Submitted:
28 August 2024
Posted:
28 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Geographical Aspect of Smog
3. Health Effects of Smog
4. Bioremediation of smog via bacteria
| Name of Bacteria | Results | References |
|---|---|---|
| Corynebacterium sp. | 55% reduction in VOCs | [29] |
| Pseudomonas aeruginosa | 60% reduction in hydrocarbons | [30] |
| Flavobacterium sp. | 50% reduction in NOx | [31] |
| Azotobacter sp. | Sulfur compounds decreased by a whopping 70 % | [32] |
| Nocardia sp. | 60% reduction in VOCs | [33] |
| Burkholderia sp. | 55% reduction in hydrocarbons | [34] |
| Nitrosomonas sp. | 65% decrease in nitrogen oxides | [35] |
| Sphingomonas sp. | 60% reduction in VOCs | [36] |
| Streptomyces sp. | With A 70% Drop In Carbon Monoxide | [37] |
| Rhodococcus sp. | 50% reduction in NOx | [38] |
| Alcaligenes sp. | 45% reduction in VOCs | [39] |
| Micrococcus luteus | Sulfur compounds reduced 40 % | [40] |
| Acinetobacter sp. | Up to 55% less sulfur compounds | [41] |
| Bacillus subtilis | Nitric oxide levels also dropped by 60% | [42] |
| Pseudomonas putida | 50% reduction in hydrocarbons | [43] |
5. Myco-Remediation
| Type of Bioremediation | Type of Microorganism | Results | References |
|---|---|---|---|
| Vapor-Phase Bioreactors for VOCs Removal | Exophiala lecanii-corni, Cladosporium sphaerospermum, Cladosporium resinae, Mucor rouxii, Phanerochaete chrysosporium | Degradation of VOC | [56] |
| Biotrickling and Biofilters for BTEX Removal | Candida subhashii, Fusarium solani | BTEX removal 37.7 ± 3.3 g m⁻³ h⁻¹. | [57] |
| Soil Bioremediation of TNT | Phanerochaete velutina | P. velutina degraded 70% TNT in 49 days; | [58] |
| Degradation of HMW-PAHs | Fusarium sp. strain ZH-H2 | Achieved 85.9% reduction in HMW-PAHs. | [59] |
| Chlorobenzene Removal by White-Rot Fungus | Phanerochaete chrysosporium | Achieved 95% chlorobenzene removal at 550 mg/m³. | [60] |
| Perchloroethylene Degradation by White-Rot Fungus | Trametes versicolor | PCE degradation rates were 0.20 and 0.28 nmol h⁻¹ mg⁻¹ | [61] |
| Hydrocarbon Degradation | Purpureocillium lilacinum | Up to 15.3% weight loss | [62] |
| Hydrocarbon Degradation | Penicillium chrysogenum | 7.6% degradation of hydrocarbons | [62] |
| VOC Removal in Biofilters | Arizona cypress, Pseudomonas fluorescens | Co-inoculation showed enhanced bioremediation; effective in reducing fuel pollution. | [63] |
5.1. In-Situ Mycoremediation
- Bioventing and bio-sparging: It involves the addition of promoting the aerobic activity of microbes.
- Biostimulation: It utilizes the addition of nutrients to facilitate enhanced bioremediation,
- Bioaugmentation: It entails adding to the site of pollution.
5.2. Ex-Situ Strategies
- Bioreactor: It is used to remediate pollutants in aqueous solution.
- Composting: It involves the remedial action for a polluted matrix in a small enclosure.
- Landfarming is based on soil tilling collected on a designated bed.
- Biopiling is a system that comprises irrigation, aeration systems, and collection of leachates. In biopiles, the moisture, oxygen, pH, and nutrients are controlled [66].
6. Nano-Remediation of Smog
| Type of Nanomaterial | Results | References |
|---|---|---|
| Silver nanoparticles | Cutting Particulates by 75% | [82] |
| Titanium dioxide nanoparticles | 65% reduction in VOCs | [83] |
| Zinc oxide nanoparticles | 50-45% decrease in sulfur compounds | [84] |
| Gold nanoparticles | A 55-percent drop in carbon monoxide | [85] |
| Copper nanoparticles | 65% reduction in hydrocarbons | [86] |
| Silica nanoparticles | 60% reduction in VOCs | [87] |
| Aluminum oxide nanoparticles | Lowered sulfur compounds by 55% | [88] |
| Platinum nanoparticles | Nitrogen oxides down 70% | [89] |
| Nickel nanoparticles | 50% reduction in VOCs | [90] |
| Cobalt nanoparticles | 55% reduction in NOx | [91] |
| Graphene oxide nanoparticles | 65% reduction in hydrocarbons | [92] |
| Cerium oxide nanoparticles | Lower CO by 60% | [93] |
| Manganese oxide nanoparticles | 55% less sulfur compounds | [94] |
| Palladium nanoparticles | 60% reduction in VOCs | [95] |
7. Phytoremediation
| Type of plants | Results | References |
|---|---|---|
| Dracaena fragrans (Golden Coast) | Removal of up to 3 ppb NO₂ per m² of leaf area over a 1-hour test period, | [123] |
| plant species, including Caesalpinia gilliesii and Robinia pseudoacacia. | The Air Pollution Tolerance Index (APTI) was species-specific: ascorbic acid was crucial for Robinia pseudoacacia (88.1%) and Caesalpinia gilliesii (78.9%). | [124] |
| Eucalyptus camaldulensis | pH of leaf extract was dominant in Eucalyptus camaldulensis (45.7%). | [124] |
| Clerics siliquastrum | Total chlorophyll content was most significant in Clerics siliquastrum (56.1%). | [124] |
| Morus alba | water content was key for Morus alba (54.6%). | [124] |
| The study used a portable active green wall with unspecified plant species. | The active green wall achieved single pass removal efficiencies of 56.42 ± 21.02% for PM₂.₅ and 20.73 ± 0.87% for O₃. | [125] |
| Nephrolepis exaltata and Spathiphyllum wallisii. | Nephrolepis exaltata, and Spathiphyllum wallisii removed CO2 by 45.4%–51% and VOCs by 36.2%–42.7%. | [126] |
| Dypsis lutescens and Latania Livistona. | Dypsis lutescens and Latania Livistona achieved CO2 removal of 40.9%–41.8% and VOCs removal of 46%–47.8%. | [126] |
| Epipremnum aureum. | Epipremnum aureum removed CO2 by 35.6%–38.6% and VOCs by 32%–34.3%. | [126] |
| Vigna radiata. | Formaldehyde removal rates increased with microbial addition: Vigna radiata showed the highest enhancement, with 97.6 ± 0.9 μg/h/g and an 88.7% increase over the 25.1 ± 4.2 μg/h/g without microbes. | [127] |
| Tradescantia zebrina | Tradescantia zebrina had a removal rate of 86.4 ± 0.7 μg/h/g with microbes compared to 59.3 ± 0.2 μg/h/g without, a 45.6% increase. | [127] |
| Aloe vera | Aloe vera achieved 23.1 ± 0.1 μg/h/g with microbes versus 18.5 ± 0.21 μg/h/g without, a 24.9% improvement. | [127] |
| A vegetation biofilter | The vegetation biofilter achieved an average single-pass removal efficiency of 20% for isobutylene at 5000 ppm. | [128] |
| Agave americana. | 18.40 Air Pollution Tolerance Indices (APTI) | [129] |
| Cassia roxburghii, | Tolerance Indices (APTI) for selected plants is Cassia roxburghii at 17.63. | [129] |
| Anacardium occidentale | Tolerance Indices (APTI) =11.97. | [129] |
| Cassia fistula, | Tolerance Indices (APTI) for selected plants is Cassia fistula at 11.60. | [129] |
| Mangifera indica | Tolerance Indices (APTI) = 11.59. | [129] |
| Saraca asoca | Tolerance Indices (APTI) = 10.88. | [129] |
| Spathiphyllum wallisii (Peace Lily) | 60-80%, to 70% reduction in benzene. | [130] |
| Sansevieria trifasciata (Snake Plant) | 60% reduction in toluene level. | [130] |
| Aloe vera and Gerbera jamesonii (Gerbera Daisy) | Decrease xylene concentrations by approximately 50-60%. | [130] |
| Not specify particular types | Plant clean air delivery rates (CADR) were low, with a median value of 0.023 m³/h. | [131] |
| Madhuca longifolia | Madhuca longifolia had the highest APTI values based on pH, ascorbic acid content, relative water content, and total chlorophyll content | [132] |
| Cyperus and Brachiaria | Cyperus and Brachiaria showed significant potential in phytoremediation processes. | [133] |
| Nephrolepis | Nephrolepis also yielded favorable results for organic contaminants. | [133] |
| Acacia species | Oil Emulsion: 48% oil, Suspension: 23%, Settled Emulsion: 42% and Sludge Emulsion: 36% | [134] |
| Lactuca sativa, | Dieldrin removal rates: 50%–78% | [135] |
| Raphanus sativus | 50%–78% | [135] |
7.1. Phytoremediation Mechanism
7.1.1. Phytoextraction
7.1.2. Phytovolatilization
7.1.3. Phytodegradation
7.1.3. Phyto-Stabilization
7.1.4. Rhizo-Degradation
7.1.5. Rhizo-Filtration
7.2. Phytoremediation of Particular Matter
7.3. Phytoremediation of Inorganic Air Pollutants
7.4. Phytoremediation of VOC
8. Phyllo-Remediation
9. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suruchi; Singh, S. Removal of Toxic Chemicals from Air Through Phytoremediation. In Phytoremediation: Biological Treatment of Environmental Pollution; Springer Nature: Cham, Switzerland, 2024; pp. 75–100. [Google Scholar]
- Woodrow, J.E.; Gibson, K.A.; Seiber, J.N. Pesticides and related toxicants in the atmosphere. Reviews of Environmental Contamination and Toxicology 2019, 247, 147–196. [Google Scholar]
- Mohammadi, H.; Cohen, D.; Babazadeh, M.; Rokni, L. The effects of atmospheric processes on tehran smog forming. 2012, 41, 1–12. [Google Scholar]
- Gaffney, J.S.; Marley, N.A.; Frederick, J.E. Formation and effects of smog. Environmental and Ecological Chemistry; Sabljic, A., Ed.; Eolss Publishers Co., Ltd.:: Oxford, UK, 2009; Volume 2, pp. 25–51. [Google Scholar]
- Wu, Y.; Zhang, L.; Wang, J.; Mou, Y. Communicating Air Quality Index Information: Effects of Different Styles on Individuals’ Risk Perception and Precaution Intention. Int. J. Environ. Res. Public Heal. 2021, 18, 10542. [Google Scholar] [CrossRef] [PubMed]
- cibor, M.; Galbarczyk, A.; Jasienska, G. Living well with pollution? The impact of the concentration of PM2. 5 on the quality of life of patients with asthma. International Journal of Environmental Research and Public Health 2019, 16, 2502. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Beelen, R.; Wang, M.; Hoek, G.; Andersen, Z.; Hoffmann, B.; Stafoggia, M.; Samoli, E.; Weinmayr, G.; Dimakopoulou, K.; et al. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2015, 87, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Khaltaev, N.; Axelrod, S. Chronic respiratory diseases global mortality trends, treatment guidelines, life style modifications, and air pollution: preliminary analysis. J. Thorac. Dis. 2019, 11, 2643–2655. [Google Scholar] [CrossRef] [PubMed]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology 2016, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines (accessed on 24 August 2022).
- Moyebi, O.D.; Fatmi, Z.; Carpenter, D.O.; Santoso, M.; Siddique, A.; Khan, K.; Zeb, J.; Hussain, M.M.; Khwaja, H.A. Fine particulate matter and its chemical constituents' levels: A troubling environmental and human health situation in Karachi, Pakistan. Sci. Total. Environ. 2023, 868, 161474. [Google Scholar] [CrossRef]
- Mandal, M.; Popek, R.; Przybysz, A.; Roy, A.; Das, S.; Sarkar, A. Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations. Plants 2023, 12, 1545. [Google Scholar] [CrossRef]
- Basak, P., Dey; Elahi, K.M. Air Pollution in Urban Bangladesh from Climate Change and Public Health Perspectives. In Climate Change and Human Health Scenarios: International Case Studies; Springer Nature: Cham, Switzerland, 2024; pp. 129–149. [Google Scholar]
- Liaqut, A.; Tariq, S.; Younes, I. A study on optical properties, classification, and transport of aerosols during the smog period over South Asia using remote sensing. Environmental Science and Pollution Research 2023, 30, 69096–69121. [Google Scholar] [CrossRef]
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A review of the European passenger car regulations – Real driving emissions vs local air quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- Wrightson, S. (2023). Associations between Population Density, Air Pollution Exposure and Related Health Outcomes in Auckland, NZ (Doctoral dissertation, ResearchSpace@ Auckland).
- Khan, W.A.; Sharif, F.; Khokhar, M.F.; Shahzad, L.; Ehsan, N.; Jahanzaib, M. Monitoring of Ambient Air Quality Patterns and Assessment of Air Pollutants’ Correlation and Effects on Ambient Air Quality of Lahore, Pakistan. Atmosphere 2023, 14, 1257. [Google Scholar] [CrossRef]
- Khan, M.J.; Wibowo, A.; Karim, Z.; Posoknistakul, P.; Matsagar, B.M.; Wu, K.C.-W.; Sakdaronnarong, C. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries. Polymers 2024, 16, 443. [Google Scholar] [CrossRef]
- Hussain, S.; Hoque, R.R. Ecological and natural-based solutions as green growth strategies for disaster and emergency management of air pollution extremes. In Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation; Springer Nature: Singapore, 2022; pp. 369–395. [Google Scholar]
- Usman, N.; Atta, H.I.; Tijjani, M.B. Biodegradation studies of benzene, toluene, ethylbenzene and xylene (BTEX) compounds by Gliocladium sp. and Aspergillus terreus. Journal of Applied Sciences and Environmental Management 2020, 24, 1063–1069. [Google Scholar] [CrossRef]
- Berg, C.D.; Schiller, J.H.; Boffetta, P.; Cai, J.; Connolly, C.; Kerpel-Fronius, A.; Kitts, A.B.; Lam, D.C.; Mohan, A.; Myers, R.; et al. Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee. J. Thorac. Oncol. 2023, 18, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Aslam, R.; Sharif, F.; Baqar, M.; Nizami, A.-S.; Ashraf, U. Role of ambient air pollution in asthma spread among various population groups of Lahore City: a case study. Environ. Sci. Pollut. Res. 2022, 30, 8682–8697. [Google Scholar] [CrossRef]
- Omolaoye, T.S.; Skosana, B.T.; Ferguson, L.M.; Ramsunder, Y.; Ayad, B.M.; Du Plessis, S.S. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants 2024, 13, 64. [Google Scholar] [CrossRef]
- Fan, W.; Zlatnik, M.G. Climate change and pregnancy: risks, mitigation, adaptation, and resilience. Obstetrical & gynecological survey 2023, 78, 223–236. [Google Scholar]
- Headon, K.S. (2024). The Association Between Air Pollution Exposure and the Risk of Postpartum Depression and Gestational Diabetes Mellitus During the COVID-19 Pandemic (Doctoral dissertation, UC Irvine).
- Sheppard, N.; Carroll, M.; Gao, C.; Lane, T. Particulate matter air pollution and COVID-19 infection, severity, and mortality: A systematic review and meta-analysis. Sci. Total. Environ. 2023, 880, 163272–163272. [Google Scholar] [CrossRef]
- Qayyum, F.; Tariq, S.; Nawaz, H.; Ul-Haq, Z.; Mehmood, U.; Bin Babar, Z. Variation of air pollutants during COVID-19 lockdown phases in the mega-city of Lahore (Pakistan); Insights into meteorological parameters and atmospheric chemistry. Acta Geophys. 2023, 72, 2083–2096. [Google Scholar] [CrossRef]
- Bhandari, S. Environmental Pollution Caused by Organic Pollutants, Their Harmful Impacts, and Treatment through a Microbiological Approach. In Nano-phytoremediation and Environmental Pollution; CRC Press; pp. 1–36.
- Cui, Y.; Zhang, H.; Zhang, J.; Lv, B.; Xie, B. The emission of volatile organic compounds during the initial decomposition stage of food waste and its relationship with the bacterial community. Environ. Technol. Innov. 2022, 27. [Google Scholar] [CrossRef]
- Hamza, L.H.; Adly, T.A.; Afifi, S. (2008, April). Bioremediation—the Journey from Hazardous to Green. In SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability? (pp. SPE-111620). SPE.
- Ranalli, G.; Matteini, M.; Tosini, I.; Zanardini, E. Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. 2000; pp. 231–245. [Google Scholar]
- Nikiema, J.; Dastous, P.-A.; Heitz, M. Elimination of Volatile Organic Compounds by Bioflltration: A Review. Rev. Environ. Heal. 2007, 22, 273–294. [Google Scholar] [CrossRef]
- Maurya, A.; Sharma, D.; Partap, M.; Kumar, R.; Bhargava, B. Microbially-assisted phytoremediation toward air pollutants: Current trends and future directions. Environ. Technol. Innov. 2023, 31. [Google Scholar] [CrossRef]
- Khalid, F.E.; Lim, Z.S.; Sabri, S.; Gomez-Fuentes, C.; Zulkharnain, A.; Ahmad, S.A. Bioremediation of Diesel Contaminated Marine Water by Bacteria: A Review and Bibliometric Analysis. J. Mar. Sci. Eng. 2021, 9, 155. [Google Scholar] [CrossRef]
- Khamis, M. Pollution and its effects on life. Microreviews in Cell and Molecular Biology 2017, 2. [Google Scholar]
- Saxena, R.; Kumar, S.; Pal, D.B. Volatile Organic Compounds Impacts on Environment: Biofiltration as an Effective Control Method. In Sustainable Valorization of Agriculture & Food Waste Biomass: Application in Bioenergy & Useful Chemicals; Springer Nature: Singapore, 2023; pp. 51–69. [Google Scholar]
- Barla, R.J.; Gupta, S.; Raghuvanshi, S. Sustainable synergistic approach to chemolithotrophs—supported bioremediation of wastewater and flue gas. Sci. Rep. 2024, 14, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, K.; Siwal, S.S.; Kapoor, D.; Singh, N.; Saini, A.K.; Alsanie, W.F.; Thakur, V.K. Air Pollutants Removal Using Biofiltration Technique: A Challenge at the Frontiers of Sustainable Environment. ACS Eng. Au 2022, 2, 378–396. [Google Scholar] [CrossRef]
- Gopinath, M.; Pulla, R.H.; Rajmohan, K.S.; Vijay, P.; Muthukumaran, C.; Gurunathan, B. Bioremediation of volatile organic compounds in biofilters. Bioremediation: Applications for Environmental Protection and Management 2018, 301–330. [Google Scholar]
- Adepoju, A.O.; Omotoso, I.O.; Tiamiyu, O.G. Air pollution: Prevention and control strategies. In Environmental Pollution and Public Health; Elsevier, 2024; pp. 49–62. [Google Scholar]
- Ganguly, P.; Mandal, J.; Sengupta, S.; Sinha, B. Basics of Environment, Pollution, and Bioremediation Techniques. In Environmental Contaminants; Apple Academic Press; pp. 1–17.
- Kour, D.; Khan, S.S.; Kour, H.; Kaur, T.; Devi, R.; Judy, C.; Rai, P.K.; McQuestion, C.; Spells, S.; Bianchi, A.; et al. Microbe-mediated bioremediation: Current research and future challenges. J. Appl. Biol. Biotechnol. 2022, 10, 6–24. [Google Scholar] [CrossRef]
- Qamar, S.A.; Bhatt, P.; Ghotekar, S.; Bilal, M. Nanomaterials for bioremediation of air pollution. In Nano-Bioremediation: Fundamentals and Applications; Elsevier, 2022; pp. 243–261. [Google Scholar]
- Anand, A.; Raghuvanshi, S.; Gupta, S. Assessing the bacterial consortium's potential to bio-mitigate CO2 and SO2 from simulated flue gas, wastewater bioremediation, and product characterization. 2024. [Google Scholar]
- Lu, G.; Clement, T.P.; Zheng, C.; Wiedemeier, T.H. Natural Attenuation of BTEX Compounds: Model Development and Field-Scale Application. Groundwater 1999, 37, 707–717. [Google Scholar] [CrossRef]
- Yang, T.; Xin, Y.; Zhang, L.; Gu, Z.; Li, Y.; Ding, Z.; Shi, G. Characterization on the aerobic denitrification process of Bacillus strains. Biomass- Bioenergy 2020, 140, 105677. [Google Scholar] [CrossRef]
- Kleinheinz, G.T.; Bagley, S.T.; John, W.P.S.; Rughani, J.R.; McGinnis, G.D. Characterization of Alpha-Pinene-Degrading Microorganisms and Application to a Bench-Scale Biofiltration System for VOC Degradation. Arch. Environ. Contam. Toxicol. 1999, 37, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Moehlman, L.M. (2018). Biostimulatory Solutions for PHC Contaminated Sites: Effects of C: N: P Ratios on Degrader Prevalence and Potential Activity (Doctoral dissertation, University of Saskatchewan).
- Hu, F.; Wang, P.; Li, Y.; Ling, J.; Ruan, Y.; Yu, J.; Zhang, L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. Environ. Res. 2023, 239, 117211. [Google Scholar] [CrossRef]
- Sun, C.; Yuan, J.; Xu, H.; Huang, S.; Wen, X.; Tong, N.; Zhang, Y. Simultaneous removal of nitric oxide and sulfur dioxide in a biofilter under micro-oxygen thermophilic conditions: Removal performance, competitive relationship and bacterial community structure. Bioresour. Technol. 2019, 290, 121768. [Google Scholar] [CrossRef] [PubMed]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef]
- Soares, P.R.S.; Birolli, W.G.; Ferreira, I.M.; Porto, A.L.M. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Mar. Pollut. Bull. 2021, 166, 112185. [Google Scholar] [CrossRef]
- S., P. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001, 57, 20–33. [Google Scholar] [CrossRef]
- Kumari, M.; Ghosh, P.; Swati; Thakur, I.S. Microcosmic study of endosulfan degradation by Paenibacillus sp. ISTP10 and its toxicological evaluation using mammalian cell line. Int. Biodeterior. Biodegradation 2014, 96, 33–40. [Google Scholar] [CrossRef]
- Nadhman, A.; Hasan, F.; Shah, Z.; Hameed, A.; Shah, A.A. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) depolymerase from Aspergillus sp. NA-25. Appl. Biochem. Microbiol. 2012, 48, 482–487. [Google Scholar] [CrossRef]
- Qi, W.M.B.; Qi, B.; Moe, W.; Kinney, K. Biodegradation of volatile organic compounds by five fungal species. Appl. Microbiol. Biotechnol. 2002, 58, 684–689. [Google Scholar] [CrossRef]
- Marycz, M.; Brillowska-Dąbrowska, A.; Cantera, S.; Gębicki, J.; Muñoz, R. Fungal co-culture improves the biodegradation of hydrophobic VOCs gas mixtures in conventional biofilters and biotrickling filters. Chemosphere 2023, 313, 137609. [Google Scholar] [CrossRef]
- Anasonye, F.; Winquist, E.; Räsänen, M.; Kontro, J.; Björklöf, K.; Vasilyeva, G.; Jørgensen, K.S.; Steffen, K.T.; Tuomela, M. Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. Int. Biodeterior. Biodegradation 2015, 105, 7–12. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Li, C.; Zhang, L.; Ning, G.; Shi, W.; Zhang, X.; Yang, Z. Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2. Environ. Sci. Pollut. Res. 2020, 27, 42969–42978. [Google Scholar] [CrossRef]
- Can, W.A.N.G.; Jin-Ying, X.I.; Hong-Ying, H.U.; Xiang-Hua, W.E.N. Biodegradation of gaseous chlorobenzene by white-rot fungus Phanerochaete chrysosporium. Biomedical and Environmental Sciences 2008, 21, 474–478. [Google Scholar]
- Marco-Urrea, E.; Gabarrell, X.; Sarrà, M.; Caminal, G.; Vicent, T.; Reddy, C.A. Novel Aerobic Perchloroethylene Degradation by the White-Rot Fungus Trametes versicolor. Environ. Sci. Technol. 2006, 40, 7796–7802. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Liu, Y.; Feng, W. Biodegradation of hydrocarbons by Purpureocillium lilacinum and Penicillium chrysogenum from heavy oil sludge and their potential for bioremediation of contaminated soils. Int. Biodeterior. Biodegradation 2023, 178. [Google Scholar] [CrossRef]
- Aalipour, H.; Nikbakht, A.; Etemadi, N. Co-inoculation of Arizona cypress with arbuscular mycorrhiza fungi and Pseudomonas fluorescens under fuel pollution. Mycorrhiza 2019, 29, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, L.; Zhang, Z.; Wang, B.; Sun, H. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs. J. Hazard. Mater. 2014, 264, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.S.; Mishra, V.K.; Shyam, R.; Pankaj, U. Microbial remediation of hazardous chemical pesticides toward sustainable agriculture. In Microbial Based Land Restoration Handbook; CRC Press, 2022; Volume 1, pp. 245–272. [Google Scholar]
- Prakash, J.; Shukla, A.; Yadav, R. Bioremediation and Information Technologies for Sustainable Management. Int J Biol Med Res 2023, 14, 7702–7711. [Google Scholar]
- Molina, L.; Segura, A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. Plants 2021, 10, 2305. [Google Scholar] [CrossRef]
- Priyanka, U.; Lens, P.N. Enhanced removal of hydrocarbons BTX by light-driven Aspergillus niger ZnS nanobiohybrids. Enzym. Microb. Technol. 2022, 157, 110020. [Google Scholar] [CrossRef] [PubMed]
- Baron, N.C.; Pagnocca, F.C.; Otsuka, A.A.; Prenafeta-Boldú, F.X.; Vicente, V.A.; de Angelis, D.A. Black Fungi and Hydrocarbons: An Environmental Survey for Alkylbenzene Assimilation. Microorganisms 2021, 9, 1008. [Google Scholar] [CrossRef] [PubMed]
- Babar, Z.; Khan, M.; Chotana, G.A.; Murtaza, G.; Shamim, S. Evaluation of the Potential Role of Bacillus altitudinis MT422188 in Nickel Bioremediation from Contaminated Industrial Effluents. Sustainability 2021, 13, 7353. [Google Scholar] [CrossRef]
- Kaewlaoyoong, A.; Cheng, C.-Y.; Lin, C.; Chen, J.-R.; Huang, W.-Y.; Sriprom, P. White rot fungus Pleurotus pulmonarius enhanced bioremediation of highly PCDD/F-contaminated field soil via solid state fermentation. Sci. Total. Environ. 2020, 738, 139670. [Google Scholar] [CrossRef] [PubMed]
- Polli, A.D.; Junior, V.A.d.O.; Ribeiro, M.A.d.S.; Polonio, J.C.; Rosini, B.; Oliveira, J.A.d.S.; Bini, R.D.; Golias, H.C.; Fávaro-Polonio, C.Z.; Orlandelli, R.C.; et al. Synthesis, characterization, and reusability of novel nanobiocomposite of endophytic fungus Aspergillus flavus and magnetic nanoparticles (Fe3O4) with dye bioremediation potential. Chemosphere 2023, 340, 139956. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, C.; Sun, Z.; Zhang, W.; He, J.; Zhao, Y.; Zhao, W. Penicillium spp. XK10, fungi with potential to repair cadmium and antimony pollution. Applied Sciences 2023, 13, 1228. [Google Scholar] [CrossRef]
- Prenafeta-Boldú, F.X.; Ballerstedt, H.; Gerritse, J.; Grotenhuis, J.T.C. Bioremediation of BTEX Hydrocarbons: Effect of Soil Inoculation with the Toluene-Growing Fungus Cladophialophora Sp. Strain T1. Biodegradation 2004, 15, 59–65. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, S. Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated from electroplating wastewater. J. Environ. Manag. 2020, 277, 111370. [Google Scholar] [CrossRef]
- Ryan, D.R.; Leukes, W.D.; Burton, S.G. Fungal Bioremediation of Phenolic Wastewaters in an Airlift Reactor. Biotechnol. Prog. 2008, 21, 1068–1074. [Google Scholar] [CrossRef]
- Sabuda, M.C.; Rosenfeld, C.E.; DeJournett, T.D.; Schroeder, K.; Wuolo-Journey, K.; Santelli, C.M. Fungal Bioremediation of Selenium-Contaminated Industrial and Municipal Wastewaters. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Rodrigues, A.D.; Montanholi, A.d.S.; Shimabukuro, A.A.; Yonekawa, M.K.A.; Cassemiro, N.S.; Silva, D.B.; Marchetti, C.R.; Weirich, C.E.; Beatriz, A.; Zanoelo, F.F.; et al. N-acetylation of toxic aromatic amines by fungi: Strain screening, cytotoxicity and genotoxicity evaluation, and application in bioremediation of 3,4-dichloroaniline. J. Hazard. Mater. 2023, 441, 129887. [Google Scholar] [CrossRef] [PubMed]
- Raees, A.; Bhatti, H.N.; Alshehri, S.; Aslam, F.; Al-Fawzan, F.F.; Alissa, S.A.; Iqbal, M.; Nazir, A. Adsorption Potential of Schizophyllum commune White Rot Fungus for Degradation of Reactive Dye and Condition Optimization: A Thermodynamic and Kinetic Study. Adsorpt. Sci. Technol. 2023, 2023. [Google Scholar] [CrossRef]
- Shi, K.; Liu, Y.; Chen, P.; Li, Y. Contribution of Lignin Peroxidase, Manganese Peroxidase, and Laccase in Lignite Degradation by Mixed White-Rot Fungi. Waste Biomass- Valorization 2020, 12, 3753–3763. [Google Scholar] [CrossRef]
- Somanathan, A.; Mathew, N.; Arfin, T. Environmental impacts and developments in waste-derived nanoparticles for air pollution control. Waste-Derived Nanoparticles 2024, 281–318. [Google Scholar]
- Chakrabarti, B.; Pramanik, P.; Mazumdar, S.P.; Dubey, R. Nanobioremediation Technologies for Clean Environment. In Bioremediation Science; CRC Press, 2021; pp. 298–309. [Google Scholar]
- Alao, M.B.; Bamigboye, C.O.; Adebayo, E.A. Microbial Nanobiotechnology in Environmental Pollution Management: Prospects and Challenges. Biotechnological Innovations for Environmental Bioremediation 2022, 25–51. [Google Scholar]
- Sharma, K.; Tyagi, S.; Vikal, S.; Devi, A.; Gautam, Y.K.; Singh, B.P. Green nanomaterials for remediation of environmental air pollution. In Handbook of green and sustainable nanotechnology: fundamentals, developments and applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–26. [Google Scholar]
- Rather, M.A.; Bhuyan, S.; Chowdhury, R.; Sarma, R.; Roy, S.; Neog, P.R. Nanoremediation strategies to address environmental problems. Sci. Total. Environ. 2023, 886, 163998. [Google Scholar] [CrossRef]
- Panichikkal, J.; Krishnankutty, R.E. Application of Biogenic Nanoparticles for a Clean Environment. In Sustainable Bioprocessing for a Clean and Green Environment; CRC Press, 2021; pp. 147–161. [Google Scholar]
- Palencia, M.; García-Quintero, A. Green synthesis of nanomaterials and their use in bio-and nanoremediation. In Bio and Nanoremediation of Hazardous Environmental Pollutants; CRC Press, 2023; pp. 195–229. [Google Scholar]
- Hashemi, M.; Maleky, S.; Rajabi, S. Nanoadsorbents in Air Pollution Control. In Adsorption through Advanced Nanoscale Materials; Elsevier, 2023; pp. 289–324. [Google Scholar]
- Mohamed, E.F.; Awad, G. Advanced Nano-biotechnology for Chlorinated Volatile Compound Pollutants Control. Environ. Manag. Sustain. Dev. 2022, 12, 34–66. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Kumar, A.V.; Hajam, Y.A. Biofunctionalized Nanomaterials a Zero Waste Approach for the Remediation of Pollutants. Zero Waste Management Technologies 2024, 285–308. [Google Scholar]
- Vrvić, M. Technologies for Remediation of Polluted Environments: Between Classic Processes and the Challenges of New Approaches. In International Conference “New Technologies, Development and Applications”; Springer Nature: Cham, Switzerland, 2023; pp. 205–219. [Google Scholar]
- Ramadevi, D.; Ushasri, K. NANOTECHNOLOGY APPLICATIONS IN THE ENVIRONMENT. 24th & 25th Feb, 2023, 17.
- Yang, L.; Yang, L.; Ding, L.; Deng, F.; Luo, X.B.; Luo, S.L. Principles for the application of nanomaterials in environmental pollution control and resource reutilization. In Nanomaterials for the removal of pollutants and resource reutilization (pp. 1-23). Elsevier, 2019. [Google Scholar]
- Rocha, A. (2016). Development of a Hybrid Photo-Bioreactor Coupled with Nano–and Micro-Interfaces for Air Pollution Remediation. McGill University (Canada).
- Chang, S.H. The Environmental Benefits from Molecular Biotechnology Application.
- Enamala, M.K.; Sruthi, P.D.; Sarkar, S.; Chavali, M.; Vasavi, I.; Kuppam, C. (2019). Nanobioremediation: A novel and sustainable biological advancement for ecological cleanup. In Nanotechnology in biology and medicine (pp. 245-257). CRC Press.
- Ahmadian, M.; Anbia, M.; Rezaie, M. Sulfur Dioxide Removal from Flue Gas by Supported CuO Nanoparticle Adsorbents. Ind. Eng. Chem. Res. 2020, 59, 21642–21653. [Google Scholar] [CrossRef]
- Saucedo-Lucero, J.; Arriaga, S. Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chem. Eng. J. 2012, 218, 358–367. [Google Scholar] [CrossRef]
- Kim, T.-H.; Choi, B.-H.; Kang, M.-S.; Lee, H.-J. Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere 2021, 12, 1463. [Google Scholar] [CrossRef]
- Changsuphan, A.; Wahab, M.I.B.; Oanh, N.T.K. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chem. Eng. J. 2012, 181-182, 215–221. [Google Scholar] [CrossRef]
- Hussain, M.; Russo, N.; Saracco, G. Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chem. Eng. J. 2010, 166, 138–149. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Z.; Duan, Y.; Ma, R.; Zheng, S. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Applied Surface Science 2017, 412, 105–112. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Aazam, E. Synthesis and characterization of Pt–ZnO-hydroxyapatite nanoparticles for photocatalytic degradation of benzene under visible light. Desalination and Water Treatment 2013, 51, 6082–6090. [Google Scholar] [CrossRef]
- (Hajian), M.K.; Foroughi, M.; Amin, M.M. Improving urban run-off quality using iron oxide nanoparticles with magnetic field. Desalination Water Treat. 2013, 52, 678–682. [Google Scholar] [CrossRef]
- Pei, L.; Zhou, J.; Zhang, L. Preparation and properties of Ag-coated activated carbon nanocomposites for indoor air quality control. J. Affect. Disord. 2013, 63, 108–113. [Google Scholar] [CrossRef]
- Eltouny, N.A.; Ariya, P.A. Fe3O4 nanoparticles and carboxymethyl cellulose: A green option for the removal of atmospheric benzene, toluene, ethylbenzene, and o-xylene (BTEX). Industrial & Engineering Chemistry Research 2012, 51, 12787–12795. [Google Scholar]
- Méndez, L.; Muñoz, R. Enhancing microalgae-based bioremediation technologies with carbon-coated zero valent iron nanoparticles. Algal Res. 2024, 79. [Google Scholar] [CrossRef]
- Osadebe, A.U.; Ogugbue, C.J.; Okpokwasili, G.C. Bioremediation of crude oil polluted surface water using specialised alginate-based nanocomposite beads loaded with hydrocarbon-degrading bacteria and inorganic nutrients. Bioremediation J. 2024, 1–23. [Google Scholar] [CrossRef]
- Gholami, F.; Mosmeri, H.; Shavandi, M.; Dastgheib, S.M.M.; Amoozegar, M.A. Application of encapsulated magnesium peroxide (MgO2) nanoparticles in permeable reactive barrier (PRB) for naphthalene and toluene bioremediation from groundwater. Sci. Total. Environ. 2018, 655, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Mosmeri, H.; Gholami, F.; Shavandi, M.; Dastgheib, S.M.M.; Alaie, E. Bioremediation of benzene-contaminated groundwater by calcium peroxide (CaO2) nanoparticles: Continuous-flow and biodiversity studies. J. Hazard. Mater. 2019, 371, 183–190. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Mu, Y.-J.; Zhu, Y.-G.; Ding, H.; Arens, N.C. Which ornamental plant species effectively remove benzene from indoor air? Atmospheric Environment 2007, 41, 650–654. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Hung, Y.T. Indoor air pollution control. Advanced Air and Noise Pollution Control 2005, 237–272. [Google Scholar]
- Gibson, J.M.; Brammer, A.; Davidson, C.; Folley, T.; Launay, F.; Thomsen, J. Environmental Burden of Disease Assessment; Springer Nature: Dordrecht, GX, Netherlands, 2013. [Google Scholar]
- Pipal, A.S.; Kumar, A.; Jan, R.; Taneja, A. Role of plants in removing indoor air pollutants. Chemistry of phytopotentials: health, energy and environmental perspectives 2012, 319–321. [Google Scholar]
- Borchers, A.T.; Chang, C.; Keen, C.L.; Gershwin, M.E. Airborne Environmental Injuries and Human Health. Clin. Rev. Allergy Immunol. 2006, 31, 1–102. [Google Scholar] [CrossRef]
- Jafta, N.; Barregard, L.; Jeena, P.M.; Naidoo, R.N. Indoor air quality of low and middle income urban households in Durban, South Africa. Environ. Res. 2017, 156, 47–56. [Google Scholar] [CrossRef]
- Jones B, Molina C, 2017. Indoor air quality. In: Abraham MA, editor. Encyclopedia of sustainable technologies. Oxford: Elsevier. 197-207.17.
- Austin, K.F.; Mejia, M.T. Household air pollution as a silent killer: women’s status and solid fuel use in developing nations. Popul. Environ. 2017, 39, 1–25. [Google Scholar] [CrossRef]
- Cociorva, S.; Iftene, A. Indoor Air Quality Evaluation in Intelligent Building. Energy Procedia 2017, 112, 261–268. [Google Scholar] [CrossRef]
- Cruz, M.D.; Christensen, J.H.; Thomsen, J.D.; Müller, R. Can ornamental potted plants remove volatile organic compounds from indoor air? — a review. Environ. Sci. Pollut. Res. 2014, 21, 13909–13928. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Mitigation of air pollution by greenness: A narrative review. Eur. J. Intern. Med. 2018, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gawronski, S.W.; Gawronska, H.; Lomnicki, S.; Saebo, A.; Vangronsveld, J. (2017). Plants in air phytoremediation. In Advances in botanical research (Vol. 83, pp. 319-346). Academic Press.
- Gubb, C.; Blanusa, T.; Griffiths, A.; Pfrang, C. Potted plants can remove the pollutant nitrogen dioxide indoors. Air Qual. Atmosphere Heal. 2022, 15, 479–490. [Google Scholar] [CrossRef]
- Barjoee, S.S.; Malverdi, E.; Kouhkan, M.; Alipourfard, I.; Rouhani, A.; Farokhi, H.; Khaledi, A. Health assessment of industrial ecosystems of Isfahan (Iran) using phytomonitoring: Chemometric, micromorphology, phytoremediation, air pollution tolerance and anticipated performance indices. Urban Clim. 2023, 48. [Google Scholar] [CrossRef]
- Irga, P.J.; Morgan, A.; Fleck, R.; Torpy, F.R. Phytoremediation of indoor air pollutants from construction and transport by a moveable active green wall system. Atmospheric Pollut. Res. 2023, 14. [Google Scholar] [CrossRef]
- Elmarakby, F.; Eltorky, M.G.; Zaki, A. Efficacy of phytoremediation in improving indoor air quality in homes in Alexandria, Egypt. Biol. Biomed. J. 2024, 2, 92–102. [Google Scholar] [CrossRef]
- Yang, Y.; Su, Y.; Zhao, S. An efficient plant–microbe phytoremediation method to remove formaldehyde from air. Environ. Chem. Lett. 2019, 18, 197–206. [Google Scholar] [CrossRef]
- Kim, T.H.; An, B.R.; Clementi, M. (2021). Phytoremediation as adaptive design strategy to improve indoor air quality. Experimental Results Relating to the Application of a Vertical Hydroponic Biofilter. In Sustainability in Energy and Buildings 2020 (pp. 479-489). Springer Singapore.
- Watson, A.S.; Bai, R., S. Phytoremediation for urban landscaping and air pollution control—a case study in Trivandrum city, Kerala, India. Environmental Science and Pollution Research 2021, 28, 9979–9990. [Google Scholar] [CrossRef]
- Bandehali, S.; Miri, T.; Onyeaka, H.; Kumar, P. Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere 2021, 12, 473. [Google Scholar] [CrossRef]
- Cummings, B.E.; Waring, M.S. Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies. J. Expo. Sci. Environ. Epidemiology 2019, 30, 253–261. [Google Scholar] [CrossRef]
- Bandara, W.A.R.T.W.; Dissanayake, C.T.M. Most tolerant roadside tree species for urban settings in humid tropics based on Air Pollution Tolerance Index. Urban Clim. 2021, 37. [Google Scholar] [CrossRef]
- de Souza, D.M.; Silva, J.d.L.d.; Ludwig, L.d.C.; Petersen, B.C.; Brehm, F.A.; Modolo, R.C.E.; De Marchi, T.C.; Figueiredo, R.; Moraes, C.A.M. Study of the phytoremediation potential of native plant species identified in an area contaminated by volatile organic compounds: a systematic review. Int. J. Phytoremediation 2023, 25, 1524–1541. [Google Scholar] [CrossRef]
- Sattar, S.; Hussain, R.; Shah, S.M.; Bibi, S.; Ahmad, S.R.; Shahzad, A.; Zamir, A.; Rauf, Z.; Noshad, A.; Ahmad, L. Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon 2022, 8, e11101. [Google Scholar] [CrossRef] [PubMed]
- Urionabarrenetxea, E.; Garcia-Velasco, N.; Anza, M.; Artetxe, U.; Lacalle, R.; Garbisu, C.; Becerril, T.; Soto, M. Application of in situ bioremediation strategies in soils amended with sewage sludges. Sci. Total. Environ. 2020, 766, 144099. [Google Scholar] [CrossRef] [PubMed]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for heavy metal removal: a review. SN Appl. Sci. 2023, 5, 1–12. [Google Scholar] [CrossRef]
- Ogundola, A.F.; Adebayo, E.A.; Ajao, S.O. (2022). Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants. In Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 19-49). Elsevier.
- Khatoon, H.; Pant, A.; Rai, J.P.N. Plant adaptation to recalcitrant chemicals. Plant adaptation strategies in changing environment 2017, 269–290. [Google Scholar]
- Singh, D. (2023). Advances in industrial waste management. In Waste management and resource recycling in the developing world (pp. 385-416). Elsevier.
- Jin, Y.; Yuan, Y.; Liu, Z.; Gai, S.; Cheng, K.; Yang, F. Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives. J. Environ. Manag. 2024, 351, 119738. [Google Scholar] [CrossRef] [PubMed]
- Schwitzguébel, J.-P. Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J. Soils Sediments 2015, 17, 1492–1502. [Google Scholar] [CrossRef]
- Sengupta, K.; Pal, S. Rhizospheric plant–microbe interactions releasing antioxidants and phytostimulating compounds in polluted agroecosystems. Antioxidants in plant-microbe interaction 2021, 157–179. [Google Scholar]
- Odinga, C.A. (2018). Assessment of heavy metals and pathogens removal from municipal wastewater using a constructed rhizofiltration system (Doctoral dissertation).
- Nookongbut, P.; Thiravetyan, P.; Salsabila, S.; Widiana, A.; Krobthong, S.; Yingchutrakul, Y.; Treesubsuntorn, C. Application of Acinetobacter indicus to promote cigarette smoke particulate matter phytoremediation: removal efficiency and plant–microbe interactions. Environ. Sci. Pollut. Res. 2024, 1–19. [Google Scholar] [CrossRef]
- Roy, A.; Mandal, M.; Przybysz, A.; Haynes, A.; Robinson, S.A.; Sarkar, A.; Popek, R. Phytoremediating the air down under: Evaluating airborne particulate matter accumulation by 12 plant species in Australia. Ecol. Res. 2024. [Google Scholar] [CrossRef]
- Yan, Q.; Xu, L.; Duan, Y.; Pan, L.; Wu, Z.; Chen, X. Influence of leaf morphological characteristics on the dynamic changes of particulate matter retention and grain size distributions. Environ. Technol. 2022, 45, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.P.; Nema, A.K. Air pollution mitigation and suspended particulate matter retention potential of selected plant species across seasonal variation in the urban area. Environ. Sci. Pollut. Res. 2024, 31, 45035–45054. [Google Scholar] [CrossRef] [PubMed]
- Huong-Thi, B.; Jeong, M.; Park, B.-J.; Chungbuk National University. Particulate Matter Capture and Air Pollution Tolerance of Six Roadside Plants in Cheongju, South Korea. J. Environ. Sci. Manag. 2024, 27, 1–10. [Google Scholar] [CrossRef]
- He, C.; Zhang, Z.; Wang, Q.; Zhang, Y.; Wei, C.; Zhang, L.; Li, Z.; Yu, H.; Chang, C.; Zhang, Y. Evaluation of air pollution tolerance index of urban roadside young leaf and the correlation with its capturing capacity for water-insoluble fine particulate matters. Air Qual. Atmosphere Heal. 2024, 1–17. [Google Scholar] [CrossRef]
- Permana, B.H.; Krobthong, S.; Yingchutrakul, Y.; Thiravetyan, P.; Treesubsuntorn, C. Sansevieria trifasciata’s specific metabolite improves tolerance and efficiency for particulate matter and volatile organic compound removal. Environ. Pollut. 2024, 355, 124199. [Google Scholar] [CrossRef]
- Hammad, D.; Thu, K.; Miyazaki, T. Particulate Matter Phytoremediation Effectiveness of Japanese Prunus × Yedoensis Tree Through Spring and Summer Season. E3S Web Conf. 2023, 465, 02030. [Google Scholar] [CrossRef]
- James, A. Phytoremediation of Urban Air Pollutants: Current Status and Challenges. Urban Ecology and Global Climate Change 2022, 140–161. [Google Scholar]
- Nguyen, T.T. (2018). Creation of Farm Forestry on Allocated Forestland and Its Contribution to the Livelihoods of Local People in a Mountainous Region of Northeast Vietnam.
- Morikawa, H.; Higaki, A.; Nohno, M.; Takahashi, M.; Kamada, M.; Nakata, M.; Toyohara, G.; Okamura, Y.; Matsui, K.; Kitani, S.; et al. More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant, Cell Environ. 1998, 21, 180–190. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Torpy, F.R. The botanical biofiltration of elevated air pollution concentrations associated the Black Summer wildfire natural disaster. J. Hazard. Mater. Lett. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Gayathry, G.; Sabarinathan, K.G.; Jayalakshmi, T. (2024). Phyllosphere Microbiome in Ecosystem Management and Plant Growth Promotion for Agricultural Sustainability. International Journal of Ecology and Environmental Sciences.
- Thompson, R.; Smith, R.B.; Karim, Y.B.; Shen, C.; Drummond, K.; Teng, C.; Toledano, M.B. Air pollution and human cognition: A systematic review and meta-analysis. Sci. Total. Environ. 2023, 859, 160234. [Google Scholar] [CrossRef]
- Pipal, A.S.; Taneja, A. (2023). Measurements of Indoor Air Quality: Science and Applications. In Handbook of Metrology and Applications (pp. 1621-1655). Singapore: Springer Nature Singapore.
- Kończak, B.; Wiesner-Sękala, M.; Ziembińska-Buczyńska, A. The European trees phyllosphere characteristics and its potential in air bioremediation. Environ. Pollut. 2024, 349, 123977. [Google Scholar] [CrossRef]
- Mokarram-Kashtiban, S.; Hosseini, S.M.; Kouchaksaraei, M.T.; Younesi, H. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Environ. Sci. Pollut. Res. 2019, 26, 10776–10789. [Google Scholar] [CrossRef] [PubMed]
- Dharmasiri, R.B.N.; Undugoda, L.J.S.; Nilmini, A.H.L.; Nugara, N.N.R.N.; Manage, P.M.; Udayanga, D. Phylloremediation approach to green air: phenanthrene degrading potential of Bacillus spp. inhabit the phyllosphere of ornamental plants in urban polluted areas. Int. J. Environ. Sci. Technol. 2023, 20, 13359–13372. [Google Scholar] [CrossRef]
- Undugoda, L.; Thambugala, K.; Kannangara, S.; Munasinghe, J.; Premarathna, N.; Dharmasiri, N. Phylloremediation of pyrene and anthracene by endophytic fungi inhabiting tea leaves (Camellia sinensis (L.) Kuntze) in Sri Lanka. New Zealand Journal of Botany 2023, 1-14.
- Sharma, A. , Mittal, V., Grover, R., Sharma, D., Gupta, V.; Kumar, K. Applications of Nanotechnology in Phytoremediation. Phytoremediation: Biological Treatment of Environmental Pollution 2024, 291-313.
- Li, H.; Rehman, A.; Rahman, S.U.; Li, K.; Yang, T.; Akuetteh, P.; Khalid, M. Biosynthesized zinc oxide nanoparticles modulate the phytoremediation potential of Pennisetum giganteum and its rhizocompartments associated microbial community structure. J. Clean. Prod. 2024, 434. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Z.; Zhu, N.; Yu, Q. Magnetic nanoparticle-assisted colonization of synthetic bacteria on plant roots for improved phytoremediation of heavy metals. Chemosphere 2023, 329, 138631. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
