Submitted:
15 November 2024
Posted:
18 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Understanding Pediatric Fracture Overgrowth
3. Artificial Intelligence in Medicine and Orthopedics
AI in Orthopedic Practice
4. Current Evidence and Applications
4.1. Predictive Modeling in Orthopedics
4.2. Deep Learning in Imaging Analysis
4.3. Personalized Treatment Strategies
4.4. Potential Applications in Fracture Overgrowth
5. Ethical Considerations and Patient-Centric Focus
5.1. Data Privacy and Security
5.2. Informed Consent and Assent
5.3. Algorithmic Bias and Equity
5.4. Transparency and Explainability
5.5. Impact on the Clinician-Patient Relationship
5.6. Legal and Regulatory Considerations
5.7. Ethical Use of AI in Pediatrics
5.8. Stakeholder Engagement
6. Challenges and Limitations
6.1. Data Availability and Quality
6.2. Model Generalizability and Bias
6.3. Integration into Clinical Practice
6.4. Regulatory and Legal Challenges
6.5. Ethical and Social Implications
7. Future Research Directions and Implementation Strategies
| Traditional Approach | AI-Driven Approach | |
|---|---|---|
| Predictive Accuracy | Low; relies on clinical judgment | High; utilizes data-driven models |
| Early Detection | Challenging; often reactive | Facilitated; proactive identification |
| Personalized Treatment | Limited; generalized protocols | Enhanced; tailored interventions |
| Resource Utilization | Variable; may lead to over/under-treatment | Optimized; efficient allocation |
| Clinician Workload | High; manual assessments | Reduced; automated analysis |
| Patient Outcomes | Variable; risk of complications | Improved; potential reduction in LLDs/deformities |
8. Conclusion
Funding
Conflicts of Interest
References
- Hedström, E. M.; Svensson, O.; Bergström, U.; Michno, P. Epidemiology of Fractures in Children and Adolescents. Acta Orthop 2010, 81 (1), 148–153. [CrossRef]
- Shapiro, F. Fractures of the Femoral Shaft in Children: The Overgrowth Phenomenon. Acta Orthop Scand 1981, 52 (6), 649–655. [CrossRef]
- Kim, T. G.; Park, M. S.; Lee, S. H.; Choi, K. J.; Im, B.-E.; Kim, D. Y.; Sung, K. H. Leg-Length Discrepancy and Associated Risk Factors after Paediatric Femur Shaft Fracture: A Multicentre Study. J Child Orthop 2021, 15 (3), 215–222. [CrossRef]
- Topol, E. J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat Med 2019, 25 (1), 44–56. [CrossRef]
- Edvardsen, P.; Syversen, S. Overgrowth of the Femur after Fracture of the Shaft in Childhood. J Bone Joint Surg Br 1976, 58-B (3), 339–342. [CrossRef]
- Wenger, D. R. Practice in Paediatric Orthopaedics, Third Edition. Journal of Pediatric Orthopaedics 2017, 37 (4), e302–e302. [CrossRef]
- Kuo, F.-C.; Kuo, S.-J.; Ko, J.-Y. Overgrowth of the Femoral Neck after Hip Fractures in Children. J Orthop Surg Res 2016, 11 (1), 50. [CrossRef]
- Buckley, S. L. Current Trends in the Treatment of Femoral Shaft Fractures in Children and Adolescents. Clin Orthop Relat Res 1997, No. 338, 60–73. [CrossRef]
- Itonaga, I.; Iwasaki, T.; Kaku, N.; Tsumura, H. Bone Growth after Fracture of the Femoral Shaft in Children. June 29, 2023. [CrossRef]
- May, C.; Spencer, S. The Pediatric Femur: Development, Growth, and Surgical Anatomy. In Pediatric Femur Fractures; Springer US: Boston, MA, 2016; pp 1–25. [CrossRef]
- Trueta, J. Blood Supply and the Rate of Healing of Tibial Fractures. Clin Orthop Relat Res 1974, No. 105, 11–26.
- Etchebehere, E. C. S. C.; Caron, M.; Pereira, J. A.; Lima, M. C. L.; Santos, A. O.; Ramos, C. D.; Barros, F. B.; Sanches, A.; Santos-Jesus, R.; Belangero, W.; Camargo, E. E. Activation of the Growth Plates on Three-Phase Bone Scintigraphy: The Explanation for the Overgrowth of Fractured Femurs. Eur J Nucl Med 2001, 28 (1), 72–80. [CrossRef]
- May, C.; Spencer, S. The Pediatric Femur: Development, Growth, and Surgical Anatomy. In Pediatric Femur Fractures; Springer US: Boston, MA, 2016; pp 1–25. [CrossRef]
- Naik, P. Remodelling in Children’s Fractures and Limits of Acceptability. Indian J Orthop 2021, 55 (3), 549–559. [CrossRef]
- Baron, J.; Klein, K. O.; Colli, M. J.; Yanovski, J. A.; Novosad, J. A.; Bacher, J. D.; Cutler, G. B. Catch-up Growth after Glucocorticoid Excess: A Mechanism Intrinsic to the Growth Plate. Endocrinology 1994, 135 (4), 1367–1371. [CrossRef]
- Liu, C.; Liu, Y.; Zhang, W.; Liu, X. Screening for Potential Genes Associated with Bone Overgrowth after Mid-Shaft Femur Fracture in a Rat Model. J Orthop Surg Res 2017, 12 (1), 8. [CrossRef]
- Sanders, J. O.; Browne, R. H.; Mooney, J. F.; Raney, E. M.; Horn, B. D.; Anderson, D. J.; Hennrikus, W. L.; Robertson, W. W. Treatment of Femoral Fractures in Children by Pediatric Orthopedists: Results of a 1998 Survey. J Pediatr Orthop 2001, 21 (4), 436–441.
- Aiona, M.; Do, K. P.; Emara, K.; Dorociak, R.; Pierce, R. Gait Patterns in Children With Limb Length Discrepancy. Journal of Pediatric Orthopaedics 2015, 35 (3), 280–284. [CrossRef]
- Toovey, R.; Coulston, F.; Shuttleworth, H.; Jelleff, M.; Villalon, J.; Anderson, S.; Shields, N.; Finnigan, M.; Lalor, S.; McGinley, J. Participation Experiences of Young People with Limb Difference in Sports and Recreation in Australia: A Qualitative Study. Disabil Rehabil 2024, 1–12. [CrossRef]
- Burghardt, R. D.; von der Heydt, K.; Heckel, N.; Herzenberg, J. E.; Burgkart, R. Complications and Errors in Guided Growth Surgery. Journal of Limb Lengthening & Reconstruction 2023, 9 (2), 70–81. [CrossRef]
- Wright, J. G.; Wang, E. EL; Owen, J. L.; Stephens, D.; Graham, H. K.; Hanlon, M.; Nattrass, G. R.; Reynolds, R. A.; Coyte, P. Treatments for Paediatric Femoral Fractures: A Randomised Trial. The Lancet 2005, 365 (9465), 1153–1158. [CrossRef]
- Bafor, A.; Iobst, C. A. What’s New in Limb Lengthening and Deformity Correction. Journal of Bone and Joint Surgery 2023, 105 (16), 1221–1226. [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521 (7553), 436–444. [CrossRef]
- Keselj, V. Speech and Language Processing (Second Edition) Daniel Jurafsky and James H. Martin (Stanford University and University of Colorado at Boulder) Pearson Prentice Hall, 2009, Xxxi+988 Pp; Hardbound, ISBN 978-0-13-187321-6, $115.00. Computational Linguistics 2009, 35 (3), 463–466. [CrossRef]
- Ian Goodfellow; Yoshua Bengio; Aaron Courville. Deep Learning. Genet Program Evolvable Mach 2018, 19 (1–2), 305–307. [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M. C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; Kim, R.; Raman, R.; Nelson, P. C.; Mega, J. L.; Webster, D. R. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316 (22), 2402. [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B. E.; Setio, A. A. A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J. A. W. M.; van Ginneken, B.; Sánchez, C. I. A Survey on Deep Learning in Medical Image Analysis. Med Image Anal 2017, 42, 60–88. [CrossRef]
- Goldstein, B. A.; Navar, A. M.; Pencina, M. J.; Ioannidis, J. P. A. Opportunities and Challenges in Developing Risk Prediction Models with Electronic Health Records Data: A Systematic Review. Journal of the American Medical Informatics Association 2017, 24 (1), 198–208. [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A. M.; Hajaj, N.; Hardt, M.; Liu, P. J.; Liu, X.; Marcus, J.; Sun, M.; Sundberg, P.; Yee, H.; Zhang, K.; Zhang, Y.; Flores, G.; Duggan, G. E.; Irvine, J.; Le, Q.; Litsch, K.; Mossin, A.; Tansuwan, J.; Wang, D.; Wexler, J.; Wilson, J.; Ludwig, D.; Volchenboum, S. L.; Chou, K.; Pearson, M.; Madabushi, S.; Shah, N. H.; Butte, A. J.; Howell, M. D.; Cui, C.; Corrado, G. S.; Dean, J. Scalable and Accurate Deep Learning with Electronic Health Records. NPJ Digit Med 2018, 1 (1), 18. [CrossRef]
- Reddy, S.; Fox, J.; Purohit, M. P. Artificial Intelligence-Enabled Healthcare Delivery. J R Soc Med 2019, 112 (1), 22–28. [CrossRef]
- Bickmore, T. W.; Pfeifer, L. M.; Byron, D.; Forsythe, S.; Henault, L. E.; Jack, B. W.; Silliman, R.; Paasche-Orlow, M. K. Usability of Conversational Agents by Patients with Inadequate Health Literacy: Evidence from Two Clinical Trials. J Health Commun 2010, 15 (sup2), 197–210. [CrossRef]
- Olczak, J.; Fahlberg, N.; Maki, A.; Razavian, A. S.; Jilert, A.; Stark, A.; Sköldenberg, O.; Gordon, M. Artificial Intelligence for Analyzing Orthopedic Trauma Radiographs. Acta Orthop 2017, 88 (6), 581–586. [CrossRef]
- Thodberg, H. H.; Kreiborg, S.; Juul, A.; Pedersen, K. D. The BoneXpert Method for Automated Determination of Skeletal Maturity. IEEE Trans Med Imaging 2009, 28 (1), 52–66. [CrossRef]
- Liu, P.; Zhang, J.; Liu, S.; Huo, T.; He, J.; Xue, M.; Fang, Y.; Wang, H.; Xie, Y.; Xie, M.; Zhang, D.; Ye, Z. Application of Artificial Intelligence Technology in the Field of Orthopedics: A Narrative Review. Artif Intell Rev 2024, 57 (1), 13. [CrossRef]
- Shortliffe, E. H.; Sepúlveda, M. J. Clinical Decision Support in the Era of Artificial Intelligence. JAMA 2018, 320 (21), 2199–2200. [CrossRef]
- Krittanawong, C.; Zhang, H.; Wang, Z.; Aydar, M.; Kitai, T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol 2017, 69 (21), 2657–2664. [CrossRef]
- Lin, D.; Lin, H. Translating Artificial Intelligence into Clinical Practice. Ann Transl Med 2020, 8 (11), 715. [CrossRef]
- Machine Learning Consortium, on behalf of the S. and F. I. A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After Operative Treatment. J Bone Joint Surg Am 2021, 103 (6), 532–540. [CrossRef]
- Yao, W.; Wang, Y.; Zhao, X.; He, M.; Wang, Q.; Liu, H.; Zhao, J. Automatic Diagnosis of Pediatric Supracondylar Humerus Fractures Using Radiomics-Based Machine Learning. Medicine 2024, 103 (23), e38503. [CrossRef]
- Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R.; Potter, H. Deep Neural Network Improves Fracture Detection by Clinicians. Proc Natl Acad Sci U S A 2018, 115 (45), 11591–11596. [CrossRef]
- Lee, H.; Tajmir, S.; Lee, J.; Zissen, M.; Yeshiwas, B. A.; Alkasab, T. K.; Choy, G.; Do, S. Fully Automated Deep Learning System for Bone Age Assessment. J Digit Imaging 2017, 30 (4), 427–441. [CrossRef]
- Wang, M. X.; Kim, J. K.; Choi, J.-W.; Park, D.; Chang, M. C. Deep Learning Algorithm for Automatically Measuring Cobb Angle in Patients with Idiopathic Scoliosis. European Spine Journal 2024, 33 (11), 4155–4163. [CrossRef]
- Karhade, A. V; Thio, Q. C. B. S.; Ogink, P. T.; Shah, A. A.; Bono, C. M.; Oh, K. S.; Saylor, P. J.; Schoenfeld, A. J.; Shin, J. H.; Harris, M. B.; Schwab, J. H. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85 (1), E83–E91. [CrossRef]
- Mahan, S. T.; Katz, J. N.; Kim, Y.-J. To Screen or Not to Screen? A Decision Analysis of the Utility of Screening for Developmental Dysplasia of the Hip. J Bone Joint Surg Am 2009, 91 (7), 1705–1719. [CrossRef]
- Stahlschmidt, S. R.; Ulfenborg, B.; Synnergren, J. Multimodal Deep Learning for Biomedical Data Fusion: A Review. Brief Bioinform 2022, 23 (2). [CrossRef]
- Malamateniou, C.; Knapp, K. M.; Pergola, M.; Woznitza, N.; Hardy, M. Artificial Intelligence in Radiography: Where Are We Now and What Does the Future Hold? Radiography (Lond) 2021, 27 Suppl 1, S58–S62. [CrossRef]
- Navaneethan, S. D.; Jolly, S. E.; Sharp, J.; Jain, A.; Schold, J. D.; Schreiber, M. J.; Nally, J. V. Electronic Health Records: A New Tool to Combat Chronic Kidney Disease? Clin Nephrol 2013, 79 (3), 175–183. [CrossRef]
- The Convention on the Rights of the Child; UN, 2019. [CrossRef]
- Dove, E. S. The EU General Data Protection Regulation: Implications for International Scientific Research in the Digital Era. Journal of Law, Medicine & Ethics 2018, 46 (4), 1013–1030. [CrossRef]
- Dwork, C.; Roth, A. The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in Theoretical Computer Science 2013, 9 (3–4), 211–407. [CrossRef]
- Sheller, M. J.; Edwards, B.; Reina, G. A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R. R.; Bakas, S. Federated Learning in Medicine: Facilitating Multi-Institutional Collaborations without Sharing Patient Data. Sci Rep 2020, 10 (1), 12598. [CrossRef]
- Li, T.; Sahu, A. K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process Mag 2020, 37 (3), 50–60. [CrossRef]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science (1979) 2019, 366 (6464), 447–453. [CrossRef]
- Acharya, V.; Padhan, P.; Bahinipati, J.; Mishra, S.; Aggarwal, K.; Jhajharia, S.; Parida, P.; Sahu, D.; Pradhan, T. Artificial Intelligence in Medical Education. Journal of Integrative Medicine and Research 2023, 1 (3), 87. [CrossRef]
- Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans Neural Netw Learn Syst 2021, 32 (11), 4793–4813. [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V. I. Explainability for Artificial Intelligence in Healthcare: A Multidisciplinary Perspective. BMC Med Inform Decis Mak 2020, 20 (1), 310. [CrossRef]
- Johnson, K. W.; Torres Soto, J.; Glicksberg, B. S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J. T. Artificial Intelligence in Cardiology. J Am Coll Cardiol 2018, 71 (23), 2668–2679. [CrossRef]
- Handelman, G. S.; Kok, H. K.; Chandra, R. V; Razavi, A. H.; Lee, M. J.; Asadi, H. EDoctor: Machine Learning and the Future of Medicine. J Intern Med 2018, 284 (6), 603–619. [CrossRef]
- Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A Survey on Bias and Fairness in Machine Learning. ACM Comput Surv 2022, 54 (6), 1–35. [CrossRef]
- Zhao, J.; Wang, T.; Yatskar, M.; Ordonez, V.; Chang, K.-W. Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp 2979–2989. [CrossRef]
- Sutton, R. T.; Pincock, D.; Baumgart, D. C.; Sadowski, D. C.; Fedorak, R. N.; Kroeker, K. I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. NPJ Digit Med 2020, 3 (1), 17. [CrossRef]
- Buch, V. H.; Ahmed, I.; Maruthappu, M. Artificial Intelligence in Medicine: Current Trends and Future Possibilities. British Journal of General Practice 2018, 68 (668), 143–144. [CrossRef]
- Fraser, A. G.; Biasin, E.; Bijnens, B.; Bruining, N.; Caiani, E. G.; Cobbaert, K.; Davies, R. H.; Gilbert, S. H.; Hovestadt, L.; Kamenjasevic, E.; Kwade, Z.; McGauran, G.; O’Connor, G.; Vasey, B.; Rademakers, F. E. Artificial Intelligence in Medical Device Software and High-Risk Medical Devices – a Review of Definitions, Expert Recommendations and Regulatory Initiatives. Expert Rev Med Devices 2023, 20 (6), 467–491. [CrossRef]
- Bekbolatova, M.; Mayer, J.; Ong, C. W.; Toma, M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel) 2024, 12 (2). [CrossRef]
- Chokesuwattanaskul, R.; Petchlorlian, A.; Lertsanguansinchai, P.; Suttirut, P.; Prasitlumkum, N.; Srimahachota, S.; Buddhari, W. Machine Learning-Based Predictive Model of Aortic Valve Replacement Modality Selection in Severe Aortic Stenosis Patients. Medical Sciences 2023, 12 (1), 3. [CrossRef]
- Choi, E.; Schuetz, A.; Stewart, W. F.; Sun, J. Using Recurrent Neural Network Models for Early Detection of Heart Failure Onset. Journal of the American Medical Informatics Association 2017, 24 (2), 361–370. [CrossRef]
- Ethical Dimensions of Using Artificial Intelligence in Health Care. AMA J Ethics 2019, 21 (2), E121-124. [CrossRef]
- Palaniappan, K.; Lin, E. Y. T.; Vogel, S. Global Regulatory Frameworks for the Use of Artificial Intelligence (AI) in the Healthcare Services Sector. Healthcare 2024, 12 (5), 562. [CrossRef]
- Fiske, A.; Henningsen, P.; Buyx, A. Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry, Psychology, and Psychotherapy. J Med Internet Res 2019, 21 (5), e13216. [CrossRef]
- Ghafouri-Fard, S.; Mohammad-Rahimi, H.; Motie, P.; Minabi, M. A. S.; Taheri, M.; Nateghinia, S. Application of Machine Learning in the Prediction of COVID-19 Daily New Cases: A Scoping Review. Heliyon 2021, 7 (10), e08143. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
