Submitted:
27 August 2024
Posted:
29 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Oncolytic Viruses and Mechanism of Action
1.2. Types of Oncolytic Viruses
1.3. Oncolytic Viruses and the Tumor Microenvironment
1.4. Development of OVs
2. Oncolytic Viruses for Pancreatic Cancer
2.1. Preclinical Studies of Oncolytic Viruses in Pancreatic Cancer
| Virus Name | Virus Type | Mechanism & Target | Enhancements | Efficacy in Models | Key Findings | References |
|---|---|---|---|---|---|---|
| Reolysin | Reovirus | Selective reovirus replication and induction of ER stress-mediated apoptosis; targets KRas-transformed cells | Combined with ER stress inducers (tunicamycin, brefeldin A, and bortezomib) | Enhanced selective replication, increased ER stress, apoptosis; tumor reduction | Effectively targets Ras-activated cancers | [69] |
| MV-EGFPmtd | Measles virus | Integrated MicroRNA target sites (miRTS) interact with normal tissue microRNAs, preventing viral replication in non-target cells | -- | Detargets normal tissues; retains oncolytic potency in pancreatic cancer models | Feasibility of modifying tropism without compromising efficacy | [70] |
| oAd/DCN/LRP-PEG-NT | Adenovirus | Modified with NT peptide and PEG for enhanced targeting, Degrades ECM, targets NTR-overexpressing cells | -- | Significant tumor suppression; improved transduction efficiency | Effective targeting of NTR-overexpressing pancreatic cancer cells, ECM degradation, Wnt signaling inhibition | [60] |
| uMSC-delivered oAd/RLX-PCDP | Adenovirus | Delivered via hMSCs; enhances viral delivery and replication Complexed with biodegradable polymer (PCDP) for improved delivery | -- | Stronger antitumor effect in pancreatic tumor models compared to naked virus or hMSC treatment | Enhanced internalization, viral production, and release in tumor tissues | [61] |
| VLΔTK-IL-10 | Vaccinia virus | Deleted TK and armed with IL-10 genes; enhances; targeted viral attack on tumors | -- | Prolonged survival in immunocompetent and genetically engineered mouse models | Increased survival rates, targeted viral attack on tumors | [108] |
| Delta-24-RGD (DNX-2401) | Adenovirus | Selective replication in p16/RB/E2F pathway abnormal cells | Combined with phosphatidylserine targeting antibody 1N11 | Reduced tumor growth; enhanced anticancer immune responses | Significant reduction in tumor growth, targeted replication in abnormal pathway cells | [59] |
| ICOVIR15 | Adenovirus | Enhanced E1A and late viral protein expression through miR-99b and miR-485 | -- | Increased adenoviral activity in pancreatic cancer cell lines | Downregulation of transcriptional repressors ELF4, MDM2, and KLF8; enhanced antitumoral activity | [109] |
| YDC002 | Adenovirus | Degrades ECM, enhances chemosensitivity | Combined with gemcitabine | Potent anticancer effects; enhanced chemosensitivity | Reduced ECM components, enhanced cytotoxicity of gemcitabine | [45] |
| OAds expressing IFN | Adenovirus | Expresses interferon; enhances chemotherapy efficacy | Combined with 5-FU, gemcitabine, and cisplatin | Improved cancer cell death in vitro; inhibited tumor growth in animal models | Improved efficacy of chemotherapy drugs, enhanced survival rates | [63] |
| SAG101 | Adenovirus | Coated with OM-pBAEs for enhanced transduction | -- | Improved antitumor activity and reduced toxicity in PDAC mouse models | Enhanced transduction efficiency, reduced liver sequestration, improved therapeutic potential | [62] |
| AdNuPARmE1A-miR222-S | Adenovirus | Engineered with miR-222 binding sites; Inhibits miR-222 to improve viral yield and cytotoxic effects in vivo | -- | Controlled tumor progression better than control virus in xenografts | Enhanced viral fitness, and improved tumor control through miRNA modulation | [65] |
| oHSV-CD40L | Herpes simplex | Expresses membrane-bound CD40L; stimulates immune responses | Combined with PD-1 antagonist antibody | Slowed tumor growth, prolonged survival; increased mature DCs and activated cytotoxic T cells | Enhanced immune response, improved outcomes in pancreatic cancer treatment | [72] |
| Ad5-3Δ-A20T | Adenovirus | Selective targeting of αvβ6 integrin receptor, promoting viral propagation and spread | -- | Superior efficacy in 3D organotypic cocultures and Suit-2 in vivo models | Highly selective for αvβ6 integrin-expressing pancreatic cancer cells; potential to improve systemic delivery | [110] |
| OAd.R.shPKM2 | Adenovirus | Knockdown of PKM2 | -- | Reduced tumor growth in PANC-1 xenograft model | Induced apoptosis and impaired autophagy; strong antitumor effect | [111] |
| ZD55-TRAIL-IETD-Smac | Adenovirus | Expression of TRAIL and Smac; Enhanced apoptosis of pancreatic cancer cells by affecting anti-apoptotic signaling elements | Combined with Cyclin-dependent kinase (CDK) inhibitor SNS-032 | Significant inhibition of BxPC-3 pancreatic tumor xenografts | Combination therapy sensitized cancer cells to apoptosis | [68] |
| OAd expressing survivin shRNA & TRAIL | Adenovirus | Downregulation of survivin with TRAIL expression to enhance cytotoxic death post-gemcitabine treatment | Combined with Gemcitabine | Tumor regression in MiaPaCa-2 pancreatic cancer model | Enhanced cell death correlated with survivin downregulation and increased PARP cleavage | [112] |
| VSV-ΔM51-GFP | Vesicular Stomatitis Virus | Enhance viral replication and oncolysis by targeting IKK-β and JAK1 | Combined with TPCA-1 (IKK-β inhibitor) and ruxolitinib (JAK1/2 inhibitor) | Enhanced replication and oncolysis in VSV-resistant PDAC cell lines with inhibitors | Upregulated type I interferon signaling contributes to resistance; Inhibition of STAT1/2 phosphorylation enhances VSV-ΔM51 efficacy | [113] |
| microRNA-sensitive CD-UPRT-armed MeV | Measles Virus | MicroRNA-regulated vector tropism targeting pancreatic cancer cells; 5-fluorouracil-based chemovirotherapy | Combined with 5-fluorocytosine | Delayed tumor growth and prolonged survival in xenografts with combination treatment | Effective strategy against pancreatic cancer with favorable therapeutic index; Potential for clinical translation | [114] |
| H-1PV | Parvovirus | Induction of oxidative stress and apoptosis | Combined with Histone deacetylase inhibitors (HDACIs) valproic acid | Complete tumor remission in rat and mouse xenograft models | Promising results warranting clinical evaluation in cervical and pancreatic ductal carcinomas | [115] |
| GLV-1h151 | Vaccinia Virus | Direct oncolysis; inflammation-mediated immune responses | Combined with radiation | Synergistic cytotoxic effect in combination with radiation; Well-tolerated in mice | Potential for clinical translation; Effective against colorectal cancers independently of disease stage | [116] |
2.2. Preclinical Trials that Combine OV with Immunotherapy
2.3. OV-Based Clinical Studies in Pancreatic Cancer
2.4. Clinical Studies Combining Oncolytic Viruses with Immunotherapy in Pancreatic Cancer
| Phase | Oncolytic virus | Clinical Trial Identifier | Description | Inclusion Criteria | Coupled with | Virus dose | Status | Estimated Study Completion (mm/yyyy) |
| I | Talimog-ene Laherpa- repvec (T-VEC) | NCT03086642 | Immune-enhanced herpes simplex virus type-1 (HSV-1) that selectively replicates in solid tumors | Locally advanced or metastatic pancreatic cancer, refractory to at least one chemotherapy regimen | - - | 4.0 mL of 10^6 PFU/mL on week 1 and 4.0 mL of 10^6, 10^7, or 10^8 PFU/mL on week 4 | Active, not recruiting | 04-2026 |
| I | TBI-1401 (HF10) | NCT03252808 | Replication-competent HSV-1 Oncolytic Virus | Stage III or IV unresectable pancreatic cancer. Patients with stage IV must have failed gemcitabine-based first-line chemotherapy. | With gemcitabine + nab-paclitaxel or TS-1. | 1×10^6 or 1×10^7 TCID50/mL TBI-1401(HF10) administered to the tumor in up to 2 mL | Active, not recruiting | 03-2035 |
| IIb | VCN-01 | NCT05673811 | Genetically modified wild-type human adenovirus serotype 5 (HAd5) with selective replication | Metastatic pancreatic cancer | Nab-paclitaxel and gemcitabine | 1×10^13 vp on day 1 and day 92 | Recruiting | 04-2025 |
| I | R130 | NCT05860374 | Modified herpes simplex virus-1(HSV-1) containing the gene coding for anti-CD3 scFv/CD86/PD1/HSV2-US11 | Advanced solid tumors including pancreatic cancer | -- | 1x10^8 PFU/mL, Every 7-14 days | Recruiting | 03-2026 |
| I | R130 | NCT05886075 | Modified herpes simplex virus-1 (HSV-1) containing the gene coding for anti-CD3 scFv/CD86/PD1/HSV2-US11 | Relapsed/refractory advanced solid tumors including pancreatic cancer | -- | 1x10^8 PFU/mL, Every 7-14 days | Recruiting | 03-2025 |
| II | H101 | NCT06196671 | Oncolytic adenovirus | Advanced pancreatic cancer | PD-1 inhibitor (camrelizumab) | H101 15x10^11vp on day 1 | Not yet recruiting | 01-2028 |
| I | Oncolytic virus | NCT06346808 | -- | Preoperative therapy for patients with borderline resectable and locally advanced pancreatic cancer | Anti-PD1 (camrelizumab) and chemotherapy (gemcitabine + capecitabine) | -- | Not yet recruiting | 05-2027 |
| I, II | LOAd703 (delolimogene mupadenorepvec) | NCT02705196 | Oncolytic adenovirus encoding TMZ-CD40L and 4-1BBL | Locally advanced pancreatic cancer | Gemcitabine + nab-paclitaxel +/- anti-PD-L1 antibody atezolizumab | 6 doses of 5×10^10, 1×10^11 or 5×10^11 vp per treatment | Recruiting | 10-2025 |
| Ib | STI-1386(Seprehvec) | NCT05361954 | Second-generation oncolytic herpes simplex virus type 1 | Relapsed and refractory solid tumors including locally advanced pancreatic cancer | -- | 3+3 dose-escalation design with three dosing cohorts: 4 mL of 1 x 10^6, 1 x 10^7, or 1 x 10^8 / 1 mL | Not yet recruiting | 02-2027 |
| I | MEM-288 | NCT05076760 | Conditionally replicative oncolytic adenovirus vector encoding transgenes for human interferon beta (IFNβ) and a recombinant chimeric form of CD40-ligand (MEM40) | Solid tumors including advanced/metastatic pancreatic cancer that progressed following previous anti-PD-1/PD-L1 therapy with or without concurrent chemotherapy | Part 1 - MEM-288 alone Part 2 – With Anti-PD-1 (Nivolumab) | Upto 6 doses of 1×10^10, 3.3×10^10 or 1×10^11 vp given every 3 weeks | Recruiting | 11-2026 |
| I, II | VG161 | NCT05162118 | Recombinant human-IL12/15/PDL1B oncolytic HSV-1 | Advanced pancreatic cancer | PD-1 inhibitor (Nivolumab) | 1.5×10^8 on day 1, 1.0×10^8 on day 1 and 2 or 1.0×10^8 on day 1, 2 and 3 | Recruiting | 12-2025 |
| I | VCN-01 | NCT02045602 | Genetically modified wild-type human adenovirus serotype 5 (HAd5) with selective replication | Advanced solid tumors including pancreatic cancer | Gemcitabine and abraxane | Single intravenous injection of 1×10^11, 1×10^12, 3.3×10^12 or 1×10^13 vp | Completed | 01-2020 |
| I | VCN-01 | NCT02045589 | Genetically modified wild-type human adenovirus serotype 5 (HAd5) with selective replication | Advanced pancreatic cancer | Gemcitabine and abraxane | Three intratumoral administrations of 1×1010 or 1×1011 vp | Completed | 09-2018 |
| I | CAdVEC | NCT03740256 | Oncolytic adenovirus expressing PD-L1 blocking antibody and IL-12 | Advanced HER2-positive solid tumors including pancreatic cancer | HER2-specific CAR-T cell | Single dose of 5 x10^ 9, 1. x10^10, 1 x10^11 or 1 x10^12 | Recruiting | 12-2038 |
| Ib | REOLYSIN(Pelareorep) | NCT02620423 | Oncolytic reovirus | Advanced pancreatic adenocarcinoma | Gemcitabine, irinotecan, or leucovorin/ 5-fluorouracil (5-FU) with pembrolizumab | 4.5x10^10 TCID50 on Days 1 and 2 of a 21 | Completed | 08-2018 |
| I | OrienX010 | NCT01935453 | Recombinant hGM-CSF HSV-1 | Solid tumors including pancreatic cancer | -- | 10^6 pfu, 10^7 pfu, 10^8 pfu or 4×10^8 pfu as single, multiple (three injections, every 2 weeks) or continuous injections every two weeks | Completed | 05-2014 |
| I | vvDD-CDSR | NCT00574977 | Vaccinia virus | Solid tumors including pancreatic cancer | -- | 3x10^7, 1x10^8, 3x10^8, 1x10^9 or 3x10^9 pfu | Completed | 07-2014 |
| II | Reolysin | NCT01280058 | Reovirus | Recurrent or Metastatic Pancreatic Cancer | Carboplatin and paclitaxel | 3 × 10^10 TCID50/day, on days 1–5 of each cycle | Completed | 01-2016 |
| I | Ad5-yCD/mutTKSR39rep-hIL12 adenovirus (Ad5-vector) | NCT03281382 | Adenovirus | Metastatic pancreatic cancer | Oral 5-fluorocytosine (5-FC) and chemotherapy | 1×10^11, 3×10^11, or 1×10^12 vp | Completed | 05-2019 |
| I | Ad5-yCD/mutTK(SR39)rep-ADP (Ad5-DS) | NCT02894944 | Replication-competent adenovirus-mediated double-suicide gene therapy | Locally advanced pancreatic cancer | Oral 5-fluorocytosine, valganciclovir, gemcitabine | 1 × 10^11, 3 × 10^11, and 1 × 10^12 viral particles/mL | Completed | 04-2019 |
| I | ONYX-015 (dl1520) | -- | E1B-55kD gene-deleted replication-selective adenovirus | Locally advanced pancreatic carcinoma | -- | Dose escalation from 10^8 pfu to 10^11 pfu | Completed | -- |
| I | ONYX-015 (dl1520) | -- | E1B-55kD gene-deleted replication-selective adenovirus | Locally advanced adenocarcinoma of the pancreas or metastatic disease with minimal/absent liver metastases | Gemcitabine (1,000 mg/m^2) | 2 x 10^10 or 2 x 10^11 vp/treatment | Completed |
3. Challenges and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
- OV: Oncolytic Virus
- TME: Tumor Microenvironment
- OAd: Oncolytic Adenovirus
- NT: Neurotensin
- PEG: Polyethylene Glycol
- hMSCs: Human Bone Marrow-Derived Mesenchymal Stromal Cells
- VVLΔTK-IL-10: Vaccinia Virus with Deleted Thymidine Kinase and Interleukin-10 Genes
- PDAC: Pancreatic Ductal Adenocarcinoma
- TRAIL: Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand
- IFN: Interferon
- CAR: Chimeric Antigen Receptor
- TNF-α: Tumor Necrosis Factor-Alpha
- IL-2: Interleukin-2
- GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor
- IL-7: Interleukin-7
- IL-12: Interleukin-12
- IFN-β: Interferon Beta
- PFS: Progression-Free Survival
- MTD: Maximum Tolerated Dose
- miRTS: MicroRNA Target Sites
- ECM: Extracellular Matrix
- CAFs: Cancer-Associated Fibroblasts
- FGF2: Fibroblast Growth Factor 2
- ICAM: Intercellular Adhesion Molecule
- IFN-γ: Interferon Gamma
- HMGB1: High Mobility Group Box 1
- IL-6: Interleukin-6
- TLR: Toll-Like Receptor
- TILs: Tumor-Infiltrating Lymphocytes
- CTLA-4: Cytotoxic T Lymphocyte-Associated Antigen 4
- PD-1: Programmed Cell Death Protein 1
- PD-L1: Programmed Death-Ligand 1
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians 2024, 74, 12-49. [CrossRef]
- Li Q, Feng Z, Miao R, Liu X, Liu C, Liu Z. Prognosis and survival analysis of patients with pancreatic cancer: retrospective experience of a single institution. World J Surg Oncol. 2022;20(1):11.
- Carvalho, T.M.A.; Di Molfetta, D.; Greco, M.R.; Koltai, T.; Alfarouk, K.O.; Reshkin, S.J.; Cardone, R.A. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021, 13. [CrossRef]
- Puckett, Y.; Garfield, K. Pancreatic Cancer. In StatPearls, StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL), 2024.
- Słodkowski, M.; Wroński, M.; Karkocha, D.; Kraj, L.; Śmigielska, K.; Jachnis, A. Current Approaches for the Curative-Intent Surgical Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023, 15. [CrossRef]
- Sinn, M.; Bahra, M.; Liersch, T.; Gellert, K.; Messmann, H.; Bechstein, W.; Waldschmidt, D.; Jacobasch, L.; Wilhelm, M.; Rau, B.M.; et al. CONKO-005: Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. J Clin Oncol 2017, 35, 3330-3337. [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011, 364, 1817-1825. [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013, 369, 1691-1703. [CrossRef]
- Liu, Y.; Li, F.; Gao, F.; Xing, L.; Qin, P.; Liang, X.; Zhang, J.; Qiao, X.; Lin, L.; Zhao, Q.; et al. Periostin promotes the chemotherapy resistance to gemcitabine in pancreatic cancer. Tumour Biol 2016, 37, 15283-15291. [CrossRef]
- Hennig, A.; Baenke, F.; Klimova, A.; Drukewitz, S.; Jahnke, B.; Brückmann, S.; Secci, R.; Winter, C.; Schmäche, T.; Seidlitz, T.; et al. Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. The Journal of Pathology 2022, 257, 607-619. [CrossRef]
- Burris, H.A., 3rd; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997, 15, 2403-2413. [CrossRef]
- Karasic, T.B.; O'Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.; Burrell, J.A.; Laheru, D.A.; et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol 2019, 5, 993-998. [CrossRef]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomedicine & Pharmacotherapy 2020, 124, 109821. [CrossRef]
- Hemminki, O.; dos Santos, J.M.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. Journal of Hematology & Oncology 2020, 13, 84. [CrossRef]
- Thoidingjam, S.; Sriramulu, S.; Freytag, S.; Brown, S.L.; Kim, J.H.; Chetty, I.J.; Siddiqui, F.; Movsas, B.; Nyati, S. Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health. Transl Med Commun 2023, 8, 11. [CrossRef]
- Ochiai, H.; Campbell, S.A.; Archer, G.E.; Chewning, T.A.; Dragunsky, E.; Ivanov, A.; Gromeier, M.; Sampson, J.H. Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res 2006, 12, 1349-1354. [CrossRef]
- Marintcheva, B. Chapter 9 - Virus-Based Therapeutic Approaches. In Harnessing the Power of Viruses, Marintcheva, B., Ed. Academic Press: 2018; pp. 243-276. [CrossRef]
- Bai, Y.; Hui, P.; Du, X.; Su, X. Updates to the antitumor mechanism of oncolytic virus. Thorac Cancer 2019, 10, 1031-1035. [CrossRef]
- Marelli, G.; Howells, A.; Lemoine, N.R.; Wang, Y. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer. Front Immunol 2018, 9, 866. [CrossRef]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015, 14, 642-662. [CrossRef]
- Wang, X.; Shen, Y.; Wan, X.; Hu, X.; Cai, W.Q.; Wu, Z.; Xin, Q.; Liu, X.; Gui, J.; Xin, H.Y.; et al. Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. J Transl Med 2023, 21, 500. [CrossRef]
- Zhang, L.; Wang, W.; Wang, R.; Zhang, N.; Shang, H.; Bi, Y.; Chen, D.; Zhang, C.; Li, L.; Yin, J.; et al. Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma. Mol Ther 2021, 29, 744-761. [CrossRef]
- Mantwill, K.; Klein, F.G.; Wang, D.; Hindupur, S.V.; Ehrenfeld, M.; Holm, P.S.; Nawroth, R. Concepts in Oncolytic Adenovirus Therapy. Int J Mol Sci 2021, 22. [CrossRef]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol 2015, 33, 2780-2788. [CrossRef]
- Kaur, B.; Cripe, T.P.; Chiocca, E.A. "Buy one get one free": armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther 2009, 9, 341-355. [CrossRef]
- Elsedawy, N.B.; Russell, S.J. Oncolytic vaccines. Expert Rev Vaccines 2013, 12, 1155-1172. [CrossRef]
- Larson, C.; Oronsky, B.; Scicinski, J.; Fanger, G.R.; Stirn, M.; Oronsky, A.; Reid, T.R. Going viral: a review of replication-selective oncolytic adenoviruses. Oncotarget 2015, 6, 19976-19989. [CrossRef]
- Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: challenges and optimization prospects. Front Immunol 2023, 14, 1308890. [CrossRef]
- Jiang, B.; Zhou, L.; Lu, J.; Wang, Y.; Liu, C.; You, L.; Guo, J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020, 10, 576399. [CrossRef]
- Bell, J.; McFadden, G. Viruses for tumor therapy. Cell Host Microbe 2014, 15, 260-265. [CrossRef]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016, 107, 1373-1379. [CrossRef]
- Yoo, S.Y.; Badrinath, N.; Lee, H.L.; Heo, J.; Kang, D.H. A Cancer-Favoring, Engineered Vaccinia Virus for Cholangiocarcinoma. Cancers (Basel) 2019, 11. [CrossRef]
- Ebelt, N.D.; Zamloot, V.; Manuel, E.R. Targeting desmoplasia in pancreatic cancer as an essential first step to effective therapy. Oncotarget 2020, 11, 3486-3488. [CrossRef]
- Erkan, M.; Michalski, C.W.; Rieder, S.; Reiser-Erkan, C.; Abiatari, I.; Kolb, A.; Giese, N.A.; Esposito, I.; Friess, H.; Kleeff, J. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 2008, 6, 1155-1161. [CrossRef]
- Ullman, N.A.; Burchard, P.R.; Dunne, R.F.; Linehan, D.C. Immunologic Strategies in Pancreatic Cancer: Making Cold Tumors Hot. J Clin Oncol 2022, 40, 2789-2805. [CrossRef]
- Murakami, T.; Hiroshima, Y.; Matsuyama, R.; Homma, Y.; Hoffman, R.M.; Endo, I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 2019, 3, 130-137. [CrossRef]
- Wang, L.; Chard Dunmall, L.S.; Cheng, Z.; Wang, Y. Remodeling the tumor microenvironment by oncolytic viruses: beyond oncolysis of tumor cells for cancer treatment. J Immunother Cancer 2022, 10. [CrossRef]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Reviews Immunology 2005, 5, 375-386. [CrossRef]
- Guo, Z.S.; Liu, Z.; Kowalsky, S.; Feist, M.; Kalinski, P.; Lu, B.; Storkus, W.J.; Bartlett, D.L. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front Immunol 2017, 8, 555. [CrossRef]
- Breitbach, C.J.; Lichty, B.D.; Bell, J.C. Oncolytic Viruses: Therapeutics With an Identity Crisis. EBioMedicine 2016, 9, 31-36. [CrossRef]
- Berkey, S.E.; Thorne, S.H.; Bartlett, D.L. Oncolytic Virotherapy and the Tumor Microenvironment. In Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy, Kalinski, P., Ed. Springer International Publishing: Cham, 2017; 10.1007/978-3-319-67577-0_11pp. 157-172.
- Angarita, F.A.; Acuna, S.A.; Ottolino-Perry, K.; Zerhouni, S.; McCart, J.A. Mounting a strategic offense: fighting tumor vasculature with oncolytic viruses. Trends in Molecular Medicine 2013, 19, 378-392. [CrossRef]
- Breitbach, C.J.; Arulanandam, R.; De Silva, N.; Thorne, S.H.; Patt, R.; Daneshmand, M.; Moon, A.; Ilkow, C.; Burke, J.; Hwang, T.H.; et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res 2013, 73, 1265-1275. [CrossRef]
- Ilkow, C.S.; Marguerie, M.; Batenchuk, C.; Mayer, J.; Ben Neriah, D.; Cousineau, S.; Falls, T.; Jennings, V.A.; Boileau, M.; Bellamy, D.; et al. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat Med 2015, 21, 530-536. [CrossRef]
- Jung, K.H.; Choi, I.K.; Lee, H.S.; Yan, H.H.; Son, M.K.; Ahn, H.M.; Hong, J.; Yun, C.O.; Hong, S.S. Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett 2017, 396, 155-166. [CrossRef]
- Choi, I.K.; Lee, Y.S.; Yoo, J.Y.; Yoon, A.R.; Kim, H.; Kim, D.S.; Seidler, D.G.; Kim, J.H.; Yun, C.O. Effect of decorin on overcoming the extracellular matrix barrier for oncolytic virotherapy. Gene Ther 2010, 17, 190-201. [CrossRef]
- Li, Y.; Hong, J.; Jung, B.K.; Oh, E.; Yun, C.O. Oncolytic Ad co-expressing decorin and Wnt decoy receptor overcomes chemoresistance of desmoplastic tumor through degradation of ECM and inhibition of EMT. Cancer Lett 2019, 459, 15-29. [CrossRef]
- Al-Zaher, A.A.; Moreno, R.; Fajardo, C.A.; Arias-Badia, M.; Farrera, M.; de Sostoa, J.; Rojas, L.A.; Alemany, R. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus. Mol Ther Oncolytics 2018, 8, 62-70. [CrossRef]
- Bazan-Peregrino, M.; Garcia-Carbonero, R.; Laquente, B.; Álvarez, R.; Mato-Berciano, A.; Gimenez-Alejandre, M.; Morgado, S.; Rodríguez-García, A.; Maliandi, M.V.; Riesco, M.C.; et al. VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. J Immunother Cancer 2021, 9. [CrossRef]
- Rahal, A.; Musher, B. Oncolytic viral therapy for pancreatic cancer. J Surg Oncol 2017, 116, 94-103. [CrossRef]
- Dock, G.; Brothers, L.; Company. The Influence of Complicating Diseases Upon Leukaemia; Lea Brothers & Company: 1904.
- Zhang, S.; Rabkin, S.D. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin Drug Discov 2021, 16, 391-410. [CrossRef]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991, 252, 854-856. [CrossRef]
- Bommareddy, P.K.; Peters, C.; Saha, D.; Rabkin, S.D.; Kaufman, H.L. Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. Annual Review of Cancer Biology 2018, 2, 155-173. [CrossRef]
- Nasar, R.T.; Uche, I.K.; Kousoulas, K.G. Targeting Cancers with oHSV-Based Oncolytic Viral Immunotherapy. Curr Issues Mol Biol 2024, 46, 5582-5594. [CrossRef]
- Bhatnagar, A.R.; Siddiqui, F.; Khan, G.; Pompa, R.; Kwon, D.; Nyati, S. Long-Term Follow-Up of Phase I Trial of Oncolytic Adenovirus-Mediated Cytotoxic and Interleukin-12 Gene Therapy for Treatment of Metastatic Pancreatic Cancer. Biomedicines 2024, 12. [CrossRef]
- SM, O.B.; Mathis, J.M. Oncolytic Virotherapy for Breast Cancer Treatment. Curr Gene Ther 2018, 18, 192-205. [CrossRef]
- Asija, S.; Chatterjee, A.; Goda, J.S.; Yadav, S.; Chekuri, G.; Purwar, R. Oncolytic immunovirotherapy for high-grade gliomas: A novel and an evolving therapeutic option. Front Immunol 2023, 14, 1118246. [CrossRef]
- Dai, B.; Roife, D.; Kang, Y.; Gumin, J.; Rios Perez, M.V.; Li, X.; Pratt, M.; Brekken, R.A.; Fueyo-Margareto, J.; Lang, F.F.; et al. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2017, 16, 662-670. [CrossRef]
- Na, Y.; Choi, J.W.; Kasala, D.; Hong, J.; Oh, E.; Li, Y.; Jung, S.J.; Kim, S.W.; Yun, C.O. Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model. J Control Release 2015, 220, 766-782. [CrossRef]
- Na, Y.; Nam, J.P.; Hong, J.; Oh, E.; Shin, H.C.; Kim, H.S.; Kim, S.W.; Yun, C.O. Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. J Control Release 2019, 305, 75-88. [CrossRef]
- Brugada-Vilà, P.; Cascante, A.; Lázaro, M.; Castells-Sala, C.; Fornaguera, C.; Rovira-Rigau, M.; Albertazzi, L.; Borros, S.; Fillat, C. Oligopeptide-modified poly(beta-amino ester)s-coated AdNuPARmE1A: Boosting the efficacy of intravenously administered therapeutic adenoviruses. Theranostics 2020, 10, 2744-2758. [CrossRef]
- Salzwedel, A.O.; Han, J.; LaRocca, C.J.; Shanley, R.; Yamamoto, M.; Davydova, J. Combination of interferon-expressing oncolytic adenovirus with chemotherapy and radiation is highly synergistic in hamster model of pancreatic cancer. Oncotarget 2018, 9, 18041-18052. [CrossRef]
- Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018, 3. [CrossRef]
- Raimondi, G.; Gea-Sorlí, S.; Otero-Mateo, M.; Fillat, C. Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers (Basel) 2021, 13. [CrossRef]
- Doerner, J.; Sallard, E.; Zhang, W.; Solanki, M.; Liu, J.; Ehrke-Schulz, E.; Zirngibl, H.; Lieber, A.; Ehrhardt, A. Novel Group C Oncolytic Adenoviruses Carrying a miRNA Inhibitor Demonstrate Enhanced Oncolytic Activity In Vitro and In Vivo. Mol Cancer Ther 2022, 21, 460-470. [CrossRef]
- Hashimoto, M.; Kuroda, S.; Kanaya, N.; Kadowaki, D.; Yoshida, Y.; Sakamoto, M.; Hamada, Y.; Sugimoto, R.; Yagi, C.; Ohtani, T.; et al. Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus. British Journal of Cancer 2024, 130, 1187-1195. [CrossRef]
- Ge, Y.; Lei, W.; Ma, Y.; Wang, Y.; Wei, B.; Chen, X.; Ru, G.; He, X.; Mou, X.; Wang, S. Synergistic antitumor effects of CDK inhibitor SNS-032 and an oncolytic adenovirus co-expressing TRAIL and Smac in pancreatic cancer. Mol Med Rep 2017, 15, 3521-3528. [CrossRef]
- Carew, J.S.; Espitia, C.M.; Zhao, W.; Kelly, K.R.; Coffey, M.; Freeman, J.W.; Nawrocki, S.T. Reolysin is a novel reovirus-based agent that induces endoplasmic reticular stress-mediated apoptosis in pancreatic cancer. Cell Death Dis 2013, 4, e728. [CrossRef]
- Baertsch, M.A.; Leber, M.F.; Bossow, S.; Singh, M.; Engeland, C.E.; Albert, J.; Grossardt, C.; Jäger, D.; von Kalle, C.; Ungerechts, G. MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Ther 2014, 21, 373-380. [CrossRef]
- Chard, L.S.; Lemoine, N.R.; Wang, Y. New role of Interleukin-10 in enhancing the antitumor efficacy of oncolytic vaccinia virus for treatment of pancreatic cancer. Oncoimmunology 2015, 4, e1038689. [CrossRef]
- Wang, R.; Chen, J.; Wang, W.; Zhao, Z.; Wang, H.; Liu, S.; Li, F.; Wan, Y.; Yin, J.; Wang, R.; et al. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer 2022, 10. [CrossRef]
- Vienne, M.; Lopez, C.; Lulka, H.; Nevot, A.; Labrousse, G.; Dusetti, N.; Buscail, L.; Cordelier, P. Minute virus of mice shows oncolytic activity against pancreatic cancer cells exhibiting a mesenchymal phenotype. Mol Ther Oncol 2024, 32, 200780. [CrossRef]
- Schäfer, T.E.; Knol, L.I.; Haas, F.V.; Hartley, A.; Pernickel, S.C.S.; Jády, A.; Finkbeiner, M.S.C.; Achberger, J.; Arelaki, S.; Modic, Ž.; et al. Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. EBioMedicine 2024, 105, 105219. [CrossRef]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol 2018, 8, 86. [CrossRef]
- Palanivelu, L.; Liu, C.H.; Lin, L.T. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front Immunol 2022, 13, 1038226. [CrossRef]
- Liu, S.; Li, F.; Ma, Q.; Du, M.; Wang, H.; Zhu, Y.; Deng, L.; Gao, W.; Wang, C.; Liu, Y.; et al. OX40L-Armed Oncolytic Virus Boosts T-cell Response and Remodels Tumor Microenvironment for Pancreatic Cancer Treatment. Theranostics 2023, 13, 4016-4029. [CrossRef]
- Nelson, A.; Gebremeskel, S.; Lichty, B.D.; Johnston, B. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. J Immunother Cancer 2022, 10. [CrossRef]
- Mulvihill, S.; Warren, R.; Venook, A.; Adler, A.; Randlev, B.; Heise, C.; Kirn, D. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther 2001, 8, 308-315. [CrossRef]
- Hecht, J.R.; Bedford, R.; Abbruzzese, J.L.; Lahoti, S.; Reid, T.R.; Soetikno, R.M.; Kirn, D.H.; Freeman, S.M. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003, 9, 555-561.
- Nattress, C.B.; Halldén, G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett 2018, 434, 56-69. [CrossRef]
- Garcia-Carbonero, R.; Bazan-Peregrino, M.; Gil-Martín, M.; Álvarez, R.; Macarulla, T.; Riesco-Martinez, M.C.; Verdaguer, H.; Guillén-Ponce, C.; Farrera-Sal, M.; Moreno, R.; et al. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J Immunother Cancer 2022, 10. [CrossRef]
- Barton, K.N.; Siddiqui, F.; Pompa, R.; Freytag, S.O.; Khan, G.; Dobrosotskaya, I.; Ajlouni, M.; Zhang, Y.; Cheng, J.; Movsas, B.; et al. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer. Mol Ther Oncolytics 2021, 20, 94-104. [CrossRef]
- Musher, B.L.; Rowinsky, E.K.; Smaglo, B.G.; Abidi, W.; Othman, M.; Patel, K.; Jawaid, S.; Jing, J.; Brisco, A.; Leen, A.M.; et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol 2024, 25, 488-500. [CrossRef]
- Noonan, A.M.; Farren, M.R.; Geyer, S.M.; Huang, Y.; Tahiri, S.; Ahn, D.; Mikhail, S.; Ciombor, K.K.; Pant, S.; Aparo, S.; et al. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Molecular Therapy 2016, 24, 1150-1158. [CrossRef]
- Mahalingam, D.; Fountzilas, C.; Moseley, J.; Noronha, N.; Cheetham, K.; Dzugalo, A.; Nuovo, G.; Gutierrez, A.; Arora, S. A study of REOLYSIN in combination with pembrolizumab and chemotherapy in patients (pts) with relapsed metastatic adenocarcinoma of the pancreas (MAP). Journal of Clinical Oncology 2017, 35, e15753-e15753. [CrossRef]
- Mahalingam, D.; Wilkinson, G.A.; Eng, K.H.; Fields, P.; Raber, P.; Moseley, J.L.; Cheetham, K.; Coffey, M.; Nuovo, G.; Kalinski, P.; et al. Pembrolizumab in Combination with the Oncolytic Virus Pelareorep and Chemotherapy in Patients with Advanced Pancreatic Adenocarcinoma: A Phase Ib Study. Clin Cancer Res 2020, 26, 71-81. [CrossRef]
- Saltos, A.N.; Arrowood, C.; Beasley, G.; Ronald, J.; El-Haddad, G.; Guerra-Guevara, L.; Khan, U.; Wolf, S.; Gu, L.; Wang, X.F.; et al. A phase 1 first-in-human study of interferon beta (IFNβ) and membrane-stable CD40L expressing oncolytic virus (MEM-288) in solid tumors including non–small-cell lung cancer (NSCLC). Journal of Clinical Oncology 2023, 41, 2569-2569. [CrossRef]
- Shen, Y.; Qin, A.; Qiu, Y.; Jin, X.; Song, W.; Fang, T.; Liang, X.; Li, Y.; Tan, Q.; Zhao, R.; et al. 766 A clinical trial to evaluate the safety, tolerability and preliminary efficacy of VG161 in combination with Nivolumab in patients with advanced pancreatic cancer. Journal for ImmunoTherapy of Cancer 2023, 11, A861-A861. [CrossRef]
- Taylor, I.P.; Lopez, J.A. Oncolytic adenoviruses and the treatment of pancreatic cancer: a review of clinical trials. J Cancer Res Clin Oncol 2023, 149, 8117-8129. [CrossRef]
- Groeneveldt, C.; van den Ende, J.; van Montfoort, N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev 2023, 70, 1-12. [CrossRef]
- Ebrahimi, S.; Ghorbani, E.; Khazaei, M.; Avan, A.; Ryzhikov, M.; Azadmanesh, K.; Hassanian, S.M. Interferon-Mediated Tumor Resistance to Oncolytic Virotherapy. J Cell Biochem 2017, 118, 1994-1999. [CrossRef]
- Kurokawa, C.; Iankov, I.D.; Anderson, S.K.; Aderca, I.; Leontovich, A.A.; Maurer, M.J.; Oberg, A.L.; Schroeder, M.A.; Giannini, C.; Greiner, S.M.; et al. Constitutive Interferon Pathway Activation in Tumors as an Efficacy Determinant Following Oncolytic Virotherapy. J Natl Cancer Inst 2018, 110, 1123-1132. [CrossRef]
- Liu, M.; Zhang, R.; Huang, H.; Liu, P.; Zhao, X.; Wu, H.; He, Y.; Xu, R.; Qin, X.; Cheng, Z.; et al. Erythrocyte-Leveraged Oncolytic Virotherapy (ELeOVt): Oncolytic Virus Assembly on Erythrocyte Surface to Combat Pulmonary Metastasis and Alleviate Side Effects. Adv Sci (Weinh) 2024, 11, e2303907. [CrossRef]
- Bounassar-Filho, J.P.; Boeckler-Troncoso, L.; Cajigas-Gonzalez, J.; Zavala-Cerna, M.G. SARS-CoV-2 as an Oncolytic Virus Following Reactivation of the Immune System: A Review. Int J Mol Sci 2023, 24. [CrossRef]
- Yaacov, B.; Lazar, I.; Tayeb, S.; Frank, S.; Izhar, U.; Lotem, M.; Perlman, R.; Ben-Yehuda, D.; Zakay-Rones, Z.; Panet, A. Extracellular matrix constituents interfere with Newcastle disease virus spread in solid tissue and diminish its potential oncolytic activity. J Gen Virol 2012, 93, 1664-1672. [CrossRef]
- Yan, Z.; Zhang, Z.; Chen, Y.; Xu, J.; Wang, J.; Wang, Z. Enhancing cancer therapy: the integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int 2024, 24, 242. [CrossRef]
- Zhu, Z.; McGray, A.J.R.; Jiang, W.; Lu, B.; Kalinski, P.; Guo, Z.S. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022, 21, 196. [CrossRef]
- Kaufman, H.L. Can Biomarkers Guide Oncolytic Virus Immunotherapy? Clin Cancer Res 2021, 27, 3278-3279. [CrossRef]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol Ther Oncolytics 2019, 15, 234-247. [CrossRef]
- Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduction and Targeted Therapy 2022, 7, 117. [CrossRef]
- Fang, C.; Xiao, G.; Wang, T.; Song, L.; Peng, B.; Xu, B.; Zhang, K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. Research (Wash D C) 2023, 6, 0108. [CrossRef]
- Ajam-Hosseini, M.; Akhoondi, F.; Doroudian, M. Nano based-oncolytic viruses for cancer therapy. Critical Reviews in Oncology/Hematology 2023, 185, 103980. [CrossRef]
- Li, Z.; Jiang, Z.; Zhang, Y.; Huang, X.; Liu, Q. Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020, 12. [CrossRef]
- Lichty, B.D.; Breitbach, C.J.; Stojdl, D.F.; Bell, J.C. Going viral with cancer immunotherapy. Nature Reviews Cancer 2014, 14, 559-567. [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015, 13, 8-17. [CrossRef]
- Kaviarasan, V.; Ragunath, B.; Veerabathiran, R. Chapter 4 - Oncolytic virus cancer therapeutic options and integration of artificial intelligence into virus cancer research. In Oncogenic Viruses, Ennaji, M.M., Ed. Academic Press: 2023; pp. 61-80. [CrossRef]
- Chard, L.S.; Maniati, E.; Wang, P.; Zhang, Z.; Gao, D.; Wang, J.; Cao, F.; Ahmed, J.; El Khouri, M.; Hughes, J.; et al. A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer. Clin Cancer Res 2015, 21, 405-416. [CrossRef]
- Rovira-Rigau, M.; Raimondi, G.; Marín, M.; Gironella, M.; Alemany, R.; Fillat, C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol Ther 2019, 27, 230-243. [CrossRef]
- Man, Y.K.S.; Davies, J.A.; Coughlan, L.; Pantelidou, C.; Blázquez-Moreno, A.; Marshall, J.F.; Parker, A.L.; Halldén, G. The Novel Oncolytic Adenoviral Mutant Ad5-3Δ-A20T Retargeted to αvβ6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Mol Cancer Ther 2018, 17, 575-587. [CrossRef]
- Xu, Y.; Chu, L.; Yuan, S.; Yang, Y.; Yang, Y.; Xu, B.; Zhang, K.; Liu, X.-Y.; Wang, R.; Fang, L.; et al. RGD-modified oncolytic adenovirus-harboring shPKM2 exhibits a potent cytotoxic effect in pancreatic cancer via autophagy inhibition and apoptosis promotion. Cell Death & Disease 2017, 8, e2835-e2835. [CrossRef]
- Han, Z.; Lee, S.; Je, S.; Eom, C.Y.; Choi, H.J.; Song, J.J.; Kim, J.H. Survivin silencing and TRAIL expression using oncolytic adenovirus increase anti-tumorigenic activity in gemcitabine-resistant pancreatic cancer cells. Apoptosis 2016, 21, 351-364. [CrossRef]
- Cataldi, M.; Shah, N.R.; Felt, S.A.; Grdzelishvili, V.Z. Breaking resistance of pancreatic cancer cells to an attenuated vesicular stomatitis virus through a novel activity of IKK inhibitor TPCA-1. Virology 2015, 485, 340-354. [CrossRef]
- Singh, H.M.; Leber, M.F.; Bossow, S.; Engeland, C.E.; Dessila, J.; Grossardt, C.; Zaoui, K.; Bell, J.C.; Jäger, D.; von Kalle, C.; et al. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Mol Ther Oncolytics 2021, 21, 340-355. [CrossRef]
- Li, J.; Bonifati, S.; Hristov, G.; Marttila, T.; Valmary-Degano, S.; Stanzel, S.; Schnölzer, M.; Mougin, C.; Aprahamian, M.; Grekova, S.P.; et al. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol Med 2013, 5, 1537-1555. [CrossRef]
- Dai, M.H.; Liu, S.L.; Chen, N.G.; Zhang, T.P.; You, L.; F, Q.Z.; Chou, T.C.; Szalay, A.A.; Fong, Y.; Zhao, Y.P. Oncolytic vaccinia virus in combination with radiation shows synergistic antitumor efficacy in pancreatic cancer. Cancer Lett 2014, 344, 282-290. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
