Submitted:
29 October 2024
Posted:
30 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background
1.2. Problem Statement
1.3. Research Objective
1.4. Research Questions
- How can microservices architecture be used to enable real-time adaptation in travel recommendation systems, allowing for dynamic and context-aware personalization?
- Which machine learning techniques are most effective within a microservices framework for accurately predicting and personalizing user preferences in large-scale travel platforms?
2. Literature Review
2.1. Microservices Architecture in Travel Recommendation Systems
2.2. Machine Learning Models for Personalization in Travel
2.3. Limitations of Existing Systems:
3. Methodology
3.1. Data Flow and Integration
3.2. Modular Design
3.3. Real-Time Adaptation
3.3.1. Key Components of Real-Time Adaptation
Contextual Data Processing in Travel Recommendation Systems
Machine Learning and Reinforcement Learning

Data Integration and Stream Processing in Travel Recommendation Systems
3.4. Real-Time Personalization
3.5. How Machine Learning Can Help?
3.5.1. In predicting future destinations
3.5.2. Personalizing Recommendations Based on Trends
3.5.3. Adapting to Seasonal and Regional Patterns
3.5.4. Dynamic Pricing and Demand Forecasting
3.5.5. Sentiment Analysis for Customer Insights
3.5.6. Personalization using Data Aggregation and Machine Learning
|
Algorithm collect_user_data(user_id): # Collecting data from different sources preferences = get_user_preferences(user_id) behavior = get_user_behavior(user_id) context = get_current_context(user_id) demographics = get_user_demographics(user_id) # Data combining to a new user profile user_profile = { 'preferences': preferences, 'behavior': behavior, 'context': context, 'demographics': demographics } return user_profile |
|
Algorithm preprocess_data(user_profile): # Missing values handle for key, value in user_profile.items(): if value is None: user_profile[key] = handle_missing_value(value) # Numerical values Normalize (e.g., age, income) user_profile['demographics'] = normalize_demographics(user_profile['demographics']) # categorical values Encode (e.g., travel preferences , gender) user_profile['preferences'] = encode_categorical_data(user_profile['preferences']) return user_profile |
|
Algorithm feature_engineering(user_profile): # Example feature engineering user_profile['is_frequent_traveler'] = calculate_travel_frequency(user_profile['behavior']) # Create time-based features user_profile['booking_time_of_day'] = extract_time_of_day(user_profile['context']['timestamp']) user_profile['is_weekend'] = is_weekend(user_profile['context']['timestamp']) return user_profile |
|
Algorithm from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier select_model(): # Example: Random Forest Classifier for classification problem model = RandomForestClassifier(n_estimators=100, random_state=42) return model |
|
Algorithm train_model(model, X_train, y_train): # using training data, model training. model.fit(X_train, y_train) return model |
|
Algorithm predict_recommendations(model, user_profile): # To model input features Converting user profile input_features = preprocess_data(user_profile) # Predict travel options those are recommended (e.g., destinations, location, flights) recommendations = model.predict(input_features) return recommendations |
|
Algorithm evaluate_model(model, X_test, y_test): # test data is used to analysis the model. predictions = model.predict(X_test) accuracy = calculate_accuracy(predictions, y_test) return accuracy feedback_loop(user_feedback, model): # depends on the real time feedback update model if user_feedback.is_positive: update_model_with_positive_feedback(model, user_feedback) else: update_model_with_negative_feedback(model, user_feedback) return model |
4. Implementation and Experimental Setup
4.1. Development Environment for Real-Time Airline Personalization
4.1.1. Data Processing and Stream Handling
Machine Learning and Model Training
4.2. Containerization and Orchestration
4.3. Database and Storage
5. Results
5.1. Model Performance
1.1. User Engagement and Satisfaction
5.2. Scalability and System Responsiveness
6. Discussion
7. Conclusions
References
- Asaithambi, S. P. R., Venkatraman, R., & Venkatraman, S. (2023). A thematic travel recommendation system using an augmented big data analytical model. Technologies, 11(1), 28. [CrossRef]
- Badouch, M., & Boutaounte, M. (2023). Personalized Travel Recommendation Systems: A study of Machine learning approaches in tourism. Journal of Artificial Intelligence Machine Learning and Neural Network, 33, 35-45. [CrossRef]
- Chaki, P. K., Sazal, M. M. H., Barua, B., Hossain, M. S., & Mohammad, K. S. (2019, February). An approach of teachers' quality improvement by analyzing teaching evaluations data. In 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP) (pp. 1-5). IEEE.
- Bellogín, A., Sánchez Pérez, P., & Sebastia, P. (2024). Topic editor para frontiers: Guiding the Journey: Innovative Recommender Systems for Personalized Tourism, Travel, and Hospitality Experiences.
- Barua, B. (2016). M-commerce in Bangladesh-status, potential and constraints. International Journal of Information Engineering and Electronic Business, 8(6), 22. [CrossRef]
- Yoon, J., & Choi, C. (2023). Real-time context-aware recommendation system for tourism. Sensors, 23(7), 3679. [CrossRef]
- Xia, Z., Sun, A., Xu, J., Peng, Y., Ma, R., & Cheng, M. (2022). Contemporary Recommendation Systems on Big Data and Their Applications: A Survey. arXiv e-prints, arXiv-2206.
- Barua, B., Whaiduzzaman, M., Mesbahuddin Sarker, M., Shamim Kaiser, M., & Barros, A. (2023). Designing and Implementing a Distributed Database for Microservices Cloud-Based Online Travel Portal. In Sentiment Analysis and Deep Learning: Proceedings of ICSADL 2022 (pp. 295-314). Singapore: Springer Nature Singapore.
- Kim, S., Lee, J., & Park, H. (2023). Innovations in microservices for dynamic travel recommendation systems. Journal of Tourism Technology, 12(3), 89-102.
- Lee, J., & Park, H. (2023). Machine learning-driven personalization in travel recommendations: A scalable approach. Tourism Analytics, 14(2), 211-223.
- Barua, B., & Whaiduzzaman, M. (2019, July). A methodological framework on development the garment payroll system (GPS) as SaaS. In 2019 1st International Conference on Advances in Information Technology (ICAIT) (pp. 431-435). IEEE.
- Smith, T., & Wong, M. (2023). Real-time adaptation and personalization in travel recommender systems. International Journal of Hospitality and Tourism Management, 9(1), 47-63.
- Kubra, K. T., Barua, B., Sarker, M. M., & Kaiser, M. S. (2023, October). An IoT-based Framework for Mitigating Car Accidents and Enhancing Road Safety by Controlling Vehicle Speed. In 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 46-52). IEEE.
- Barua, B., & Kaiser, M. S. (2024). Cloud-Enabled Microservices Architecture for Next-Generation Online Airlines Reservation Systems.
- Mouri, I. J., Barua, B., Mesbahuddin Sarker, M., Barros, A., & Whaiduzzaman, M. (2023, March). Predicting Online Job Recruitment Fraudulent Using Machine Learning. In Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems: ICCCES 2022 (pp. 719-733). Singapore: Springer Nature Singapore.
- Barua, B., & Kaiser, M. S. (2024). A Methodical Framework for Integrating Serverless Cloud Computing into Microservice Architectures.
- Chaki, P. K., Barua, B., Sazal, M. M. H., & Anirban, S. (2020, May). PMM: A model for Bangla parts-of-speech tagging using sentence map. In International Conference on Information, Communication and Computing Technology (pp. 181-194). Singapore: Springer Singapore.
- Shrestha, D., Wenan, T., Shrestha, D., Rajkarnikar, N., & Jeong, S. R. (2024). Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach. Computation, 12(3), 59. [CrossRef]
- Barua, B., & Obaidullah, M. D. (2014). Development of the Student Management System (SMS) for Universities in Bangladesh. BUFT Journal, 2, 57-66.
- Barua, B., & Kaiser, M. S. (2024). Blockchain-Based Trust and Transparency in Airline Reservation Systems using Microservices Architecture. arXiv preprint arXiv:2410.14518.
- Paolanti, M., et al. (2023). Tourism Recommendation System Using Machine Learning. International Journal of Research Publication and Reviews.
- Thakker, J., Pradhan, A., Dongare, S., Wande, P., Mane, D., & Kanade, P. (2024). Tour Sentiments: Personalized Recommendations System Using AI and Deep Learning. Journal of Electrical Systems.
- Barua, B., & Kaiser, M. S. (2024). Optimizing Travel Itineraries with AI Algorithms in a Microservices Architecture: Balancing Cost, Time, Preferences, and Sustainability. arXiv preprint arXiv:2410.17943.
- Barua, B., & Kaiser, M.S. (2024). Enhancing Resilience and Scalability in Travel Booking Systems: A Microservices Approach to Fault Tolerance, Load Balancing, and Service Discovery.
- Banerjee, A., Satish, A., & Wörndl, W. (2024). Enhancing Tourism Recommender Systems for Sustainable City Trips Using Retrieval-Augmented Generation. arXiv preprint arXiv:2409.18003.
- Meehan, K., Lunney, T., Curran, K., & McCaughey, A. (2013, March). Context-aware intelligent recommendation system for tourism. In 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM workshops) (pp. 328-331). IEEE.
- Chouiref, Z., & Hayi, M. Y. (2022). Toward Preference and Context-Aware Hybrid Tourist Recommender System Based on Machine Learning Techniques. Revue d'Intelligence Artificielle, 36(2), 195-208. [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
