Submitted:
02 October 2024
Posted:
03 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Advantages of AI in medical imaging diagnostics
3. Training of AI models using imaging data of liver disease
3.1 Supervised learning for imaging data
3.2. Unsupervised learning for imaging data
3.3. Transfer learning for imaging data
4. AI-aided imaging diagnosis and its clinical application
4.1. Prediction of staging and diagnosis of lesions
4.2. Risk prediction of liver disease
4.3 Application to personalized medicine for the management of liver cancer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishida, N.; Kudo, M. Artificial intelligence models for the diagnosis and management of liver diseases. Ultrasonography. 2023, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gao, C.; Huang, Y.; Chen, X.; Pan, Z.; Wang, L.; Dong, D.; Li, S.; Qi, X. Artificial intelligence in liver imaging: methods and applications. Hepatol Int. 2024, 18, 422–434. [Google Scholar] [CrossRef]
- Ratziu, V.; Hompesch, M.; Petitjean, M.; Serdjebi, C.; Iyer, J.S.; Parwani, A.V.; Tai, D.; Bugianesi, E.; Cusi, K.; Friedman, S.L.; et al. Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: current status and future directions. J Hepatol. 2024, 80, 335–351. [Google Scholar] [CrossRef]
- Ghosh, S.; Zhao, X.; Alim, M.; Brudno, M.; Bhat, M. Artificial intelligence applied to 'omics data in liver disease: towards a personalised approach for diagnosis, prognosis and treatment. Gut. 2024. [Google Scholar] [CrossRef]
- Calderaro, J.; Zigutyte, L.; Truhn, D.; Jaffe, A.; Kather, J.N. Artificial intelligence in liver cancer - new tools for research and patient management. Nat Rev Gastroenterol Hepatol. 2024, 21, 585–599. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for cancers of unknown primary. Nature. 2021, 594, 106–110. [Google Scholar] [CrossRef]
- Huynh, E.; Hosny, A.; Guthier, C.; Bitterman, D.S.; Petit, S.F.; Haas-Kogan, D.A.; Kann, B.; Aerts, H.; Mak, R.H. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020, 17, 771–781. [Google Scholar] [CrossRef]
- Calderaro, J.; Seraphin, T.P.; Luedde, T.; Simon, T.G. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol. 2022, 76, 1348–1361. [Google Scholar] [CrossRef]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef]
- Nishida, N.; Yamakawa, M.; Shiina, T.; Kudo, M. Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology. Hepatol Int. 2019, 13, 416–421. [Google Scholar] [CrossRef]
- Nishida, N.; Kudo, M. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of Liver Tumor. Front Oncol. 2020, 10, 594580. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.H.; Zhang, C.; Berry, G.J.; Altman, R.B.; Re, C.; Rubin, D.L.; Snyder, M. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016, 7, 12474. [Google Scholar] [CrossRef] [PubMed]
- Padmakala, S.; Subasini, C.A.; Karuppiah, S.P.; Sheeba, A. ESVM-SWRF: Ensemble SVM-based sample weighted random forests for liver disease classification. Int J Numer Method Biomed Eng. 2021, 37, e3525. [Google Scholar] [CrossRef]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Vaidya, A.J.; Chen, C.; Zhuang, L.; Williamson, D.F.K.; et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022, 40, 1095–1110. [Google Scholar] [CrossRef]
- Nayantara, P.V.; Kamath, S.; Manjunath, K.N.; Rajagopal, K.V. Computer-aided diagnosis of liver lesions using CT images: A systematic review. Comput Biol Med. 2020, 127, 104035. [Google Scholar] [CrossRef]
- Pesapane, F.; Cuocolo, R.; Sardanelli, F. The Picasso's skepticism on computer science and the dawn of generative AI: questions after the answers to keep "machines-in-the-loop". Eur Radiol Exp. 2024, 8, 81. [Google Scholar] [CrossRef]
- Xue, L.Y.; Jiang, Z.Y.; Fu, T.T.; Wang, Q.M.; Zhu, Y.L.; Dai, M.; Wang, W.P.; Yu, J.H.; Ding, H. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. Eur Radiol. 2020, 30, 2973–2983. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.; Wang, D.; Wang, J.; Bao, L.; Ying, S.; Xu, H.; Shi, J. Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers. IEEE J Biomed Health Inform. 2021, 25, 3874–3885. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, L.; Cao, G.; Cao, W.; Zhang, G.; Hu, B. Liver fibrosis classification based on transfer learning and FCNet for ultrasound images. IEEE Access. 2017, 5, 5804–5810. [Google Scholar] [CrossRef]
- Khalifa, A.; Obeid, J.S.; Erno, J.; Rockey, D.C. The role of artificial intelligence in hepatology research and practice. Curr Opin Gastroenterol. 2023, 39, 175–180. [Google Scholar] [CrossRef]
- Placido, D.; Yuan, B.; Hjaltelin, J.X.; Zheng, C.; Haue, A.D.; Chmura, P.J.; Yuan, C.; Kim, J.; Umeton, R.; Antell, G.; et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat Med. 2023, 29, 1113–1122. [Google Scholar] [CrossRef]
- Cao, K.; Xia, Y.; Yao, J.; Han, X.; Lambert, L.; Zhang, T.; Tang, W.; Jin, G.; Jiang, H.; Fang, X.; et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat Med. 2023, 29, 3033–3043. [Google Scholar] [CrossRef]
- Liu, F.; Liu, D.; Wang, K.; Xie, X.; Su, L.; Kuang, M.; Huang, G.; Peng, B.; Wang, Y.; Lin, M.; et al. Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients. Liver Cancer. 2020, 9, 397–413. [Google Scholar] [CrossRef]
- Wang, K.; Lu, X.; Zhou, H.; Gao, Y.; Zheng, J.; Tong, M.; Wu, C.; Liu, C.; Huang, L.; Jiang, T.; et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut. 2019, 68, 729–741. [Google Scholar] [CrossRef]
- Choi, K.J.; Jang, J.K.; Lee, S.S.; Sung, Y.S.; Shim, W.H.; Kim, H.S.; Yun, J.; Choi, J.Y.; Lee, Y.; Kang, B.K.; et al. Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver. Radiology. 2018, 289, 688–697. [Google Scholar] [CrossRef]
- Yang, J.Q.; Zeng, R.; Cao, J.M.; Wu, C.Q.; Chen, T.W.; Li, R.; Zhang, X.M.; Ou, J.; Li, H.J.; Mu, Q.W. Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature. Clin Radiol. 2019, 74, 976–e971. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Ormeci, N.; An, W.; Yu, Q.; Han, K.; Huang, Y.; Liu, D.; Liu, F.; Li, Z.; et al. Deep Convolutional Neural Network-Aided Detection of Portal Hypertension in Patients With Cirrhosis. Clin Gastroenterol Hepatol. 2020, 18, 2998–3007. [Google Scholar] [CrossRef]
- Liu, F.; Ning, Z.; Liu, Y.; Liu, D.; Tian, J.; Luo, H.; An, W.; Huang, Y.; Zou, J.; Liu, C.; et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study. EBioMedicine. 2018, 36, 151–158. [Google Scholar] [CrossRef]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018, 67, 358–380. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. Electronic address, e.e.e.; European Association for the Study of the, L. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Kawamura, Y.; Hasegawa, K.; Tateishi, R.; Kariyama, K.; Shiina, S.; Toyoda, H.; Imai, Y.; Hiraoka, A.; Ikeda, M.; et al. Management of Hepatocellular Carcinoma in Japan: JSH Consensus Statements and Recommendations 2021 Update. Liver Cancer. 2021, 10, 181–223. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.H.; Wang, D.; Qian, Y.Y.; Zheng, X.; Zhao, C.K.; Li, X.L.; Bo, X.W.; Yue, W.W.; Zhang, Q.; Shi, J.; et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc. 2018, 69, 343–354. [Google Scholar] [CrossRef]
- Nishida, N.; Yamakawa, M.; Shiina, T.; Mekada, Y.; Nishida, M.; Sakamoto, N.; Nishimura, T.; Iijima, H.; Hirai, T.; Takahashi, K.; et al. Artificial intelligence (AI) models for the ultrasonographic diagnosis of liver tumors and comparison of diagnostic accuracies between AI and human experts. J Gastroenterol. 2022, 57, 309–321. [Google Scholar] [CrossRef]
- Chiang, M.F.; Tseng, T.K.; Shih, C.W.; Yang, T.H.; Wu, S.Y. Clinical and contrast-enhanced image features in the prediction model for the detection of small hepatocellular carcinomas. J Cancer. 2020, 11, 7166–7175. [Google Scholar] [CrossRef]
- Muller, L.; Kloeckner, R.; Mahringer-Kunz, A.; Stoehr, F.; Duber, C.; Arnhold, G.; Gairing, S.J.; Foerster, F.; Weinmann, A.; Galle, P.R.; et al. Fully automated AI-based splenic segmentation for predicting survival and estimating the risk of hepatic decompensation in TACE patients with HCC. Eur Radiol. 2022, 32, 6302–6313. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Y.; Li, X.; Pavlides, M.; Liu, D.; Luo, H.; Ding, H.; An, W.; Liu, F.; Zuo, C.; et al. An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension. Cell Rep Med. 2022, 3, 100563. [Google Scholar] [CrossRef]
- Qi, X.; An, W.; Liu, F.; Qi, R.; Wang, L.; Liu, Y.; Liu, C.; Xiang, Y.; Hui, J.; Liu, Z.; et al. Virtual Hepatic Venous Pressure Gradient with CT Angiography (CHESS 1601): A Prospective Multicenter Study for the Noninvasive Diagnosis of Portal Hypertension. Radiology. 2019, 290, 370–377. [Google Scholar] [CrossRef]
- Chen, Q.F.; Chen, H.J.; Liu, J.; Sun, T.; Shen, Q.T. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity. PLoS One. 2016, 11, e0151263. [Google Scholar] [CrossRef]
- Ji, G.W.; Zhu, F.P.; Xu, Q.; Wang, K.; Wu, M.Y.; Tang, W.W.; Li, X.C.; Wang, X.H. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine. 2019, 50, 156–165. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Cao, S.E.; Cao, S.; Chen, J.N.; Wang, G.Y.; Shi, W.Q.; Deng, Y.N.; Cheng, N.; Ma, K.; Zeng, K.N.; et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J Cancer Res Clin Oncol. 2021, 147, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lv, X.; Qiu, J.; Zhang, B.; Zhang, L.; Fang, J.; Li, M.; Chen, L.; Wang, F.; Liu, S.; et al. Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma. J Magn Reson Imaging. 2021, 54, 134–143. [Google Scholar] [CrossRef]
- Feng, S.T.; Jia, Y.; Liao, B.; Huang, B.; Zhou, Q.; Li, X.; Wei, K.; Chen, L.; Li, B.; Wang, W.; et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol. 2019, 29, 4648–4659. [Google Scholar] [CrossRef]
- Kim, S.; Shin, J.; Kim, D.Y.; Choi, G.H.; Kim, M.J.; Choi, J.Y. Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res. 2019, 25, 3847–3855. [Google Scholar] [CrossRef]
- Nishida, N.; Fukuda, Y.; Komeda, T.; Ito, T.; Nishimura, T.; Minata, M.; Kuno, M.; Katsuma, H.; Ikai, I.; Yamaoka, Y.; et al. Prognostic impact of multiple allelic losses on metastatic recurrence in hepatocellular carcinoma after curative resection. Oncology. 2002, 62, 141–148. [Google Scholar] [CrossRef]
- Nishida, N.; Kudo, M. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations. Dig Dis. 2016, 34, 708–713. [Google Scholar] [CrossRef]
- Nishida, N.; Nishimura, T.; Kaido, T.; Minaga, K.; Yamao, K.; Kamata, K.; Takenaka, M.; Ida, H.; Hagiwara, S.; Minami, Y.; et al. Molecular Scoring of Hepatocellular Carcinoma for Predicting Metastatic Recurrence and Requirements of Systemic Chemotherapy. Cancers (Basel). 2018, 10. [Google Scholar] [CrossRef]
- Gevaert, O.; Xu, J.; Hoang, C.D.; Leung, A.N.; Xu, Y.; Quon, A.; Rubin, D.L.; Napel, S.; Plevritis, S.K. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology. 2012, 264, 387–396. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, B.; Topatana, W.; Cao, J.; Zhu, H.; Juengpanich, S.; Mao, Q.; Yu, H.; Cai, X. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precis Oncol. 2020, 4, 14. [Google Scholar]
- Saillard, C.; Schmauch, B.; Laifa, O.; Moarii, M.; Toldo, S.; Zaslavskiy, M.; Pronier, E.; Laurent, A.; Amaddeo, G.; Regnault, H.; et al. Predicting Survival After Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides. Hepatology. 2020, 72, 2000–2013. [Google Scholar] [CrossRef]
- Shi, J.Y.; Wang, X.; Ding, G.Y.; Dong, Z.; Han, J.; Guan, Z.; Ma, L.J.; Zheng, Y.; Zhang, L.; Yu, G.Z.; et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut. 2021, 70, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res. 2018, 24, 1248–1259. [Google Scholar] [CrossRef]
- Uche-Anya, E.; Anyane-Yeboa, A.; Berzin, T.M.; Ghassemi, M.; May, F.P. Artificial intelligence in gastroenterology and hepatology: how to advance clinical practice while ensuring health equity. Gut. 2022, 71, 1909–1915. [Google Scholar] [CrossRef]
- Abajian, A.; Murali, N.; Savic, L.J.; Laage-Gaupp, F.M.; Nezami, N.; Duncan, J.S.; Schlachter, T.; Lin, M.; Geschwind, J.F.; Chapiro, J. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept. J Vasc Interv Radiol. 2018, 29, 850–857. [Google Scholar] [CrossRef]
- Morshid, A.; Elsayes, K.M.; Khalaf, A.M.; Elmohr, M.M.; Yu, J.; Kaseb, A.O.; Hassan, M.; Mahvash, A.; Wang, Z.; Hazle, J.D.; et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization. Radiol Artif Intell. 2019, 1. [Google Scholar] [CrossRef]
- Peng, J.; Kang, S.; Ning, Z.; Deng, H.; Shen, J.; Xu, Y.; Zhang, J.; Zhao, W.; Li, X.; Gong, W.; et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur Radiol. 2020, 30, 413–424. [Google Scholar] [CrossRef]
- Liu, Q.P.; Xu, X.; Zhu, F.P.; Zhang, Y.D.; Liu, X.S. Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning. EClinicalMedicine. 2020, 23, 100379. [Google Scholar] [CrossRef]
- Oezdemir, I.; Wessner, C.E.; Shaw, C.; Eisenbrey, J.R.; Hoyt, K. Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoembolization Treatment Response. Ultrasound Med Biol. 2020, 46, 2276–2286. [Google Scholar] [CrossRef]
- Liu, D.; Liu, F.; Xie, X.; Su, L.; Liu, M.; Xie, X.; Kuang, M.; Huang, G.; Wang, Y.; Zhou, H.; et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur Radiol. 2020, 30, 2365–2376. [Google Scholar] [CrossRef]
- Ibragimov, B.; Toesca, D.; Chang, D.; Yuan, Y.; Koong, A.; Xing, L. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys. 2018, 45, 4763–4774. [Google Scholar] [CrossRef]
- Muller, L.; Gairing, S.J.; Kloeckner, R.; Foerster, F.; Weinmann, A.; Mittler, J.; Stoehr, F.; Emrich, T.; Duber, C.; Galle, P.R.; et al. Baseline Splenic Volume Outweighs Immuno-Modulated Size Changes with Regard to Survival Outcome in Patients with Hepatocellular Carcinoma under Immunotherapy. Cancers (Basel). 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Weiner, A.; Pokkalla, H.; Han, L.; Jia, C.; Huss, R.; Chung, C.; Elliott, H.; Glass, B.; Pethia, K.; Carrasco-Zevallos, O.; et al. A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatology. 2021, 74, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Abou-Alfa, G.K.; Bekaii-Saab, T.; Berlin, J.; Cervantes, A.; de Baere, T.; Eng, C.; Galle, P.; Gill, S.; Gruenberger, T.; et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open. 2023, 8, 101567. [Google Scholar] [CrossRef]
- Cappuyns, S.; Corbett, V.; Yarchoan, M.; Finn, R.S.; Llovet, J.M. Critical Appraisal of Guideline Recommendations on Systemic Therapies for Advanced Hepatocellular Carcinoma: A Review. JAMA Oncol. 2024, 10, 395–404. [Google Scholar] [CrossRef]
- Li, L.; Sun, M.; Wang, J.; Wan, S. Multi-omics based artificial intelligence for cancer research. Adv Cancer Res. 2024, 163, 303–356. [Google Scholar]
- Wu, J.P.; Ding, W.Z.; Wang, Y.L.; Liu, S.; Zhang, X.Q.; Yang, Q.; Cai, W.J.; Yu, X.L.; Liu, F.Y.; Kong, D.; et al. Radiomics analysis of ultrasound to predict recurrence of hepatocellular carcinoma after microwave ablation. Int J Hyperthermia. 2022, 39, 595–604. [Google Scholar] [CrossRef]
- Ma, Q.P.; He, X.L.; Li, K.; Wang, J.F.; Zeng, Q.J.; Xu, E.J.; He, X.Q.; Li, S.Y.; Kun, W.; Zheng, R.Q.; et al. Dynamic Contrast-Enhanced Ultrasound Radiomics for Hepatocellular Carcinoma Recurrence Prediction After Thermal Ablation. Mol Imaging Biol. 2021, 23, 572–585. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Xu, N.; Sun, Y.; Fu, S.; Wu, Y.; Liu, C.; Cui, L.; Liu, Z.; Chang, Z.; et al. Development and validation of a deep learning model for survival prognosis of transcatheter arterial chemoembolization in patients with intermediate-stage hepatocellular carcinoma. Eur J Radiol. 2022, 156, 110527. [Google Scholar] [CrossRef]
- Peng, J.; Lu, F.; Huang, J.; Zhang, J.; Gong, W.; Hu, Y.; Wang, J. Development and validation of a pyradiomics signature to predict initial treatment response and prognosis during transarterial chemoembolization in hepatocellular carcinoma. Front Oncol. 2022, 12, 853254. [Google Scholar] [CrossRef]
- Bai, H.; Meng, S.; Xiong, C.; Liu, Z.; Shi, W.; Ren, Q.; Xia, W.; Zhao, X.; Jian, J.; Song, Y.; et al. Preoperative CECT-based Radiomic Signature for Predicting the Response of Transarterial Chemoembolization (TACE) Therapy in Hepatocellular Carcinoma. Cardiovasc Intervent Radiol. 2022, 45, 1524–1533. [Google Scholar] [CrossRef]
- Li, Q.; Luo, G.; Li, J. Evaluation of Therapeutic Effects of Computed Tomography Imaging Classification Algorithm-Based Transcatheter Arterial Chemoembolization on Primary Hepatocellular Carcinoma. Comput Intell Neurosci. 2022, 2022, 5639820. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; An, C.; Chen, H.; Li, X. Multi-Task Deep Learning Approach for Simultaneous Objective Response Prediction and Tumor Segmentation in HCC Patients with Transarterial Chemoembolization. J Pers Med. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Ivanics, T.; Salinas-Miranda, E.; Abreu, P.; Khalvati, F.; Namdar, K.; Dong, X.; Deniffel, D.; Gorgen, A.; Erdman, L.; Jhaveri, K.; et al. A Pre-TACE Radiomics Model to Predict HCC Progression and Recurrence in Liver Transplantation: A Pilot Study on a Novel Biomarker. Transplantation. 2021, 105, 2435–2444. [Google Scholar] [CrossRef]
- Peng, J.; Huang, J.; Huang, G.; Zhang, J. Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Front Oncol. 2021, 11, 730282. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, L.; Zhong, B.; Zhou, H.; Zhu, H.; Zhou, H.; Song, J.; Guo, J.; Zhu, X.; Ji, J.; et al. Machine-learning analysis of contrast-enhanced computed tomography radiomics predicts patients with hepatocellular carcinoma who are unsuitable for initial transarterial chemoembolization monotherapy: A multicenter study. Transl Oncol. 2021, 14, 101034. [Google Scholar] [CrossRef]
- Peng, W.; Jiang, X.; Zhang, W.; Hu, J.; Zhang, Y.; Zhang, L. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation. Asian J Surg. 2023, 46, 2689–2696. [Google Scholar] [CrossRef]
- Liu, Q.P.; Yang, K.L.; Xu, X.; Liu, X.S.; Qu, J.R.; Zhang, Y.D. Radiomics analysis of pretreatment MRI in predicting tumor response and outcome in hepatocellular carcinoma with transarterial chemoembolization: a two-center collaborative study. Abdom Radiol (NY). 2022, 47, 651–663. [Google Scholar] [CrossRef]
- Svecic, A.; Mansour, R.; Tang, A.; Kadoury, S. Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks. PLoS One. 2021, 16, e0259692. [Google Scholar] [CrossRef]
| Prevention | Diagnosis | Treatment | |
| Actions required | Improvement of lifestyle | Narrowing down high-risk populations Examination with high accuracy |
Selection of effective treatments |
| AI support | Encouraging behavior and lifestyle change | Screening assistance and diagnostic support | Prediction of treatment outcomes |
| Imaging modality and prediction | Number of the training cases * | Findings | References | |
| Ultrasonography | ||||
| HCC: Prediction of RFS after MWA | 513 cases * | 2-year RFS after MWA (C-index = 0.72) |
Wu, et al., 2022 [66] | |
| HCC: Prediction of recurrences after RFA or MWA | 318 cases * | Recurrence beyond 2 years after RFA or MWA (C-index = 0.77) |
Ma, et al., 2021 [67] | |
| HCC (early stage): Prediction of RFS after RFA or surgery | 214 cases for RFA*, 205 cases for surgery* |
Recurrence beyond 2 years after treatment (C-index = 0.73) |
Liu, et al., 2020 [23] | |
| HCC: Prediction of treatment outcome after TACE | 130 cases * | Response for TACE AURUC = 0.93 |
Liu, et al., 2020 [59] | |
| CT | ||||
| HCC (intermediate stage): Prediction of treatment outcome after TACE | 543 cases | Time to progression after TACE (C index = 0.70) |
Wang, et al., 2022 [68] | |
| HCC: Prediction of treatment outcome after TACE | 313 cases * | Response for TACE AURUC = 0.92 |
Peng, et al., 2022 [69] | |
| HCC: Prediction of treatment outcome after TACE | 111 cases * | Response for TACE AURUC = 0.91 |
Bai, et al., 2022 [70] | |
| HCC: Prediction of treatment outcome after TACE | 48 cases | Response for TACE AURUC = 0.90 |
Li, et al., 2022 [71] | |
| HCC: Prediction of treatment outcome after TACE | 248 cases * | Response for TACE AURUC = 0.87 |
Li, et al., 2022 [72] | |
| HCC: Prediction of recurrence after liver transplantation | 88 cases | Tumor recurrence/progression after transplantation AURUC = 0.87 |
Ivanics, et al., 2021 [73] | |
| HCC (intermediate stage): Prediction of treatment outcome after TACE | 310 cases | Response for TACE AURUC = 0.99 |
Peng, et al., 2021 [74] | |
| HCC: Prediction for TACE ineligibility | 256 cases * | Emergence of extrahepatic metastasis and vascular invasion after TACE. AURUC = 0.91 |
Jin, et al., 2021 [75] | |
| HCC: Prediction of treatment outcome after TACE | 789 cases | Response with 4-class classification (CR, PR, SD, PD) Accuracy = 85.1% |
Peng, et al., 2020 [56] | |
| HCC: Prediction for TACE ineligibility | 243 cases * | Response for TACE AURUC = 0.90 |
Liu, et al., 2020 [57] | |
| HCC: Prediction of treatment outcome after TACE | 105 cases * | Response for TACE accuracy = 0.742 |
Morshid, et al., 2019 [55] | |
| Prediction of radiation-induced liver injury | 125 cases (including 36 HCC cases) | Emergence of radiation-induced liver injury AUROC = 0.85 |
Ibragimov, et al., 2018 [60] | |
| MRI | ||||
| HCC: PFS after MWA | 149 cases * | 2-year RFS (C-index = 0.73) |
Peng, et al., 2023 [76] | |
| HCC: Prediction of treatment outcome after TACE | 140 cases * | Response for TACE AURUC = 0.81 |
Liu, et al., 2022 [77] | |
| HCC: Prediction of treatment outcome after TACE | 252 lesions | Response for TACE (3-class classification、accuracy = 93.2%) |
Svecic, et al.,2021 [78] | |
| HCC (solitary, 2〜5cm in size): RFS after surgery | 167 cases | Model with trained with images 3-mm peritumoral border extension of tumor showed comparable performance with that of the postoperative clinicopathologic model. | Kim, et al., 2019 [44] | |
| HCC: Prediction of microvascular invasion | 110 cases | Presence of microvascular invasion sensitivity = 0.90、specificity = 0.75、accuracy = 0.83 |
Feng, et al., 2019 [43] | |
| HCC: Prediction of treatment outcome after TACE | 36 cases * | Response for TACE accuracy = 78%、sensitivity = 62.5%, specificity = 82.1% |
Abajian, et al., 2018 [54] | |
| Pathology | ||||
| HCC: Prediction of survival after surgery | The discovery set, 194 images, The validation set, 328 images (whole slide image) |
C-index = 0.75〜0.78 |
Saillard, et al., 2020 [50] | |
| HCC: Prediction of survival after surgery | The Zhongshan cohort, 2,451 images, The TCGA cohort, 320 images (whole slide image) and multi-omics data |
A 'tumor risk score (TRS)' was established to evaluate patient outcomes. The predictive ability of TRS was superior to and independent of clinical staging systems. | Shi, et al., 2021 [51] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
