Submitted:
11 September 2024
Posted:
13 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Related Works
2.1. Colon Cancer
2.2. Lung Cancer
2.3. Lung and Colon Cancer
3. Background Works
3.1. Residual 1D Convolution Networks
3.2. Squeeze-and-Excitation Networks

3.3. SqueezeNext Architecture
3.4. Residual 1D block with SE layer

3.5. Reduced CNN layer Network
4. Proposed Architecture

5. Performance Evaluation
5.1. Accuracy
5.2. Precision
5.3. Recall
5.4. F1-score
6. Experimental Result
6.1. Dataset Description

6.2. Methodology
6.3. Result Analysis
6.4. Result Comparisons
6.4.1. Lung Cancer
6.4.2. Colon Cancer
6.4.3. Lung and Colon Cancer
6.5. Discussion
7. Conclusion and Future Works
Funding
References
- Institute, N.C. Cancer Statistics, 2024. Accessed on June 10, 2024.
- Weinberg, R.A. How cancer arises. Scientific American 1996, 275, 62–70. [Google Scholar] [CrossRef]
- Institute, N.C. What is Cancer?, 2024. Accessed on June 10, 2024.
- Organization, W.H. Global Cancer Burden Growing Amidst Mounting Need for Services, 2024. Accessed: 2024-06-10.
- American Cancer Society. What is Lung Cancer?, 2024. Accessed on June 10, 2024.
- American Cancer Society. What is Colon Cancer?, 2024. Accessed on June 10, 2024.
- Al-Antari, M.A. AI Algorithms in Medical Diagnostics, 2023. Accessed on June 10, 2024.
- for Biotechnology Information, N.C. Research Article Title Placeholder 2024. Accessed on June 10, 2024.
- Stafford, I.S.; Kellermann, M.; Mossotto, E.; Beattie, R.M.; MacArthur, B.D.; Ennis, S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ digital medicine 2020, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Technology, K. Machine Learning and Medical Diagnosis: An Introduction to How AI Improves Disease Detection, 2024. Accessed on June 10, 2024.
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural networks 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Sena, P.; Fioresi, R.; Faglioni, F.; Losi, L.; Faglioni, G.; Roncucci, L. Deep learning techniques for detecting preneoplastic and neoplastic lesions in human colorectal histological images. Oncology letters 2019, 18, 6101–6107. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, J.; Oh, J.E.; Kim, H.R.; Lee, S.; Chang, H.J.; Sohn, D.K. Tumor identification in colorectal histology images using a convolutional neural network. Journal of digital imaging 2019, 32, 131–140. [Google Scholar] [CrossRef]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; others. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS medicine 2019, 16, e1002730. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.W.; Suriawinata, A.A.; Vaickus, L.J.; Ren, B.; Liu, X.; Lisovsky, M.; Tomita, N.; Abdollahi, B.; Kim, A.S.; Snover, D.C.; others. Evaluation of a deep neural network for automated classification of colorectal polyps on histopathologic slides. JAMA network open 2020, 3, e203398–e203398. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep learning models for histopathological classification of gastric and colonic epithelial tumors. Scientific reports 2020, 10, 1504. [Google Scholar] [CrossRef]
- Xu, L.; Walker, B.; Liang, P.I.; Tong, Y.; Xu, C.; Su, Y.C.; Karsan, A. Colorectal cancer detection based on deep learning. Journal of Pathology Informatics 2020, 11, 28. [Google Scholar] [CrossRef]
- Hamida, A.B.; Devanne, M.; Weber, J.; Truntzer, C.; Derangère, V.; Ghiringhelli, F.; Forestier, G.; Wemmert, C. Deep learning for colon cancer histopathological images analysis. Computers in Biology and Medicine 2021, 136, 104730. [Google Scholar] [CrossRef]
- Babu, T.; Singh, T.; Gupta, D.; Hameed, S. Colon cancer prediction on histological images using deep learning features and Bayesian optimized SVM. Journal of Intelligent & Fuzzy Systems 2021, 41, 5275–5286. [Google Scholar]
- Tasnim, Z.; Chakraborty, S.; Shamrat, F.J.M.; Chowdhury, A.N.; Nuha, H.A.; Karim, A.; Zahir, S.B.; Billah, M.M. Deep learning predictive model for colon cancer patient using CNN-based classification. International Journal of Advanced Computer Science and Applications 2021, 12, 687–696. [Google Scholar] [CrossRef]
- Sakr, A.S.; Soliman, N.F.; Al-Gaashani, M.S.; Pławiak, P.; Ateya, A.A.; Hammad, M. An efficient deep learning approach for colon cancer detection. Applied Sciences 2022, 12, 8450. [Google Scholar] [CrossRef]
- Hasan, M.I.; Ali, M.S.; Rahman, M.H.; Islam, M.K.; others. Automated detection and characterization of colon cancer with deep convolutional neural networks. Journal of Healthcare Engineering 2022, 2022. [Google Scholar] [CrossRef]
- Talukder, M.A.; Islam, M.M.; Uddin, M.A.; Akhter, A.; Hasan, K.F.; Moni, M.A. Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning. Expert Systems with Applications 2022, 205, 117695. [Google Scholar] [CrossRef]
- Bostanci, E.; Kocak, E.; Unal, M.; Guzel, M.S.; Acici, K.; Asuroglu, T. Machine learning analysis of RNA-seq data for diagnostic and prognostic prediction of colon cancer. Sensors 2023, 23, 3080. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, X.; Dang, K.; Li, K.; Guo, X.w.; Chang, J.; Yu, Z.q.; Huang, F.y.; Wu, Y.s.; Liang, Z.; others. Toward an expert level of lung cancer detection and classification using a deep convolutional neural network. The oncologist 2019, 24, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.H.N.; Futakuchi, M.; Bychkov, A.; Furukawa, T.; Kuroda, K.; Fukuoka, J. Detection of lung cancer lymph node metastases from whole-slide histopathologic images using a two-step deep learning approach. The American journal of pathology 2019, 189, 2428–2439. [Google Scholar] [CrossRef]
- Gertych, A.; Swiderska-Chadaj, Z.; Ma, Z.; Ing, N.; Markiewicz, T.; Cierniak, S.; Salemi, H.; Guzman, S.; Walts, A.E.; Knudsen, B.S. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Scientific reports 2019, 9, 1483. [Google Scholar] [CrossRef]
- Hatuwal, B.K.; Thapa, H.C. Lung cancer detection using convolutional neural network on histopathological images. Int. J. Comput. Trends Technol 2020, 68, 21–24. [Google Scholar] [CrossRef]
- Saif, A.; Qasim, Y.R.H.; Al-Sameai, H.A.M.; Ali, O.A.F.; Hassan, A.A.M. Multi paths technique on convolutional neural network for lung cancer detection based on histopathological images. International Journal of Advanced Networking and Applications 2020, 12, 4549–4554. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bukhari, S.U.K.; Syed, A.; Shah, S.S.H. The Histopathological Diagnosis of Adenocarcinoma & Squamous Cells Carcinoma of Lungs by Artificial intelligence: A comparative study of convolutional neural networks. MedRxiv 2020, 2020–05. [Google Scholar]
- Srinidhi, C.L.; Ciga, O.; Martel, A.L. Deep neural network models for computational histopathology: A survey. Medical image analysis 2021, 67, 101813. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, Y.; Wu, Z.; Zhang, F.; Zheng, D.; Liu, X.; Tao, L.; Liang, Z.; Yang, Z.; Li, X.; others. Histologic subtype classification of non-small cell lung cancer using PET/CT images. European journal of nuclear medicine and molecular imaging 2021, 48, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Marentakis, P.; Karaiskos, P.; Kouloulias, V.; Kelekis, N.; Argentos, S.; Oikonomopoulos, N.; Loukas, C. Lung cancer histology classification from CT images based on radiomics and deep learning models. Medical & Biological Engineering & Computing 2021, 59, 215–226. [Google Scholar]
- Wahab Sait, A.R. Lung Cancer Detection Model Using Deep Learning Technique. Applied Sciences 2023, 13, 12510. [Google Scholar] [CrossRef]
- Shandilya, S.; Nayak, S.R. Analysis of lung cancer by using deep neural network. Innovation in Electrical Power Engineering, Communication, and Computing Technology: Proceedings of Second IEPCCT 2021. Springer, 2022, pp. 427–436.
- Abd Al-Ameer, A.A.; Hussien, G.A.; Al Ameri, H.A. Lung cancer detection using image processing and deep learning. Indones. J. Electr. Eng. Comput. Sci. 2022, 28, 987–993. [Google Scholar] [CrossRef]
- Jasmine Pemeena Priyadarsini, M.; Rajini, G.; Hariharan, K.; Utkarsh Raj, K.; Bhargav Ram, K.; Indragandhi, V.; Subramaniyaswamy, V.; Pandya, S.; others. Lung Diseases Detection Using Various Deep Learning Algorithms. Journal of healthcare engineering 2023, 2023. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, E.A.; Chaurasia, V.; Shandilya, M. Detection and classification of lung cancer computed tomography images using a novel improved deep belief network with Gabor filters. Chemometrics and Intelligent Laboratory Systems 2023, 235, 104763. [Google Scholar] [CrossRef]
- Wahid, R.R.; Nisa, C.; Amaliyah, R.P.; Puspaningrum, E.Y. Lung and colon cancer detection with convolutional neural networks on histopathological images. AIP Conference Proceedings. AIP Publishing, 2023, Vol. 2654.
- Masud, M.; Sikder, N.; Nahid, A.A.; Bairagi, A.K.; AlZain, M.A. A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors 2021, 21, 748. [Google Scholar] [CrossRef]
- Garg, S.; Garg, S. Prediction of lung and colon cancer through analysis of histopathological images by utilizing Pre-trained CNN models with visualization of class activation and saliency maps. Proceedings of the 2020 3rd Artificial Intelligence and Cloud Computing Conference, 2020, pp. 38–45.
- Ali, M.; Ali, R. Multi-input dual-stream capsule network for improved lung and colon cancer classification. Diagnostics 2021, 11, 1485. [Google Scholar] [CrossRef] [PubMed]
- Hage Chehade, A.; Abdallah, N.; Marion, J.M.; Oueidat, M.; Chauvet, P. Lung and colon cancer classification using medical imaging: A feature engineering approach. Physical and Engineering Sciences in Medicine 2022, 45, 729–746. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Ghazal, T.M.; Khan, M.A.; Zubair, M.; Naseem, M.T.; Faiz, T.; Ahmad, M. Malignancy Detection in Lung and Colon Histopathology Images Using Transfer Learning With Class Selective Image Processing. IEEE Access 2022, 10, 25657–25668. [Google Scholar] [CrossRef]
- Singh, O.; Singh, K.K. An approach to classify lung and colon cancer of histopathology images using deep feature extraction and an ensemble method. International Journal of Information Technology 2023, 15, 4149–4160. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Saha, B.; Chattopadhyay, S.; Sarkar, R. Deep feature selection using adaptive β-Hill Climbing aided whale optimization algorithm for lung and colon cancer detection. Biomedical Signal Processing and Control 2023, 83, 104692. [Google Scholar] [CrossRef]
- Al-Jabbar, M.; Alshahrani, M.; Senan, E.M.; Ahmed, I.A. Histopathological Analysis for Detecting Lung and Colon Cancer Malignancies Using Hybrid Systems with Fused Features. Bioengineering 2023, 10, 383. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- Gholami, A.; Kwon, K.; Wu, B.; Tai, Z.; Yue, X.; Jin, P.; Zhao, S.; Keutzer, K. Squeezenext: Hardware-aware neural network design. Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2018, pp. 1638–1647.
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
- Shahadat, N.; Maida, A.S. Deep Residual Axial Networks. arXiv preprint 2023, arXiv:2301.04631. [Google Scholar]
- Shahadat, N. Lung Image Analysis using Squeeze and Excitation Based Convolutional Networks. 2023 26th International Conference on Computer and Information Technology (ICCIT). IEEE, 2023, pp. 1–6.
- Shahadat, N. Convolutional Layer Reduction from Deep Convolutional Networks. 2023 26th International Conference on Computer and Information Technology (ICCIT). IEEE, 2023, pp. 1–6.
- Shahadat, N. Convolutional Layer Reduction from Deep Convolutional Networks. 2023 26th International Conference on Computer and Information Technology (ICCIT), 2023, pp. 1–6.
- Shahadat, N. Mobile-Based Deep Convolutional Networks for Malaria Parasites Detection from Blood Cell Images. 2023 26th International Conference on Computer and Information Technology (ICCIT), 2023, pp. 1–6. [CrossRef]
- Borkowski, A.A.; Bui, M.M.; Thomas, L.B.; Wilson, C.P.; DeLand, L.A.; Mastorides, S.M. LC25000 Lung and colon histopathological image dataset. arXiv 2021. [Google Scholar]
- Shahadat, N. Lung and Colon Cancer Histopathological Image Classification Using 1D Convolutional Channel-based Attention Networks. The International FLAIRS Conference Proceedings, 2024, Vol. 37.
- Keshani, M.; Azimifar, Z.; Tajeripour, F.; Boostani, R. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system. Computers in biology and medicine 2013, 43, 287–300. [Google Scholar] [CrossRef]
- Naresh, P.; Shettar, D.R.; others. Early detection of lung cancer using neural network techniques. Int Journal of Engineering 2014, 4, 78–83. [Google Scholar]
- Al-Absi, H.R.; Belhaouari, S.B.; Sulaiman, S. A Computer Aided Diagnosis System for Lung Cancer based on Statistical and Machine Learning Techniques. J. Comput. 2014, 9, 425–431. [Google Scholar] [CrossRef]
- Wang, X.p.; Zhang, W.; Cui, Y. Tumor segmentation in lung CT images based on support vector machine and improved level set. Optoelectronics Letters 2015, 11, 395–400. [Google Scholar] [CrossRef]
- Kumar, D.; Wong, A.; Clausi, D.A. Lung nodule classification using deep features in CT images. 2015 12th conference on computer and robot vision. IEEE, 2015, pp. 133–138.
- Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.M.; Shao, J. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Molecular BioSystems 2015, 11, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Bar, Y.; Diamant, I.; Wolf, L.; Lieberman, S.; Konen, E.; Greenspan, H. Chest pathology detection using deep learning with non-medical training. 2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, 2015, pp. 294–297.
- Sun, W.; Zheng, B.; Qian, W. Computer aided lung cancer diagnosis with deep learning algorithms. Medical imaging 2016: computer-aided diagnosis. SPIE, 2016, Vol. 9785, pp. 241–248.
- Golan, R.; Jacob, C.; Denzinger, J. Lung nodule detection in CT images using deep convolutional neural networks. 2016 international joint conference on neural networks (IJCNN). IEEE, 2016, pp. 243–250.
- Asuntha, A.; Brindha, A.; Indirani, S.; Srinivasan, A. Lung cancer detection using SVM algorithm and optimization techniques. J. Chem. Pharm. Sci 2016, 9, 3198–3203. [Google Scholar]
- Yang, H.; Yu, H.; Wang, G. Deep learning for the classification of lung nodules. arXiv preprint 2016, arXiv:1611.06651. [Google Scholar]
- Paul, R.; Hawkins, S.H.; Hall, L.O.; Goldgof, D.B.; Gillies, R.J. Combining deep neural network and traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic CT. 2016 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, 2016, pp. 002570–002575.
- Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.; Marchiano, A.; others. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Scientific reports 2017, 7, 46479. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, L.; Luo, X.; Dou, X.; others. Using deep learning for classification of lung nodules on computed tomography images. Journal of healthcare engineering 2017, 2017. [Google Scholar] [CrossRef]
- Alakwaa, W.; Nassef, M.; Badr, A. Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). International Journal of Advanced Computer Science and Applications 2017, 8. [Google Scholar] [CrossRef]
- Sun, W.; Zheng, B.; Qian, W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Computers in biology and medicine 2017, 89, 530–539. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, W. Small-cell lung cancer detection using a supervised machine learning algorithm. 2017 international symposium on computer science and intelligent controls (ISCSIC). IEEE, 2017, pp. 88–91.
- Tekade, R.; Rajeswari, K. Lung cancer detection and classification using deep learning. 2018 fourth international conference on computing communication control and automation (ICCUBEA). IEEE, 2018, pp. 1–5.
- Ausawalaithong, W.; Thirach, A.; Marukatat, S.; Wilaiprasitporn, T. Automatic lung cancer prediction from chest X-ray images using the deep learning approach. 2018 11th biomedical engineering international conference (BMEiCON). IEEE, 2018, pp. 1–5.
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature medicine 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Sharma, M.; Bhatt, J.S.; Joshi, M.V. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning. Tenth international conference on machine vision (ICMV 2017). SPIE, 2018, Vol. 10696, pp. 226–233.
- Shakeel, P.M.; Burhanuddin, M.A.; Desa, M.I. Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement 2019, 145, 702–712. [Google Scholar] [CrossRef]
- Sang, J.; Alam, M.S.; Xiang, H.; others. Automated detection and classification for early stage lung cancer on CT images using deep learning. Pattern recognition and tracking XXX. SPIE, 2019, Vol. 10995, pp. 200–207.
- Lakshmanaprabu, S.; Mohanty, S.N.; Shankar, K.; Arunkumar, N.; Ramirez, G. Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems 2019, 92, 374–382. [Google Scholar]
- Nasser, I.M.; Abu-Naser, S.S. Lung cancer detection using artificial neural network. International Journal of Engineering and Information Systems (IJEAIS) 2019, 3, 17–23. [Google Scholar]
- Elnakib, A.; Amer, H.M.; Abou-Chadi, F.E. Early lung cancer detection using deep learning optimization 2020.
- Kalaivani, N.; Manimaran, N.; Sophia, S.; Devi, D. Deep learning based lung cancer detection and classification. IOP conference series: materials science and engineering. IOP Publishing, 2020, Vol. 994, p. 012026.
- Ahmed, T.; Parvin, M.S.; Haque, M.R.; Uddin, M.S.; others. Lung cancer detection using CT image based on 3D convolutional neural network. Journal of Computer and Communications 2020, 8, 35. [Google Scholar] [CrossRef]
- Subramanian, R.R.; Mourya, R.N.; Reddy, V.P.T.; Reddy, B.N.; Amara, S. Lung cancer prediction using deep learning framework. International Journal of Control and Automation 2020, 13, 154–160. [Google Scholar]
- Heuvelmans, M.A.; van Ooijen, P.M.; Ather, S.; Silva, C.F.; Han, D.; Heussel, C.P.; Hickes, W.; Kauczor, H.U.; Novotny, P.; Peschl, H.; others. Lung cancer prediction by Deep Learning to identify benign lung nodules. Lung cancer 2021, 154, 1–4. [Google Scholar] [CrossRef]
- Kumar, V.; Bakariya, B. Classification of malignant lung cancer using deep learning. Journal of Medical Engineering & Technology 2021, 45, 85–93. [Google Scholar]
- Chaunzwa, T.L.; Hosny, A.; Xu, Y.; Shafer, A.; Diao, N.; Lanuti, M.; Christiani, D.C.; Mak, R.H.; Aerts, H.J. Deep learning classification of lung cancer histology using CT images. Scientific reports 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Tripathi, S.; Shetty, S.; Jain, S.; Sharma, V. Lung disease detection using deep learning. Int. J. Innov. Technol. Explor. Eng 2021, 10, 1–10. [Google Scholar]
- Feng, J.; Jiang, J.; others. Deep learning-based chest CT image features in diagnosis of lung cancer. Computational and Mathematical Methods in Medicine 2022, 2022. [Google Scholar] [CrossRef]
- Shafi, I.; Din, S.; Khan, A.; Díez, I.D.L.T.; Casanova, R.d.J.P.; Pifarre, K.T.; Ashraf, I. An effective method for lung cancer diagnosis from ct scan using deep learning-based support vector network. Cancers 2022, 14, 5457. [Google Scholar] [CrossRef]
- Manickavasagam, R.; Selvan, S.; Selvan, M. CAD system for lung nodule detection using deep learning with CNN. Medical & Biological Engineering & Computing 2022, 60, 221–228. [Google Scholar]
- Shah, A.A.; Malik, H.A.M.; Muhammad, A.; Alourani, A.; Butt, Z.A. Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Scientific reports 2023, 13, 2987. [Google Scholar] [CrossRef] [PubMed]
- Priyadarsini, M.J.P.; Rajini, G.; Hariharan, K.; Raj, K.U.; Ram, K.B.; Indragandhi, V.; Subramaniyaswamy, V.; Pandya, S.; others. Lung diseases detection using various deep learning algorithms. Journal of healthcare engineering 2023, 2023. [Google Scholar]
- Hilado, S.D.F.; Lim, L.A.G.; Naguib, R.N.; Dadios, E.P.; Avila, J.M.C. Implementation of wavelets and artificial neural networks in colonic histopathological classification. Journal of Advanced Computational Intelligence and Intelligent Informatics 2014, 18, 792–797. [Google Scholar] [CrossRef]
- Rathore, S.; Hussain, M.; Iftikhar, M.A.; Jalil, A. Ensemble classification of colon biopsy images based on information rich hybrid features. Computers in biology and medicine 2014, 47, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Mo, T.; Feng, Q.; Zhong, P.; Lai, M.; Eric, I.; Chang, C. Deep learning of feature representation with multiple instance learning for medical image analysis. 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2014, pp. 1626–1630.
- Gheonea, D.I.; Streba, C.T.; Vere, C.C.; Șerbănescu, M.; Pirici, D.; Comănescu, M.; Streba, L.A.M.; Ciurea, M.E.; Mogoantă, S.; Rogoveanu, I.; others. Diagnosis system for hepatocellular carcinoma based on fractal dimension of morphometric elements integrated in an artificial neural network. BioMed research international 2014, 2014. [Google Scholar] [CrossRef]
- Akbar, B.; Gopi, V.P.; Babu, V.S. Colon cancer detection based on structural and statistical pattern recognition. 2015 2nd International Conference on Electronics and Communication Systems (ICECS). IEEE, 2015, pp. 1735–1739.
- Rathore, S.; Hussain, M.; Khan, A. Automated colon cancer detection using hybrid of novel geometric features and some traditional features. Computers in biology and medicine 2015, 65, 279–296. [Google Scholar] [CrossRef]
- Rathore, S.; Hussain, M.; Iftikhar, M.A.; Jalil, A. Novel structural descriptors for automated colon cancer detection and grading. Computer methods and programs in biomedicine 2015, 121, 92–108. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Xu, J.; Luo, X.; Wang, G.; Gilmore, H.; Madabhushi, A. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 2016, 191, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, D.; Wei, Z.; Lu, L.; Kim, L.; Turkbey, E.; Summers, R.M. Colitis detection on computed tomography using regional convolutional neural networks. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016, pp. 863–866.
- Ştefănescu, D.; Streba, C.; Cârţână, E.T.; Săftoiu, A.; Gruionu, G.; Gruionu, L.G. Computer aided diagnosis for confocal laser endomicroscopy in advanced colorectal adenocarcinoma. PloS one 2016, 11, e0154863. [Google Scholar] [CrossRef] [PubMed]
- Godkhindi, A.M.; Gowda, R.M. Automated detection of polyps in CT colonography images using deep learning algorithms in colon cancer diagnosis. 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE, 2017, pp. 1722–1728.
- Bardhi, O.; Sierra-Sosa, D.; Garcia-Zapirain, B.; Elmaghraby, A. Automatic colon polyp detection using Convolutional encoder-decoder model. 2017 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, 2017, pp. 445–448.
- Trebeschi, S.; van Griethuysen, J.J.; Lambregts, D.M.; Lahaye, M.J.; Parmar, C.; Bakers, F.C.; Peters, N.H.; Beets-Tan, R.G.; Aerts, H.J. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Scientific reports 2017, 7, 5301. [Google Scholar] [CrossRef] [PubMed]
- Haj-Hassan, H.; Chaddad, A.; Harkouss, Y.; Desrosiers, C.; Toews, M.; Tanougast, C. Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network. Journal of Pathology Informatics 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Basha, S.S.; Ghosh, S.; Babu, K.K.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Rccnet: An efficient convolutional neural network for histological routine colon cancer nuclei classification. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2018, pp. 1222–1227.
- Ponzio, F.; Macii, E.; Ficarra, E.; Di Cataldo, S. Colorectal cancer classification using deep convolutional networks. Proceedings of the 11th international joint conference on biomedical engineering systems and technologies, 2018, Vol. 2, pp. 58–66.
- Tang, J.; Li, J.; Xu, X. Segnet-based gland segmentation from colon cancer histology images. 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2018, pp. 1078–1082.
- Dos Santos, L.F.S.; Neves, L.A.; Rozendo, G.B.; Ribeiro, M.G.; do Nascimento, M.Z.; Tosta, T.A.A. Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer. Computers in biology and medicine 2018, 103, 148–160. [Google Scholar]
- Gupta, P.; Chiang, S.F.; Sahoo, P.K.; Mohapatra, S.K.; You, J.F.; Onthoni, D.D.; Hung, H.Y.; Chiang, J.M.; Huang, Y.; Tsai, W.S. Prediction of colon cancer stages and survival period with machine learning approach. Cancers 2019, 11, 2007. [Google Scholar] [CrossRef]
- Wang, Y.H.; Nguyen, P.A.; Islam, M.M.; Li, Y.C.; Yang, H.C.; others. Development of Deep Learning Algorithm for Detection of Colorectal Cancer in EHR Data. MedInfo 2019, 264, 438–441. [Google Scholar]
- Blanes-Vidal, V.; Baatrup, G.; Nadimi, E.S. Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta Oncologica 2019, 58, S29–S36. [Google Scholar] [CrossRef]
- Qasim, Y.; Al-Sameai, H.; Ali, O.; Hassan, A. Convolutional neural networks for automatic detection of colon adenocarcinoma based on histopathological images. International Conference of Reliable Information and Communication Technology. Springer, 2020, pp. 19–28.
- Bukhari, S.U.K.; Syed, A.; Bokhari, S.K.A.; Hussain, S.S.; Armaghan, S.U.; Shah, S.S.H. The histological diagnosis of colonic adenocarcinoma by applying partial self supervised learning. MedRxiv 2020, 2020–08. [Google Scholar]
- Liang, M.; Ren, Z.; Yang, J.; Feng, W.; Li, B. Identification of colon cancer using multi-scale feature fusion convolutional neural network based on shearlet transform. IEEE Access 2020, 8, 208969–208977. [Google Scholar] [CrossRef]
- Ben Hamida, A.; Devanne, M.; Weber, J.; Truntzer, C.; Derangère, V.; Ghiringhelli, F.; Forestier, G.; Wemmert, C. Deep learning for colon cancer histopathological images analysis. Computers in Biology and Medicine 2021, 136, 104730. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Huang, Y.; Sahoo, P.K.; You, J.F.; Chiang, S.F.; Onthoni, D.D.; Chern, Y.J.; Chao, K.Y.; Chiang, J.M.; Yeh, C.Y.; others. Colon tissues classification and localization in whole slide images using deep learning. Diagnostics 2021, 11, 1398. [Google Scholar] [CrossRef] [PubMed]
- Tamang, L.D.; Kim, B.W. Deep learning approaches to colorectal cancer diagnosis: A review. Applied Sciences 2021, 11, 10982. [Google Scholar] [CrossRef]
- Albashish, D. Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images. PeerJ Computer Science 2022, 8, e1031. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.; Zhao, Z.; Chen, X.F.; Sauer, J.; Saraf, S.A.; Jialdasani, R.; Taghipour, K.; Sathe, A.; Khor, L.Y.; Lim, K.H.; others. A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer. Scientific reports 2022, 12, 2222. [Google Scholar] [CrossRef]
- Akilandeswari, A.; Sungeetha, D.; Joseph, C.; Thaiyalnayaki, K.; Baskaran, K.; Jothi Ramalingam, R.; Al-Lohedan, H.; Al-Dhayan, D.M.; Karnan, M.; Meansbo Hadish, K.; others. Automatic detection and segmentation of colorectal cancer with deep residual convolutional neural network. Evidence-Based Complementary and Alternative Medicine 2022, 2022. [Google Scholar] [CrossRef]
- Dabass, M.; Vashisth, S.; Vig, R. A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images. Computers in biology and medicine 2022, 147, 105680. [Google Scholar] [CrossRef]
- Kumar, V.R.P.; Arulselvi, M.; Sastry, K. Comparative assessment of colon cancer classification using diverse deep learning approaches. Journal of Data Science and Intelligent Systems 2023, 1, 128–135. [Google Scholar] [CrossRef]
- Rajput, A.; Subasi, A. Automated detection of colon cancer using deep learning. In Applications of Artificial Intelligence in Medical Imaging; Elsevier, 2023; pp. 265–281.
- Azar, A.T.; Tounsi, M.; Fati, S.M.; Javed, Y.; Amin, S.U.; Khan, Z.I.; Alsenan, S.; Ganesan, J. Automated system for colon cancer detection and segmentation based on deep learning techniques. International Journal of Sociotechnology and Knowledge Development (IJSKD) 2023, 15, 1–28. [Google Scholar] [CrossRef]
- Tian, M.; Li, Y.; Chen, H.; others. 18F-FDG PET/CT Image Deep Learning Predicts Colon Cancer Survival. Contrast Media & Molecular Imaging 2023, 2023. [Google Scholar]
- Mohamed, A.A.A.; Hançerlioğullari, A.; Rahebi, J.; Ray, M.K.; Roy, S. Colon disease diagnosis with convolutional neural network and grasshopper optimization algorithm. Diagnostics 2023, 13, 1728. [Google Scholar] [CrossRef]
- Mangal, S.; Chaurasia, A.; Khajanchi, A. Convolution neural networks for diagnosing colon and lung cancer histopathological images. arXiv preprint 2020, arXiv:2009.03878 2020. [Google Scholar]
- Adu, K.; Yu, Y.; Cai, J.; Owusu-Agyemang, K.; Twumasi, B.A.; Wang, X. DHS-CapsNet: Dual horizontal squash capsule networks for lung and colon cancer classification from whole slide histopathological images. International Journal of Imaging Systems and Technology 2021, 31, 2075–2092. [Google Scholar] [CrossRef]
- Toğaçar, M. Disease type detection in lung and colon cancer images using the complement approach of inefficient sets. Computers in Biology and Medicine 2021, 137, 104827. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Ghazal, T.M.; Khan, M.A.; Zubair, M.; Naseem, M.T.; Faiz, T.; Ahmad, M. Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing. IEEE Access 2022, 10, 25657–25668. [Google Scholar] [CrossRef]
- Kumar, N.; Sharma, M.; Singh, V.P.; Madan, C.; Mehandia, S. An empirical study of handcrafted and dense feature extraction techniques for lung and colon cancer classification from histopathological images. Biomedical Signal Processing and Control 2022, 75, 103596. [Google Scholar] [CrossRef]
- Attallah, O.; Aslan, M.F.; Sabanci, K. A framework for lung and colon cancer diagnosis via lightweight deep learning models and transformation methods. Diagnostics 2022, 12, 2926. [Google Scholar] [CrossRef]
- Provath, M.A.M.; Deb, K.; Dhar, P.K.; Shimamura, T. Classification of Lung and Colon Cancer Histopathological Images Using Global Context Attention Based Convolutional Neural Network. IEEE Access 2023. [Google Scholar] [CrossRef]
- Hadiyoso, S.; Aulia, S.; Irawati, I.D.; others. Diagnosis of lung and colon cancer based on clinical pathology images using convolutional neural network and CLAHE framework. International Journal of Applied Science and Engineering 2023, 20, 1–7. [Google Scholar] [CrossRef]
- Suominen, M.; Subasi, M.E.; Subasi, A. Automated detection of colon cancer from histopathological images using deep neural networks. In Applications of Artificial Intelligence Healthcare and Biomedicine; Elsevier, 2024; pp. 243–287.
- Singh, O.; Kashyap, K.L.; Singh, K.K. Lung and Colon Cancer Classification of Histopathology Images Using Convolutional Neural Network. SN Computer Science 2024, 5, 223. [Google Scholar] [CrossRef]
- Chhillar, I.; Singh, A. A feature engineering-based machine learning technique to detect and classify lung and colon cancer from histopathological images. Medical & Biological Engineering & Computing 2024, 62, 913–924. [Google Scholar]
- World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer, 2023. Accessed: 2024-06-26.
| Data Samples | Lung Dataset | Colon Dataset | Total | |||
|---|---|---|---|---|---|---|
| Adenocarcinoma | Cell Carcinomas | Benign | Adenocarcinoma | Benign | ||
| Training Data Samples | 4000 | 4000 | 4000 | 4000 | 4000 | 20000 |
| Testing Data Samples | 1000 | 1000 | 1000 | 1000 | 1000 | 5000 |
| Dataset | Epochs | Parameters | Batch size | Testing Accuracy |
|---|---|---|---|---|
| Colon Cancer |
30 | 0.35M | 8 | 100 |
| 16 | 100 | |||
| 32 | 100 | |||
| 64 | 100 | |||
| 128 | 100 | |||
| Lung Cancer |
40 | 0.35M | 8 | 99.17 |
| 16 | 100 | |||
| 32 | 100 | |||
| 64 | 100 | |||
| 128 | 100 | |||
| Lung and Colon Cancer |
50 | 0.36M | 8 | 99.6 |
| 16 | 99.94 | |||
| 32 | 99.98 | |||
| 64 | 100 | |||
| 128 | 99.98 |
| Dataset | Epochs | Parameters | Batch size | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|---|---|---|
| Colon Cancer | 30 | 0.35M | 64 | 100% | 100% | 100% | 100% |
| Lung Cancer | 40 | 0.35M | 64 | 100% | 100% | 100% | 100% |
| Lung and Colon Cancer | 50 | 0.36M | 64 | 100% | 100% | 100% | 100% |
| Dataset | Model | Epochs | Parameters | Testing Accuracy |
|---|---|---|---|---|
| Colon Cancer |
RCN | 30 | 0.365M | 99.69 |
| SEC | 0.36M | 99.77 | ||
| Reduced CNN | 0.35M | 99.91 | ||
| Our proposed model | 0.35M | 100 | ||
| Lung Cancer |
RCN | 40 | 0.365M | 99.65 |
| SEC | 0.36M | 99.69 | ||
| Reduced CNN | 0.35M | 99.87 | ||
| Our proposed model | 0.35M | 100 | ||
| Lung and Colon Cancer |
RCN | 50 | 0.365M | 99.68 |
| SEC | 0.36M | 99.79 | ||
| Reduced CNN | 0.35M | 99.89 | ||
| Our proposed model | 0.35M | 100 |
| Reference, year | Models | Imaging | Dataset | Accuracy |
|---|---|---|---|---|
| [58], 2013 | SVM | CT scan | SUMS | Accuracy: 98.1 |
| [59], 2014 | SVM | CT scan | LIDC | Accuracy: 95.12 |
| [60], 2014 | CAD | CT scans | Radiological Data | Average: 98.9 |
| [61], 2015 | SVM | CT scan | Patients | Accuracy: |
| [62], 2015 | CAD | CT scan | LIDC | 75.01, 83.35(Sensitivity) |
| [63], 2015 | Ensemble+ML | CT scan | LIDC | 86.54 |
| [64], 2015 | CNNs | Chest X-rays | 433 image dataset | AUC: 0.87-0.94 |
| [65], 2016 | DBN | CT scan | LIDC (174412 samples) | 0.8119 |
| [66], 2016 | CADs and CNNs | CT scans | LIDC | Sensitivity: 78.9 |
| [67], 2016 | SVM+GO | CT scan | Medical imaging | Accuracy: 89.5 |
| [68], 2016 | Convolutional NN | CT scan | LIDC-IDRI | 75.0 |
| [69], 2016 | Convolutional NN | CT scan | LIDC | Accuracy: 82.5 |
| [70], 2017 | ConvNet, SVM | CT scan | Danish DLCST trial | Accuracy:72.9 |
| [71], 2017 | CNN, DNN, SAE | CT scans | LIDC-IDRI | 84.15, 83.96 (Sensitivity) |
| [72], 2017 | 3D-CNNs | CT scan | Kaggle Data | Accuracy: 86.6 |
| [73], 2017 | CNN, DMN, SDAE | CT scan | LIDC | AUC:0.899±0.018 |
| [74], 2017 | Entropy Degradation | CT scan | NCI | Accuracy:77.8 |
| [75], 2018 | VGG-network | CT scan | LIDC-IDRI | Accuracy:95.60 |
| [76], 2018 | DenseNet-121 | Chest X-rays | LIDC-IDRI | 74.43, 74.68 (Sensitivity) |
| [77], 2018 | Inception V3 | CT scan | Genome Atlas | AUC:0.733-0.856 |
| [78], 2018 | Otsu+ConvNet | CT scan | LIDC-IDRI | 84.13, 91.69 (Sensitivity) |
| [79], 2019 | Profuse clustering | CT scan | CIA | Accuracy:98.42 |
| [80], 2019 | 3D R-CNN | Chest X-rays | LIDC-IDRI | Sensitivity:94 |
| [25], 2019 | 3D CNN | CT scan | Open-source image | Sensitivity:84.4 |
| [81], 2019 | ODNN, LDA | CT scan | LIDC | 94.56, 96.2 (Sensitivity) |
| [82], 2019 | ANN | CT scan | Survey lung cancer | Accuracy:96.67 |
| [28], 2020 | CNN | CT scans | LC25000 | Accuracy: 97.20 |
| [83], 2020 | AlexNet, VGG19 | LCDT images | I-ELCAP | 96.25, 97.5 (Sensitivity) |
| [84], 2020 | DenseNet | CT scans | LIDC | Accuracy: 90.85 |
| [85], 2020 | 3D CNN | CT scans | LUNA16 | Accuracy: 80 |
| [86], 2020 | AlexNet, VGG-16 | CT scans | Open Data set | Accuracy: 99.52 |
| [18], 2021 | Transfer learning | CT scans | LIDC | Accuracy: 99.12 |
| [87], 2021 | LCP-CNN | CT scans | US NLST | Sensitivity: 99 |
| [88], 2021 | AlexNet, GoogLeNet | CT scans | LIDC-IDRI | Precision:100 |
| [89], 2021 | CNN | CT scans | Massachusetts Hospital | AUC:0.71(p=.018) |
| [90], 2021 | Deep CNN, ReLU | Chest X-rays | Kaggle | Accuracy: 89.77 |
| [35], 2022 | MobileNetV2 | CT scans | Public | Accuracy: 98.67 |
| [91],2022 | Mask-RCNN, DPN | CT scans | Patients | 97.94, 98.12 (Sensitivity) |
| [92], 2022 | SVM | CT scans | LIDC-IDRI | Accuracy:94 |
| [93], 2022 | CNN-5CL | Chest X-rays | LIDC/IDRI | 93.73, 98.88 (Sensitivity) |
| [94], 2023 | 2D-CNN | CT scans | LUNA16 | Accuracy:95 |
| [95], 2023 | LCP-CNN | Chest X-ray | Open | 99.9, 99.89 (Specificity) |
| [45], 2023 | LR+VGG16 | CT scans | LC25000 | 99, 99 (Precision) |
| [46], 2023 | EfficientNet-b4 | CT scans | LC25000 | Accuracy:99.96 |
| [47], 2023 | GoogLeNet, VGG19 | CT scans | LC25000 | 99.64, 99.85 (Sensitivity) |
| Our, 2024 | Ours | CT scans | LC25000 | Accuracy: 100 |
| Reference, year | Models | Imaging | Dataset | Accuracy |
|---|---|---|---|---|
| [96], 2014 | Neural Network | HI | Colonic Images | 91.11 |
| [97], 2014 | CBIC | Biopsy Images | 174 Biopsy Images | 98.85 |
| [98], 2014 | DNN | HI | 132 HI | 96.30 |
| [99], 2014 | ANN | HI | 21+28 HCC | 90.2 |
| [100], 2015 | MLP, SMO, BLR | HT | Open Access | 83.33 |
| [101], 2015 | SIFT, EFDs | Colon biopsy | Open Access | 92.62 |
| [102], 2015 | CCD | Biopsy Images | Open Access | 95.40 |
| [103], 2015 | Graph-SSL algorithm | HT | PPIs | 80.7 |
| [103], 2015 | ANN, BNs, DTs | HT | PPIs | 91.7 |
| [104], 2016 | DCNN | HI | Hematoxylin, HI | 88, 100 (F-1 Score) |
| [105], 2016 | CNNs | CT scans | 56 patients | Sensitivity: 85 |
| [106], 2016 | Neural Network | CLE images | Endomicroscopies | Sensitivity: 85 |
| [107], 2017 | CNN, RF, kNN | CT scan | Open | 87 |
| [108], 2017 | CNN autoencoders | HT | ETIS-LaribPolypDB | 96.7 |
| [109], 2017 | CNNs | MRI-DWI | advanced rectal cancer | 0.658, 0.99 (AUC) |
| [110], 2017 | CNNs | BiopsyImages | Open Access | 99.17 |
| [111], 2018 | RCCNet | HI | CRCHistoPhenotypes | 80.61 |
| [112], 2018 | CNNs | HI | CRC samples | 96 |
| [113], 2018 | Segnet | HI | Warwick-QU (A & B) | 88.2 (A), 86.4 (B) |
| [114], 2018 | SampEnMF | HI | Public Colorectal MRI | AUC: 0.983 |
| [115], 2019 | Random Forest | HI | Chang Gung,Taiwan | 84, 0.82 (AUC) |
| [116], 2019 | CNN | HI | NHI,Taiwan | Sensitivity:0.837 |
| [117], 2019 | CNNs | Colonoscopy | Danish NSP | 96.4, 97.1 (Sensitivity) |
| [14], 2019 | CNN | Tissue slides | 25 CRC patients | 95 |
| [110], 2017 | CNNs | Biopsy Images | Open Access | 99.17 |
| [118], 2020 | CNN | CT scans | 10000-HI | 99.6 |
| [118], 2020 | MFF-CNN | CT scans | NORM and TUM | 96, 0.95 (F-1 score) |
| [119], 2020 | CNN | CT scans | CRAG | 93.91 |
| [120], 2020 | CNN | CT scans | 322 Images | 94.8 |
| [18], 2021 | CNN + PCA | CT scans | LC25000 | 99.8 |
| [121], 2021 | ResNet, Inception | Slide Images | AiCOLO | 96.98 |
| [20], 2021 | MobileNetV2 | Colon cells | - | 99.67 |
| [122], 2021 | IR-v2 Type 5 | WSI | Chang Gung, Taiwan | F1-score, AUC:0.99 |
| [123], 2021 | ResNet-18, VGG-19 | Colonoscopy | - | 98.3 |
| [124], 2022 | CNN | CT scans | Stoean and Kather | 97.20 |
| [21], 2022 | CNN | CT scans | LC25000 | 99.50 |
| [125], 2022 | Deep Learning (DL) | CT scans | WSI | Sensitivity: 97.4 |
| [126], 2022 | ResNet | CT scans | TCIA | 98.82, 98.28 (Sensitivity) |
| [127], 2022 | CNN | CT scans | LC25000 | 100 |
| [128], 2023 | RNN, GoogLeNet | HI | Public Dataset | 94.1, 97.5 (Sensitivity) |
| [129], 2023 | ResNet | Colonoscopy | Public | 99.8 |
| [130], 2023 | DL+AdaDelta | Tissue | Public Dataset | 0.96 |
| [131], 2023 | RBM algorithm | F-FDG, CTs | Patients | 99.4 |
| [132], 2023 | ResNet50+Squeezenet | HI | Veterans’ Hospital | 99.12, 99.34 (Sensitivity) |
| Our, 2024 | Our method | CT scans | LC25000 | Accuracy: 100 |
| Reference/ year |
Models | Imaging | Dataset | Results |
|---|---|---|---|---|
| [133], 2020 | CNN | CT scans | LC25000 | Accuracy: 97.00 |
| [41], 2020 | InceptionV3, MobileNet | CT scans | LC25000 | Accuracy: 99.91 |
| [134], 2021 | DHS-CapsNet | CT scans | LC25000 | Accuracy: 99.23 |
| [40], 2021 | CNN, 2D Fourier | CT scans | LC25000 | Accuracy: 96.33 |
| [42], 2021 | Capsule Network | CT scans | LC25000 | Accuracy: 99.58 |
| [135], 2021 | DarkNet-19 | CT scans | LC25000 | Accuracy: 99.69 |
| [136], 2022 | AlexNet | CT scans | LC25000 | Accuracy: 98.4 |
| [137], 2022 | DenseNet121, Random Forest |
CT scans | LC25000 | Accuracy: 98.6 F1 score: 0.985 |
| [23], 2022 | A Hybrid Ensemble Model | CT scans | LC25000 | Accuracy: 99.3 |
| [138], 2022 | PCA + CNN + SVM, FHWT + CNN + SVM |
CT scans | LC25000 | Accuracy: 99.5 Accuracy: 99.6 |
| [43], 2022 | XGBoost | CT scans | LC25000 | Accuracy: 99 F1-score: 98.8 |
| [43], 2022 | MobileNetV2, InceptionV2 | CT scans | LC25000 | Accuracy: 99.95 |
| [39], 2023 | Capsule Network | CT scans | LC25000 | Accuracy: 99.32 |
| [139], 2023 | CNN | CT scans | LC25000 | Accuracy: 99.76 |
| [140], 2023 | CNN | CT scans | LC25000 | Accuracy: 98.96 |
| [47], 2023 | ANN | CT scans | LC25000 | Sensitivity: 99.85 Precision: 100 Accuracy: 99.64 |
| [45], 2023 | Logistic Regression Model | CT scans | LC25000 | Accuracy: 99.00 Precision: 99.00 Recall: 98.80 FI Score: 98.80 |
| [141], 2024 | SqueezeNet | CT scans | LC25000 | Accuracy: 99.58 |
| [142], 2024 | EfficientNetB6 VGG19 InceptionResNetV2 DenseNet201 MobileNetV2 |
CT scans | LC25000 | Accuracy: 93.12 Accuracy: 98.00 Accuracy: 97.92 Accuracy: 99.12 Accuracy: 99.32 |
| [143], 2024 | LightGBM | CT scans | LC25000 | Accuracy: 100 |
| Our, 2024 | Our Proposed method | CT scans | LC25000 | Accuracy: 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
