compagno, C.; Piškur, J. Why, When, and How Did Yeast Evolve Alcoholic Fermentation? FEMS Yeast Res 2014, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Devaraja, K. Oral Cancer: Are Some People Lucky or Just Ignorant? Cancer Research, Statistics, and Treatment 2022, 5, 628–629. [Google Scholar] [CrossRef]
- Lee, W.-H.; Chen, H.-M.; Yang, S.-F.; Liang, C.; Peng, C.-Y.; Lin, F.-M.; Tsai, L.-L.; Wu, B.-C.; Hsin, C.-H.; Chuang, C.-Y.; et al. Bacterial Alterations in Salivary Microbiota and Their Association in Oral Cancer. Sci Rep 2017, 7, 16540. [Google Scholar] [CrossRef]
- Neuzillet, C.; Marchais, M.; Vacher, S.; Hilmi, M.; Schnitzler, A.; Meseure, D.; Leclere, R.; Lecerf, C.; Dubot, C.; Jeannot, E.; et al. Prognostic Value of Intratumoral Fusobacterium Nucleatum and Association with Immune-Related Gene Expression in Oral Squamous Cell Carcinoma Patients. Sci Rep 2021, 11, 7870. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Ma, C.; Wang, K.; Liu, S.; Sun, J.; Tan, W.; Neckenig, M.; Wang, Q.; Dong, Z.; Gao, W.; et al. Dysbiotic Tumor Microbiota Associates with Head and Neck Squamous Cell Carcinoma Outcomes. Oral Oncol 2022, 124, 105657. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Jiang, Y.; Ye, N.; Jin, G.; Shi, H.; Qian, D. Leveraging the Intratumoral Microbiota to Treat Human Cancer: Are Engineered Exosomes an Effective Strategy? J Transl Med 2024, 22, 728. [Google Scholar] [CrossRef]
- Devaraja, K.; Singh, M.; Sharan, K.; Aggarwal, S. Coley’s Toxin to First Approved Therapeutic Vaccine—A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines 2024, 12, 2746. [Google Scholar] [CrossRef] [PubMed]
- Califano, J.; van der Riet, P.; Westra, W.; Nawroz, H.; Clayman, G.; Piantadosi, S.; Corio, R.; Lee, D.; Greenberg, B.; Koch, W.; et al. Genetic Progression Model for Head and Neck Cancer: Implications for Field Cancerization. Cancer Res 1996, 56, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Ha, P.K.; Benoit, N.E.; Yochem, R.; Sciubba, J.; Zahurak, M.; Sidransky, D.; Pevsner, J.; Westra, W.H.; Califano, J. A Transcriptional Progression Model for Head and Neck Cancer. Clin Cancer Res 2003, 9, 3058–3064. [Google Scholar] [PubMed]
- Galeano Niño, J.L.; Wu, H.; LaCourse, K.D.; Kempchinsky, A.G.; Baryiames, A.; Barber, B.; Futran, N.; Houlton, J.; Sather, C.; Sicinska, E.; et al. Effect of the Intratumoral Microbiota on Spatial and Cellular Heterogeneity in Cancer. Nature 2022, 611, 810–817. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Malayil, L.; Chopyk, J.; Smyth, E.; Kulkarni, P.; Raspanti, G.; Thomas, S.B.; Sapkota, A.; Mongodin, E.F.; Sapkota, A.R. Oral Microbiome Dysbiosis among Cigarette Smokers and Smokeless Tobacco Users Compared to Non-Users. Sci Rep 2024, 14, 10394. [Google Scholar] [CrossRef]
- Gopinath, D.; Wie, C.C.; Banerjee, M.; Thangavelu, L.; Kumar R, P.; Nallaswamy, D.; Botelho, M.G.; Johnson, N.W. Compositional Profile of Mucosal Bacteriome of Smokers and Smokeless Tobacco Users. Clin Oral Investig 2022, 26, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Al-Hebshi, N.N.; Alharbi, F.A.; Mahri, M.; Chen, T. Differences in the Bacteriome of Smokeless Tobacco Products with Different Oral Carcinogenicity: Compositional and Predicted Functional Analysis. Genes (Basel) 2017, 8, 106. [Google Scholar] [CrossRef]
- Krasse, B. The Proportional Distribution of Streptococcus Salivarius and Other Streptococci in Various Parts of the Mouth. Odontol Revy 1954, 5, 203–211. [Google Scholar] [PubMed]
- Proctor, L. Priorities for the next 10 Years of Human Microbiome Research. Nature 2019, 569, 623–625. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
