Submitted:
05 November 2024
Posted:
07 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Secondary Cosmic Radiation
- Mass of air above the measurement point, related to air pressure, in turn mainly controlled by altitude above sea level (a.s.l.) plus variations caused by meteorological variability. For estimating local SCR dose rate, usually altitude a.s.l. is taken as an approximate predictor. [12] gives the figure ΔADR/ADR ≈ -0.01564 Δp[kPa] for muons. For variations of 10 kPa (100 hPa; standard air pressure at sea level is 1013 hPa) due to weather variation, one thus finds about 15.6% ADR variation.
- Geomagnetic latitude: The intensity of SCR at certain altitude depends on its diversion by the geomagnetic field (measured by the geographically variable so-called cut-off rigidity; e.g. [13]; Figure 2). Geomagnetic and geographical latitudes coincide only very approximately; lowest SCR intensity is found in the equatorial region, highest at high latitudes. Since the magnetic axis (the theoretical line between magnetic poles) does not coincide with the geographical axis and moreover does not pass through the centre of the Earth, the geomagnetic field appears distorted compared to the geometry of the globe (e.g., https://geomag.bgs.ac.uk/education/earthmag.html ). The SCR intensity difference between equator and 60° N is about 10% at ground level ([14]), higher for higher altitudes. From figures given in [15] (Table 2), one finds that intensity in terms of dose equivalent rate is 6% and 10% higher at 55°N than 43°N at sea level and at 3 km a.s.l., respectively, during solar minimum (2% and 6%, respectively, during solar maximum).
- Solar activity: Higher solar activity and resulting solar wind leads to repulsion of galactic cosmic rays. SCR intensity therefore follows the about 11-year solar activity cycle (which is itself modulated by longer-term cycles and overlaid by irregular variability components). During solar minima, SCR intensity at ground altitude can be up to 10% higher than during solar maxima. An irregular component is added by so-called Forbush events, which is a sudden and short-term (lasting about a week) decrease of SCR due to solar coronal mass ejection. The last solar activity minimum occurred about 2019/2020 [16], the last activity maximum in 2024, expected to extend to-2025.
- Seasonal effect: According to [12,17], “owing to temperature changes in the upper layer of the atmosphere, the muon production rises in summer and, thus, the mean path [length] to ground level increases”. Due to short lifetime of muons, a longer journey to the ground in summer results in fewer muons reaching the ground. The variation amounts to about 3%. (The result is valid for Northern temperate latitude.)
2.2. Response of G-M Detectors to Cosmic Radiation
2.2.1. Response to Muons
2.2.2. Response of G-M Detectors to Neutrons
2.3. Dependence of Secondary Radiation on External Factors
2.3.1. Altitude Dependence



2.3.2. Dependence on Solar Activity
2.3.3. Dependence on Geographical Latitude
2.4. The bGeigie Nano and CzechRad Monitors
2.5. Components of Ambient Dose Rate Readings
2.5.1. Internal Background
2.5.2. Measurement in Absence of the Terrestrial Component
2.5.3. Radon Progeny
2.6. Determination of the Internal Background and Cosmic Response
2.6.1. Method I: Aircraft Ascent and Descent
| Flights | Dates | monitor # | approximate cruising altitudes (km) |
|---|---|---|---|
| Berlin (BER) ↔ Oslo (OSL) ↔ Bergen (BEG) | September 2022 | 3273 | 9.32; 9.51; 10.18 - 10.30; 11.14 - 12 |
| Prague (PRG) - Lisbon (LIS) | October 2022 | 3281 | GPS failed at cruising alt. |
| Athens (ATH) ↔ Vienna (VIE) | May-June 2023 | 3273 | 10.80 - 10.87; 10.58; 11.83 - 11.93 |
| VIE - Munich (MUC) | November 2023 | 3273 | 9.1 - 9.2 |
| VIE - Malaga (AGP) | June 2024 | 3273 | 10.68 - 10.7; 11 - 11.3; 11.68 - 11.74 |
| Granada (GRX) - Barcelona (BCN) - ATH | June 2024 | 3273 | 11.4 - 11.5; 11.78 - 11.85 |
| Heraklion (HER) - VIE | July 2024 | 3273 | 9.38 ; 11.24 - 11.53 |
2.6.2. Method II: Measurement Above Water Bodies in Different Altitudes
- All measurements were performed with detectors which have the same BG. This is not exactly true in reality, but one has to live with this uncertainty, about 10%.
- Outdoor radon concentration can be guessed approximately from experiences about mean Rn concentration in different geographical regions. The value is subject is to meteorological variability (specifically, height of the atmospheric mixing layer), on which we have no control, but which we can guess to vary by factors (0.1, 5) and more. Many studies have been conducted about temporal variability of outdoor Rn concentration. References include UNSCEAR (1988) [10] (Annex A, §85ff), [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68]. It would be worthwhile to further evaluate literature to refine estimation of the ADR component due to Rn in dependence on measurement season and time.
- For the cosmic component we use the estimated value of the GS-05 G-M counter in vertical position (used in the German Early Warning Network) in Northern temperate latitude according to the formula given in [3], eq. 2, and the Bouville-Lowder formula (eq. 1). Factors f are applied: for low latitudes, cosmic dose rate is assumed 10% lower; if the value Y(raw) by bGeigie has been measured with detector horizontal (axis vertical), f=1.412 (see section 2.3) (no distinction between window facing up or down made at this stage). Uncertainty of cosm × f is probably 10% at most.
3. Results and Discussion
3.1. Measurements In aircraft
3.1.1. Dose Rate by Altitude
3.1.2. Latitude Effect
| Location | altitude (m) | hor / ver | remarks; assumed Rn concentration |
|---|---|---|---|
| Pacific ocean, 2019 | 1 | ver | Rn: 0 |
| Helicopter ascent above Mediterranean, Southern France, 2019 | 90 - 610 | hor | Rn: 0; other: 2; 5 altitude steps, 1 measurement each |
| Sea off Costa Rica, 2020 | 1 | hor | Rn: 0 |
| Lake Balaton, Hungary, 2020 | 100 | both | Rn: 7; 2 measurements |
| North Sea off coast, Germany, 2020 | 3 | ver | Rn: 1; 2 measurements |
| Danube bridge, Vienna, Austria, 2020 | 172 | both | Rn: 7; other: 3; 4 measurements |
| Danube ferry crossing, near Vienna, 2020 | 165 | ver | Rn: 7 |
| Frozen lake near Prague, Czech Republic. 2021 | 246 | hor | Rn: 10; 4 measurements |
| Lipno lake, Southern Czech Republic, 2021 | 726 | both | Rn: 15; 22 measurements |
| Bridge above Hardanger Fjord, Norway, 2022 | 30 | ver | Rn: 5; other: 3; possible interference by adjacent rocks |
| Bortolan lake, Poços de Caldas, Brazil, 2023 | 1240 | both | Rn: 10; other: 2; 2 measurements |
| Lhota lake near Prague, Czech Republic, 2024 | 173 | both | Rn: 10; 14 measurements |
3.2. Measurements Above Water Bodies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Acronyms
Appendix A

References
- Vohland, K.; Landzandstra, A.; Ceccaroni, L.; Lemmens, R.; Perelló, J.; Ponti, M.; Samson, R.; Wagenknecht, K.; (eds.) The Science of Citizen Science. 2021, Springer International Publishing, DOI 10.1007/978-3-030-58278-4, www.springer.com/gp/book/9783030582777 (open access; accessed 14 August 2021).
- Brown, A.; Franken, P.; Bonner, S.; Dolezal, N.; Moross, J. Safecast: successful citizen-science for radiation measurement and communication after Fukushima. Journal of Radiological Protection 2016, 36, S82–S101. [Google Scholar] [CrossRef] [PubMed]
- Bossew, P.; Kuča, P.; Helebrant, J. Mean ambient dose rate in various cities, inferred from Safecast data. Journal of Environmental Radioactivity 2020, 225, 106363. [Google Scholar] [CrossRef] [PubMed]
- Bossew, P.; Kuča, P.; Helebrant, J. (2022) Citizen monitoring of ambient dose rate: metrological challenges. Pres., RAD - 10th International Conference on Radiation in Various Fields of Research, Herceg Novi (Montenegro), 13 – 17 June 2022, http://www.rad2022-spring.rad-conference.org/.
- Bossew, P.; Kuča, P.; Helebrant, J. (2022) True and spurious anomalies in ambient dose rate monitoring. Pres., ICHLERA, 10th International Conference on High Level Environmental Radiation Areas, Strasbourg (France), 27 – 30 June 2022; https://indico.in2p3.fr/event/19295/.
- Kuča, P.; Helebrant, J.; and Bossew, P. (2021) Safecast – a Citizen Science initiative for ambient dose rate mapping; Quality assurance issues., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1343, https://doi.org/10.5194/egusphere-egu21-1343 , 2021. [CrossRef]
- Kuča, P.; Helebrant, J.; Bossew, P. (2021) Safecast – Citizen Science for radiation monitoring. RAP CONFERENCE PROCEEDINGS, VOL. 6, PP. 32–38, 2021; DOI: 10.37392/RAPPROC.2021.07; https://www.rap-proceedings.org/papers/RapProc.2021.07.pdf. [CrossRef]
- Kuča, P.; Helebrant, J.; Bossew, P. (2022) Characterization of the bGeigie Nano instrument used in Citizen Science dose rate monitoring. Pres., RAP - International Conference on Radiation Applications, Thessaloniki (Greece), 6-10 June 2022, https://www.rap-conference.org/22/.
- Kuča, P., Helebrant, J.; Bossew, P. (2022): Citizen monitoring of ambient dose rate: The Safecast project. Pres., IRPA - 6th European Congress on Radiation Protection, 30.5. - 3.6.2022 Budapest (Hungary).
- UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation Reports to the General Assembly, with Annexes. All reports: https://www.unscear.org/unscear/en/publications/scientific-reports.html (accessed 10 Nov 2022).
- O’Brien, K.; Friedberg, W.; Sauer, H. H.; Smart, D. F. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environment International 1996, 22, 9–44. [Google Scholar] [CrossRef] [PubMed]
- Wissmann, F. Variations observed in environmental radiation at ground level. Radiation Protection Dosimetry 2006, 118, 3–10. [Google Scholar] [CrossRef]
- Spurný, F. Radiation doses at high altitudes and during space flights. Radiation Physics and Chemistry 2000, 61, 301–307. [Google Scholar] [CrossRef]
- Bouville, A.; Lowder, W.M. Human population exposure to cosmic radiation. Radiat. Prot. Dosim. 1998, 24, 293–299. [Google Scholar] [CrossRef]
- Lowder, W.M.; O’Brien, K. (1972): Cosmic-ray dose rates in the atmosphere. Health and Safety Laboratory, U.S. Atomic Energy Commission, HASL-254 report.
- SpaceWeather (2022): Solar Cycle progression. https://www.spaceweatherlive.com/en/solar-activity/solar-cycle.html.
- Wissmann, F.; Dangendorf, V.; Schrewe, U. Radiation exposure at ground level by secondary cosmic radiation. Radiation Measurements 2005, 39, 95–104. [Google Scholar] [CrossRef]
- Wissmann, F.; Rupp, A.; Stöhlker, U. Characterization of dose rate instruments for environmental radiation monitoring. Kerntechnik 2007, 72, 193–198. [Google Scholar] [CrossRef]
- Cinelli, G.; Bossew, P.; Hernández-Ceballos, M.A.; Tollefsen, T.; De Cort M. (2017): Long-term variation of cosmic dose rate. Presentation, ENVIRA (4th Intl. Conf. on Environmental Radioactivity), Vilnius, Lithuania, 29 May – 2 June 2017; Abstract in Book of Abstracts, p.124, http://envira2017.ftmc.lt/abstracts.php . Pres. available from the author.
- EC (2020): European Commission, Joint Research Centre – Cinelli, G., De Cort, M. & Tollefsen, T. (Eds.), European Atlas of Natural Radiation, Publication Office of the European Union, Luxembourg, 2019. Printed version: ISBN 978-92-76-08259-0; doi:10.2760/520053; Catalogue number KJ-02-19-425-EN-C; Online version: ISBN 978-92-76-08258-3; doi:10.2760/46388 ; Catalogue number KJ-02-19-425-EN-N; https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Download-page. [CrossRef]
- Sato, T. (2001): Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure. Scientific Reports 2000, 6, 33932. [Google Scholar] [CrossRef]
- ICRU (2010): ICRU Report 84, Reference Data for the Validation of Doses from Cosmic-Radiation Exposure of Aircraft Crew. Journal of the ICRU 10; https://journals.sagepub.com/toc/crua/10/2.
- Bossew, P.; Cinelli, G.; Hernández-Ceballos, M.; Cernohlawek, N.; Gruber, V.; Dehandschutter, B.; Menneson, F.; Bleher, M.; Stöhlker, U.; Hellmann, I.; Weiler, F.; Tollefsen, T.; Tognoli, P.V.; de Cort, M. Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate. J. Environmental Radioactivity 2017, 166, 296–308. [Google Scholar] [CrossRef]
- Spiers, F.W.; Gibson, J.A.B.; Thompson, I.M.G. (1981) A guide to the measurement of environmental gamma-ray dose rate. British Committee on Radiation Units and Measurements. http://cds.cern.ch/record/1057200/files/CM-P00066948.pdf (accessed 22 July 2020).
- Lewis, V. E.; Hunt, J. B. Fast neutron sensitivities of Geiger-Mueller counter gamma dosemeters. Physics in Medicine and Biology 1978, 23, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Guldbakke, S.; Jahr, R.; Lesiecki, H.; Schölermann, H. (1980): Neutron sensitivity of Geiger-Müller photon dosemeters for neutron energies between 100 keV and 19 MeV. https://www.irpa.net/irpa5/cdrom/VOL.2/J2_37.PDF.
- Mijnheer, B. J.; Guldbakke, S.; Lewis, V. E.; Broerse, J. J. Comparison of the fast-neutron sensitivity of a Geiger-Muller counter using different techniques. Physics in Medicine and Biology 1982, 27, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R. L.; Yudelev, M.; Kota, C. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron. Physics in Medicine and Biology 1996, 41, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T. Cosmic-ray Neutron Spectrometry and Dosimetry. Journal of Nuclear Science and Technology 2008, 45 sup5, 1–7. [Google Scholar] [CrossRef]
- Lowder, W. M.; Beck, H. L. Cosmic-ray ionization in the lower atmosphere. Journal of Geophysical Research 1966, 71, 4661–4668. [Google Scholar] [CrossRef]
- Cinelli, G.; Gruber, V.; De Felice, L.; Bossew, P.; Hernandez-Ceballos, M.A.; Tollefsen, T.; Mundigl, S.; De Cort, M. European annual cosmic-ray dose: estimation of population exposure. J. of Maps 2017, 13, 812–521. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; Cinelli, G.; Marín Ferrer, M.; Tollefsen, T.; De Felice, L.; Nweke, E.; Tognoli, P.V.; Vanzo, S.; De Cort, M. A climatology of 7Be in surface air in European Union. J. Environ. Radioactivity 2015, 141, 62–70. [Google Scholar] [CrossRef]
- BGS (British Geological Survey; n.y.): The Earth's Magnetic Field: An Overview. https://geomag.bgs.ac.uk/education/earthmag.html ; geomagnetic coordinate calculator: https://geomag.bgs.ac.uk/data_service/models_compass/coord_calc.html (accessed 25 Oct 2024).
- World Data Center for Geomagnetism, Data Analysis Center for Geomagnetism and Space Magnetism, Graduate School of Science, Kyoto UniversityKyoto: https://wdc.kugi.kyoto-u.ac.jp/igrf/gggm/ (accessed 25 Oct 2024).
- Hůlka, J.; Kuča, P.; Helebrant, J.; Rozlívka, Z. (2017): Citizens Measurements in Radiation Protection and Emergency Preparedness and Response - its role, pros and cons. Pres., EUROSAFE 2017; https://www.eurosafe-forum.org/sites/default/files/Eurosafe2017/Seminars/4_08_Presentation_Kuca_final_ppt.pdf (acc. 26 Jan 2019).
- Kuča, P.; Helebrant, J.; Hůlka J. (2017) Role of citizens measurements in radiation protection, emergency preparedness and response - its pros and cons. ICRP 4th International Symposium on the System of Radiological Protection & 2nd European Radiological Protection Week, October 10-12 2017, Paris, France. http://www.icrp-erpw2017.com/upload/presentations/ERPW%20Communication/Session_02/Session%2002_5_KUCA_Presentation.pdf (acc. 26 Jan 2019).
- Helebrant, J.; Kuča, P.; Hůlka, J. (2018) RAMESIS :Radiační měřící síť pro instituce a školy k zajištění včasné informovanosti a zvýšení bezpečnosti občanů měst a obcí. (In Czech); https://www.suro.cz/cz/vyzkum/vysledky/safecast/09Hulka.pdf (acc 26 Jan 2019).
- SÚRO (2019) Detektor záření SAFECAST a jeho využití pro veřejnost. (In Czech); https://www.suro.cz/cz/vyzkum/vysledky/safecast (acc. 26 Jan 2019).
- QGIS - A Free and Open Source Geographic Information System, https://www.qgis.org/en/site/.
- Vanek, M.; Ďuriková, A.; Salva, J. (2018) Safecast bGeigie Nano as a tool for teaching students to understand monitoring environmental radioactivity. Proc., Conference: Earth in a Trap? 2018, Analytical Methods in Fire and Environmental Science, Hodruša-Hámre, Slovak Republic; https://www.researchgate.net/publication/326031794_Safecast_bGeigie_Nano_as_a_tool_for_teaching_students_to_understand_monitoring_environmental_radioactivity (acc. 26 Jan 2019).
- CzechRad (2021) Mobile detector for radiation mapping - similar to SAFECAST bGeigie Nano. https://github.com/juhele/CzechRad (accessed 20 Feb 2021).
- Yogeshwar, R. (2014) Calibration of SAFECAST bGeigie-nano – Radiation Detector (# 1025). Document supplied to one of the authors (PB) by Safecast.
- Wagner, E.; Sorom, R.; Wiles, L. Radiation monitoring for the masses. Health Physics 2016, 110, 37–44. [Google Scholar] [CrossRef]
- Tanji, T.; Okino, M.; Sugioka, I.; Mochizuki, S. Radon and its Daughters in the Atmosphere Over the Equatorial Pacific Ocean. Radiation Protection Dosimetry 1992, 45, 399–401. [Google Scholar] [CrossRef]
- Čeliković, I.; Pantelić, G.; Vukanac, I.; Krneta Nikolić, J.; Živanović, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Quindos Poncela, L.S.; Rabago, D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef]
- ICRP, 2020. Dose coefficients for external exposures to environmental sources. ICRP Publication 144. Ann. ICRP 49. https://journals.sagepub.com/doi/pdf/10.1177/0146645320906277.
- EPA (2019): External exposure to radionuclides in air, water and soil – Federal guidance report No. 5; EPA 402-R-19-002; https://www.epa.gov/sites/default/files/2019-08/documents/fgr_15_final_508_2019aug02.pdf.
- Smetsers, R. C. G. M.; Blaauboer, R. O. A Dynamic Compensation Method for Natural Ambient Dose Rate Based on 6 Years Data from the Dutch Radioactivity Monitoring Network. Radiation Protection Dosimetry 1997, 69, 19–31. [Google Scholar] [CrossRef]
- DOE (1988):External Dose-Rate Conversion Factors for Calculation of Dose to the Public. DOE/EH—0070. https://www.osti.gov/servlets/purl/6953527.
- Kocher D.C. (1981): Dose rate conversion factors for external exposure to photons and electrons. NUREG/CR-1918; https://digital.library.unt.edu/ark:/67531/metadc1058696/m2/1/high_res_d/5020464.pdf.
- Kümmel, M.; Dushe, C.; Müller, S.; Gehrcke, K. Outdoor 222Rn-concentrations in Germany - part 1 - natural background. J. Environ. Radioact. 2014, 132, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Harley, N. H. A Review of Indoor and Outdoor Radon Equilibrium Factors—part I. Health Physics 2018, 115, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Cuculeanu, V.; Sonoc, C.; Georgescu, M. Radioactivity of Radon and Thoron Daughters in Romania. Radiation Protection Dosimetry 1992, 45, 83–485. [Google Scholar] [CrossRef]
- Kataoka, T.; Tsukamoto, O.; Yunoki, E.; Michihiro, K.; Sugiyama, H.; Shimizu, M.; Mori, T.; Sahashi, T.; Fujii, S. Variation of 222Rn Concentration in Outdoor Air due to Variation of the Atmospheric Boundary Layer. Radiation Protection Dosimetry 1992, 45, 403–406. [Google Scholar] [CrossRef]
- Dueñas, C.; Pérez, M.; Fernández, M.C.; Carretero, J. Radon concentrations in surface air and vertical atmospheric stability of the lower atmosphere. Journal of Environmental Radioactivity 1996, 31, 87–102. [Google Scholar] [CrossRef]
- Levin, I.; Born, M.; Cuntz, M.; Langendörfer, U.; Mantsch, S.; Naegler, T.; Schmidt, M.; Varlagin, A.; Verclas, S.; Wagenbach, D. Observations of atmospheric variability and soil exhalation rate of radon-222 at a Russian forest site Technical approach and deployment for boundary layer studies. Tellus 2002, 54B, 462–475. [Google Scholar] [CrossRef]
- Oikawa, Sh.; Kanno, N.; Sanada, T.; Ohashi, N.; Uesugi, M.; Sato, K.; Abukawa, J.; Higuchi, H. A nationwide survey of outdoor radon concentration in Japan. Journal of Environmental Radioactivity 2003, 65, 203–213. [Google Scholar] [CrossRef]
- Sesana, L.; Ottobrini, B.; Polla, G.; Facchini, U. 222Rn as indicator of atmospheric turbulence: measurements at Lake Maggiore and on the pre-Alps. J. Environmental Radioactivity 2005, 86, 271–88. [Google Scholar] [CrossRef]
- Desideri, D.; Roselli, C.; Feduzi, L.; Assunta Meli, M. Monitoring the atmospheric stability by using radon concentration measurements: A study in a Central Italy site. Journal of Radioanalytical and Nuclear Chemistry 2006, 270, 523–530. [Google Scholar] [CrossRef]
- Garbero, V.; Dellacasa, G.; Bianchi, D.; Magnoni, M.; Erbetta, L. Outdoor radon concentration measurements: some correlation with major urban pollutants. Radiation Protection Dosimetry 2009, 137, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Omori, Y.; Tohbo, I.; Nagahama, H.; Ishikawa, Y.; Takahashi, M.; Sato, H.; Sekine, T. Variation of atmospheric radon concentration with bimodal seasonality. Radiation Measurements 2009, 44, 1045–1050. [Google Scholar] [CrossRef]
- Liang Zhang, Liguo Zhang and Qiuju Guo A long-term investigation of the atmospheric radon concentration in Beijing, China. J. Radiol. Prot. 2009, 29, 263–268. [CrossRef] [PubMed]
- Liang Zhang and Qiuju Guo Observation and analysis of atmospheric radon in Qingdao, China. J. Radiol. Prot. 2011, 31, 129–134. [CrossRef] [PubMed]
- Műllerová, M.; Holý, K.; Bulko, M. Results of outdoor radon monitoring in Bratislava and Nováky. Radiation Protection Dosimetry 2011, 14, 325–328. [Google Scholar] [CrossRef]
- Weller, R.; Levin, I.; Schmithüsen, D.; Nachbar, M.; Asseng, J.; Wagenbach, D. On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica. Atmos. Chem. Phys. Discuss. 2013, 13, 32817–32847, 2013. www.atmos-chem-phys-discuss.net/13/32817/2013/. [Google Scholar]
- Hayashi, K.; Yasuoka, Y.; Nagahama, H.; Muto, J.; Ishikawa, T.; Omori, Y.; Suzuki, T.; Homma, Y.; Mukai, T. Normal seasonal variations for atmospheric radon concentration: a sinusoidal model. Journal of Environmental Radioactivity 2015, 139, 149–153. [Google Scholar] [CrossRef]
- Holý, K.; Műllerová, M.; Bulko, M.; Holá, O.; Melicherová, T. Outdoor 222Rn behaviour in different areas of Slovakia. NUKLEONIKA 2016, 61, 281–288. [Google Scholar] [CrossRef]
- Bossew, P.; Benà, E.; Chambers, S.; Janik, M. Analysis of outdoor and indoor radon concentration time series recorded with RadonEye monitors. Submitted to Atmosphere.
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001, 4, 9pp, http://palaeo-electronica.org/2001_1/past/issue1_01.htm Download from https://www.nhm.uio.no/english/research/resources/past/ (accessed 2.8.2024). [Google Scholar]
- Jilek, K.; Slezákova, M.; Thomas, J. Diurnal and sasonal variability of outdoor radon concentration in te area of the NRPI Prague. Rad. Prot. Dosimetry 2014, 160, 57–61. [Google Scholar] [CrossRef]
- Bossew, P.; Da Silva, N.; Alberti, H.; Silva, M.A.; Navarro, F.C.; De Oliveira, T.A.; Cardoso Takahashi, L.; de Souza Filho, O.A.; Otero, U.; Kuča, P.; Helebrant, J. A remarkable small local natural radiation anomaly in Poços de Caldas, Brazil. Subm., Eur. Phys. J. Special Topics.







| statistic | x = stand. GS05 | x = stand. B-L |
|---|---|---|
| Ordinary least square: | ||
| intercept | 7.90 ± 4.40 | 7.22 ± 4.16 |
| slope | 1.138 ± 0.083 | 1.538 ± 0.105 |
| Orthogonal (RMA): | ||
| intercept | -0.5 ± 4.4 | -0.3 ± 4.2 |
| slope | 1.300 ± 0.083 | 1.731 ± 0.105 |
| r²; p (both): | 0.77; 1.2e-19 | 0.79; 6.8e-21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
