Submitted:
06 December 2024
Posted:
09 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- We enhance predictive accuracy for solar irradiance and PV power forecasting by effectively capturing nonlinear dependencies and long-range temporal patterns, building on the challenges and opportunities identified in prior forecasting models.
- We improve model robustness and stability under diverse meteorological conditions through the integration of advanced activation functions, as previously highlighted as a critical requirement for reliable renewable energy systems in smart cities.
- We provide a scalable solution that supports seamless integration into broader smart city infrastructures, bridging the gap between renewable energy forecasting and sustainable urban development goals.
2. Related Work
3. Materials and Methods
3.1. Data Sources and Study Sites
3.2. Data Preprocessing and Feature Engineering
3.2.1. Solar Irradiance
3.2.2. Photovoltaic Power Generation
3.3. Data Preprocessing and Feature Engineering
4. Results
4.1. Experimental Design
4.2. Experimental Results
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noh, B.; Ka, D.; Lee, D.; Yeo, H. Vision-based Potential Pedestrian Risk Analysis on Unsignalized Crosswalk Using Data Mining Techniques. Appl. Sci. 2020, 10, 102975. [Google Scholar] [CrossRef]
- Noh, B.; Yeo, H. SafetyCube: Framework for Potential Pedestrian Risk Analysis Using Multi-Dimensional OLAP. Accid. Anal. Prev. 2021, 155, 106104. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.; Ka, D.; No, W.; Yeo, H. Automated Object Behavioral Feature Extraction for Potential Risk Analysis Based on Video Sensor. arXiv 2021, arXiv:2107.03554. [Google Scholar] [CrossRef]
- Jin, Z.; Noh, B.; Cho, H.; Yeo, H. Deep Learning-Based Approach on Risk Estimation of Urban Traffic Accidents. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 1446–1451. [Google Scholar] [CrossRef]
- Lee, H.; Cho, H.; Noh, B.; Yeo, H. NAVIBox: Real-Time Vehicle–Pedestrian Risk Prediction System in an Edge Vision Environment. Electronics 2023, 12, 4311. [Google Scholar] [CrossRef]
- Jin, Z.; No, W.; Noh, B. Do Enhanced School Zone Policies Improve Pedestrians’ Safety? A Deep Learning-Based Case Study of Osan City, South Korea. Cities 2025, 156, 105505. [Google Scholar] [CrossRef]
- Kim, Y.; Yeo, H.; Lim, L.; Noh, B. Integrating Visual and Community Environments in a Motorcycle Crash and Casualty Estimation. Accid. Anal. Prev. 2024, 208, 107792. [Google Scholar] [CrossRef] [PubMed]
- No, W.; Noh, B.; Kim, Y. A Novel Approach for Reliable Pedestrian Trajectory Collection with Behavior-Based Trajectory Reconstruction for Urban Surveillance Systems. Adv. Eng. Softw. 2024, 195, 103687. [Google Scholar] [CrossRef]
- No, W.; Lee, D.; Noh, B.; Kim, Y. How Do Crosswalk Delays Affect Pedestrian Access in Zoning Areas? Walking Access Reduction by Signalized Crosswalks in Seoul, South Korea. Appl. Geogr. 2023, 156, 102975. [Google Scholar] [CrossRef]
- Jin, Z.; Noh, B. From Prediction to Prevention: Leveraging Deep Learning in Traffic Accident Prediction Systems. Electronics 2023, 12(20), 4335. [Google Scholar] [CrossRef]
- Hwang, J.; Noh, B.; Jin, Z.; Yeo, H. Asymmetric Long-Term Graph Multi-Attention Network for Traffic Speed Prediction. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 1498–1503. [Google Scholar] [CrossRef]
- Noh, B.; Park, H.; Yeo, H. Analyzing Vehicle–Pedestrian Interactions: Combining Data Cube Structure and Predictive Collision Risk Estimation Model. Accid. Anal. Prev. 2022, 165, 106539. [Google Scholar] [CrossRef]
- Noh, B.; Ka, D.; Lee, D.; Yeo, H. Analysis of Vehicle–Pedestrian Interactive Behaviors near Unsignalized Crosswalk. Transp. Res. Rec. 2021, 2675, 494–505. [Google Scholar] [CrossRef]
- Noh, B.; Yeo, H. A Novel Method of Predictive Collision Risk Area Estimation for Proactive Pedestrian Accident Prevention System in Urban Surveillance Infrastructure. Transp. Res. C 2022, 137, 103570. [Google Scholar] [CrossRef]
- Noh, B.; No, W.; Lee, D. Vision-Based Overhead Front Point Recognition of Vehicles for Traffic Safety Analysis. In Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '18), Singapore, 8–12 October 2018; pp. 1096–1102. [Google Scholar] [CrossRef]
- Noh, B.; Cha, K.; Chang, S. Movement Classification Based on Acceleration Spectrogram with Dynamic Time Warping Method. In Proceedings of the 2017 18th IEEE International Conference on Mobile Data Management (MDM), Daejeon, Korea, 29 May–1 June 2017; pp. 397–400. [Google Scholar] [CrossRef]
- Park, H.; Park, D.Y.; Noh, B.; Chang, S. Stacking Deep Transfer Learning for Short-Term Cross Building Energy Prediction with Different Seasonality and Occupant Schedule. Build. Environ. 2022, 218, 109060. [Google Scholar] [CrossRef]
- Son, J.J.; Noh, B.; Park, H.; Chang, S. Optimization of Building Material Selection for Energy Saving in Commercial Buildings in Different Climatic Conditions. J. Green Build. 2022, 17, 89–106. [Google Scholar] [CrossRef]
- Shon, D.; Noh, B.; Byun, N. Identification and Extracting Method of Exterior Building Information on 3D Map. Buildings 2022, 12, 452. [Google Scholar] [CrossRef]
- Noh, B.; Son, J.; Park, H.; Chang, S. In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining. Sustainability 2017, 9, 109060. [Google Scholar] [CrossRef]
- Lee, J.; Noh, B.; Jang, S.; Park, D.; Chung, Y.; Chang, H.H. Stress Detection and Classification of Laying Hens by Sound Analysis. Asian-Australas. J. Anim. Sci. 2015, 28, 592–599. [Google Scholar] [CrossRef]
- Noh, B.; Ka, D.; Lee, J.; Lee, D. Vision-Based Potential Pedestrian Risk Analysis on Unsignalized Crosswalk Using Data Mining Techniques. Appl. Sci. 2020, 10, 102975. [Google Scholar] [CrossRef]
- Kim, B.; Noh, B.; Song, K. Method on Efficient Operation of Multiple Models for Vision-Based In-Flight Risky Behavior Recognition in UAM Safety and Security. J. Adv. Transp. 2024, 2024, 7113084. [Google Scholar] [CrossRef]
- Noh, B.; Lin, T.; Lee, S.; Jeong, T. Deep Learning and Geometry Flow Vector Using Estimating Vehicle Cuboid Technology in a Monovision Environment. Sensors 2023, 23, 7504. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Hong, S.; Song, J.; Son, B.; Noh, B.; Moon, J. SolarFlux Predictor: A Novel Deep Learning Approach for Photovoltaic Power Forecasting in South Korea. Electronics 2024, 13, 2071. [Google Scholar] [CrossRef]
- Moon, J.; Maqsood, M.; So, D.; Baik, S.W.; Rho, S.; Nam, Y. Advancing ensemble learning techniques for residential building electricity consumption forecasting: Insight from explainable artificial intelligence. PLoS ONE 2024, 19, e0307654. [Google Scholar] [CrossRef]
- Moon, J.; Rho, S.; Baik, S.W. Toward explainable electrical load forecasting of buildings: A comparative study of tree-based ensemble methods with Shapley values. Sustain. Energy Technol. Assess. 2022, 54, 102888. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Rho, S.; Hwang, E. Interpretable Short-Term Electrical Load Forecasting Scheme Using Cubist. Comput. Intell. Neurosci. 2022, 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Lee, J.; Kim, D.; Kim, B.-Y.; Moon, J. A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction. J. Korea Comput. Inf. Soc. 2023, 28, 29–42. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Jung, S.; Rew, J.; Rho, S.; Hwang, E. Combination of short-term load forecasting models based on a stacking ensemble approach. Energy Build. 2020, 216, 109921. [Google Scholar] [CrossRef]
- Moon, J.; Kim, J.; Kang, P.; Hwang, E. Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods. Energies 2020, 13, 886. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Rho, S.; Hwang, E. A comparative analysis of artificial neural network architectures for building energy consumption forecasting. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719877616. [Google Scholar] [CrossRef]
- Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. Energies 2018, 11, 3283. [Google Scholar] [CrossRef]
- Moon, J.; Park, J.; Hwang, E.; Jun, S. Forecasting power consumption for higher educational institutions based on machine learning. J. Supercomput. 2018, 74, 3778–3800. [Google Scholar] [CrossRef]
- Moon, J.; Kim, K.H.; Kim, Y.; Hwang, E. A Short-Term Electric Load Forecasting Scheme Using 2-Stage Predictive Analytics. In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17 January 2018; pp. 219–226. [Google Scholar] [CrossRef]
- Oh, J.; So, D.; Jo, J.; Kang, N.; Hwang, E.; Moon, J. Two-Stage Neural Network Optimization for Robust Solar Photovoltaic Forecasting. Electronics 2024, 13, 1659. [Google Scholar] [CrossRef]
- So, D.; Oh, J.; Jeon, I.; Moon, J.; Lee, M.; Rho, S. BiGTA-Net: A Hybrid Deep Learning-Based Electrical Energy Forecasting Model for Building Energy Management Systems. Systems 2023, 11, 456. [Google Scholar] [CrossRef]
- Moon, J.; Kim, Y.; Rho, S. User Behavior Analytics with Machine Learning for Household Electricity Demand Forecasting. In Proceedings of the 2022 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 7–9 February 2022; p. 13. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Rho, S.; Hwang, E. Robust building energy consumption forecasting using an online learning approach with R ranger. J. Build. Eng. 2022, 47, 103851. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Jung, S.; Hwang, E.; Rho, S. Training-Data Generation and Incremental Testing for Daily Peak Load Forecasting. In Proceedings of the 22nd International Conference on Artificial Intelligence (ICAI’20) and the 4th International Conference on Applied Cognitive Computing (ACC’20), Las Vegas, NV, USA, 27–30 July 2020; pp. 801–812. [Google Scholar] [CrossRef]
- Gul, M.J.; Urfa, G.M.; Paul, A.; Moon, J.; Rho, S.; Hwang, E. Mid-term electricity load prediction using CNN and Bi-LSTM. J. Supercomput. 2021, 77, 10942–10958. [Google Scholar] [CrossRef]
- Jung, S.; Moon, J.; Park, S.; Hwang, E. An Attention-Based Multilayer GRU Model for Multistep-Ahead Short-Term Load Forecasting. Sensors 2021, 21, 1639. [Google Scholar] [CrossRef]
- Jung, S.; Moon, J.; Park, S.; Rho, S.; Baik, S.W.; Hwang, E. Bagging Ensemble of Multilayer Perceptrons for Missing Electricity Consumption Data Imputation. Sensors 2020, 20, 1772. [Google Scholar] [CrossRef]
- Park, S.; Moon, J.; Jung, S.; Rho, S.; Baik, S.W.; Hwang, E. A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling. Energies 2020, 13, 443. [Google Scholar] [CrossRef]
- Kim, J.; Moon, J.; Hwang, E.; Kang, P. Recurrent inception convolution neural network for multi short-term load forecasting. Energy Build. 2019, 194, 328–341. [Google Scholar] [CrossRef]
- Son, M.; Moon, J.; Jung, S.; Hwang, E. A Short-Term Load Forecasting Scheme Based on Auto-Encoder and Random Forest. In Proceedings of the 3rd International Conference on Applied Physics, System Science and Computers (APSAC 2018), Dubrovnik, Croatia, vol. 574, 26–28 September 2018; Lecture Notes in Electrical Engineering; pp. 255–262. [Google Scholar] [CrossRef]
- Moon, J. A Multi-Step-Ahead Photovoltaic Power Forecasting Approach Using One-Dimensional Convolutional Neural Networks and Transformer. Electronics 2024, 13, 2007. [Google Scholar] [CrossRef]
- Moon, J.; Han, Y.; Chang, H.; Rho, S. Multistep-ahead solar irradiance forecasting for smart cities based on LSTM, Bi-LSTM, and GRU neural networks. J. Soc. e-Bus. Stud. 2022, 27, 27–52. [Google Scholar] [CrossRef]
- Yang, T.; Kim, M.; Moon, J. Understanding Solar Irradiance Predictions Through Explainable AI: Perspectives from Gwangju. J. Platform Technol. 2024, 12, 3–16. [Google Scholar] [CrossRef]
- So, D.; Oh, J.; Leem, S.; Ha, H.; Moon, J. A Hybrid Ensemble Model for Solar Irradiance Forecasting: Advancing Digital Models for Smart Island Realization. Electronics 2023, 12, 2607. [Google Scholar] [CrossRef]
- Jang, J.; Jeong, W.; Kim, S.; Lee, B.; Lee, M.; Moon, J. RAID: Robust and interpretable daily peak load forecasting via multiple deep neural networks and Shapley values. Sustainability 2023, 15, 6951. [Google Scholar] [CrossRef]
- Hussain, T.; Ullah, F.U.M.; Muhammad, K.; Rho, S.; Ullah, A.; Hwang, E.; Moon, J.; Baik, S.W. Smart and intelligent energy monitoring systems: A comprehensive literature survey and future research guidelines. Int. J. Energy Res. 2021, 45, 3590–3614. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Hwang, E.; Rho, S. A Hybrid Tree-Based Ensemble Learning Model for Day-Ahead Peak Load Forecasting. In Proceedings of the 2022 15th International Conference on Human System Interaction (HSI), Melbourne, Australia, 28–30 June 2022; p. 1. [Google Scholar] [CrossRef]
- Moon, J.; Shin, Z.; Rho, S.; Hwang, E. A Comparative Analysis of Tree-Based Models for Day-Ahead Solar Irradiance Forecasting. In Proceedings of the 2021 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 13–15 February 2021; p. 1. [Google Scholar] [CrossRef]
- Park, J.; Moon, J.; Jung, S.; Hwang, E. Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting Machine: A Case Study of Jeju Island. Remote Sens. 2020, 12, 2271. [Google Scholar] [CrossRef]
- Park, S.; Moon, J.; Hwang, E. 2-Stage Electric Load Forecasting Scheme for Day-Ahead CCHP Scheduling. In Proceedings of the 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS), Toulouse, France, 9–12 July 2019; p. 1. [Google Scholar] [CrossRef]
- Desert Knowledge Australia Solar Centre. Available online: https://dkasolarcentre.com.au/download?location=alice-springs (accessed on 6 December 2024).



| No. | Columns |
|---|---|
| 1 | Timestamp |
| 2 | Wind Speed |
| 3 | Weather Temperature Celsius |
| 4 | Weather Relative Humidity |
| 5 | Global Horizontal Radiation |
| 6 | Diffuse Horizontal Radiation |
| 7 | Wind Direction |
| 8 | Weather Daily Rainfall |
| 9 | Radiation Global Tilted |
| 10 | Radiation Diffuse Tilted |
| 11 | Active Energy Delivered Received |
| 12 | Current Phase Average |
| 13 | Active Power |
| IV # | Description (Data Type) | IV # | Description (Data Type) |
|---|---|---|---|
| Datex | Datex (continuous) | W3 | Mostly cloudy (binary) |
| Datey | Datey (continuous) | W4 | Cloudy (binary) |
| T8 | 8 a.m. (binary) | Temp | Temperature (continuous) |
| T9 | 9 a.m. (binary) | Humi | Humidity (continuous) |
| T10 | 10 a.m. (binary) | WS | Wind speed (continuous) |
| T11 | 11 a.m. (binary) | D1Day_sin | Datex,D−1 (continuous) |
| T12 | 12 p.m. (binary) | D1Day_cos | Datey,D−1 (continuous) |
| T13 | 1 p.m. (binary) | D1W1 | ClearD−1 (binary) |
| T14 | 2 p.m. (binary) | D1W2 | Partly cloudyD−1 (binary) |
| T15 | 3 p.m. (binary) | D1W3 | Mostly cloudyD−1 (binary) |
| T16 | 4 p.m. (binary) | D1W4 | CloudyD−1 (binary) |
| T17 | 5 p.m. (binary) | D1Temp | TemperatureD−1 (continuous) |
| T18 | 6 p.m. (binary) | D1Humi | HumidityD−1 (continuous) |
| W1 | Clear (binary) | D1WS | Wind speedD−1 (continuous) |
| W2 | Partly cloudy (binary) | D1Solar | Solar irradianceD−1 (continuous) |
| No. | Hyperparameter | Setting |
|---|---|---|
| 1 | Epochs | 25 |
| 2 | Batch size | 24 |
| 3 | Optimizer | Adam |
| 4 | Metrics | MAE |
| 5 | Learning rate | 0.001 |
| 6 | Activation function | SELU |
| 7 | Loss | Huber loss |
| 8 | Random state | 42 |
| 9 | Early stopping | 10 |
| Steps | Ildo-1 dong | Gosan-ri | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ReLU | SELU | Leaky ReLU | ReLU | SELU | Leaky ReLU | |||||||
| MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
| 1 | 0.366 | 0.253 | 0.394 | 0.279 | 0.384 | 0.268 | 0.252 | 0.347 | 0.231 | 0.336 | 0.252 | 0.347 |
| 2 | 0.453 | 0.312 | 0.459 | 0.323 | 0.463 | 0.321 | 0.293 | 0.405 | 0.283 | 0.411 | 0.293 | 0.405 |
| 3 | 0.497 | 0.341 | 0.498 | 0.349 | 0.508 | 0.350 | 0.322 | 0.452 | 0.310 | 0.450 | 0.322 | 0.452 |
| 4 | 0.525 | 0.359 | 0.526 | 0.365 | 0.539 | 0.370 | 0.346 | 0.484 | 0.333 | 0.483 | 0.346 | 0.484 |
| 5 | 0.543 | 0.370 | 0.543 | 0.374 | 0.565 | 0.388 | 0.359 | 0.504 | 0.350 | 0.509 | 0.359 | 0.504 |
| 6 | 0.556 | 0.380 | 0.556 | 0.379 | 0.587 | 0.400 | 0.369 | 0.518 | 0.361 | 0.524 | 0.369 | 0.518 |
| 7 | 0.567 | 0.390 | 0.564 | 0.384 | 0.601 | 0.410 | 0.379 | 0.531 | 0.367 | 0.532 | 0.379 | 0.531 |
| 8 | 0.581 | 0.403 | 0.571 | 0.390 | 0.612 | 0.420 | 0.390 | 0.546 | 0.374 | 0.540 | 0.390 | 0.546 |
| 9 | 0.596 | 0.416 | 0.577 | 0.396 | 0.623 | 0.433 | 0.404 | 0.561 | 0.384 | 0.548 | 0.404 | 0.561 |
| 10 | 0.612 | 0.429 | 0.588 | 0.407 | 0.633 | 0.444 | 0.420 | 0.579 | 0.394 | 0.558 | 0.420 | 0.579 |
| 11 | 0.629 | 0.442 | 0.601 | 0.418 | 0.644 | 0.457 | 0.421 | 0.584 | 0.402 | 0.568 | 0.421 | 0.584 |
| Avg. | 0.539 | 0.372 | 0.534 | 0.369 | 0.560 | 0.387 | 0.360 | 0.501 | 0.344 | 0.496 | 0.360 | 0.501 |
| Steps | MSE | RMSE | ||||
|---|---|---|---|---|---|---|
| LSTM-TCN | Bi-LSTM-TCN | GRU-TCN (Ours) | LSTM-TCN | Bi-LSTM-TCN | GRU-TCN (Ours) | |
| 1 | 1.985 | 1.979 | 2.000 | 3.940 | 3.915 | 4.000 |
| 2 | 2.002 | 2.013 | 1.979 | 4.007 | 4.051 | 3.915 |
| 3 | 1.997 | 2.002 | 1.917 | 3.988 | 4.009 | 3.677 |
| 4 | 2.016 | 2.002 | 1.941 | 4.063 | 4.010 | 3.768 |
| 5 | 2.031 | 1.998 | 1.943 | 4.124 | 3.993 | 3.776 |
| 6 | 2.038 | 1.985 | 1.927 | 4.152 | 3.939 | 3.714 |
| 7 | 2.007 | 1.967 | 1.920 | 4.029 | 3.867 | 3.688 |
| 8 | 1.989 | 1.964 | 1.919 | 3.955 | 3.856 | 3.683 |
| 9 | 1.970 | 1.974 | 1.923 | 3.883 | 3.895 | 3.697 |
| 10 | 1.949 | 1.977 | 1.930 | 3.800 | 3.910 | 3.726 |
| 11 | 1.930 | 1.974 | 1.923 | 3.724 | 3.897 | 3.698 |
| 12 | 1.931 | 1.970 | 1.922 | 3.728 | 3.882 | 3.695 |
| 13 | 1.926 | 1.968 | 1.965 | 3.711 | 3.873 | 3.862 |
| 14 | 1.952 | 1.974 | 2.007 | 3.811 | 3.898 | 4.027 |
| 15 | 1.968 | 1.981 | 2.014 | 3.872 | 3.925 | 4.056 |
| 16 | 2.002 | 1.967 | 2.031 | 4.010 | 3.870 | 4.124 |
| 17 | 1.990 | 1.970 | 2.029 | 3.961 | 3.879 | 4.119 |
| 18 | 2.013 | 1.975 | 2.026 | 4.051 | 3.900 | 4.105 |
| 19 | 2.036 | 1.979 | 2.035 | 4.147 | 3.917 | 4.143 |
| 20 | 2.029 | 1.984 | 2.001 | 4.115 | 3.937 | 4.004 |
| 21 | 2.004 | 1.991 | 1.999 | 4.016 | 3.964 | 3.996 |
| 22 | 1.996 | 1.995 | 1.967 | 3.984 | 3.981 | 3.867 |
| 23 | 1.965 | 1.988 | 1.975 | 3.860 | 3.954 | 3.901 |
| 24 | 1.970 | 1.985 | 1.979 | 3.880 | 3.939 | 3.916 |
| Avg. | 1.987 | 1.982 | 1.970 | 3.950 | 3.928 | 3.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
