Submitted:
26 August 2024
Posted:
26 August 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Methodological Framework
2.2. Site Description
2.3. Conceptual Model
2.4. Numerical Groundwater Flow Model
2.5. Global Sensitivity Methods
2.5.1. Graphical Methods
2.5.2. Sobol Method
2.5.3. Variogram Analysis of Response Surfaces
2.6. Inputs and Outputs
- is the number of monitoring wells.
- is the number of measured piezometric heads in the j-th well.
- is the total number of measured piezometric heads in all the wells.
- is the standard deviation of the measured piezometric heads in the j-th well.
- , and are the mean absolute error, the root mean squared error and the Nash–Sutcliffe index for the j-the well.
- is the standard deviation of the measured piezometric heads in all wells.
2.7. Global Sensitivity Simulation Runs
2.8. Software
3. Results and Discussion
3.1. Groundwater Flow Model Results
3.2. GSA Results for the Groundwater Flow Model of the Gállego Alluvial Aquifer
3.2.1. Graphical Methods
3.2.2. VARS Results
3.2.3. HDMR Results and Analysis of Interactions for the Sobol Sequence
3.2.4. HDMR Results for the VARS Runs by Using the Halton Sequence
3.3. Input Parameter Rankings
4. Conclusions
- The most influential parameters for the selected outputs are consistently detected by all methods. They include: K2, K3, KVs1, SS, Q2 and αr.
- While some parameter inputs such as K3 and Q2 are relevant for all the outputs, other parameter inputs such as K1 and SS are influential only for some outputs.
- The sensitivity indexes of the computed heads in monitoring wells and aquifer/reservoir fluxes with respect to SS change with time.
- Sensitivity indexes of the calibration metrics are similar. MAEg is less prone to model result outliers.
- The average groundwater Darcy velocity near well PS16C depends mainly on the boundary inflow Q2.
- VARS achieves stable values for the most important and the least influential input parameters after 50 star centers, which amounts to 7700 runs. For other inputs, the robustness of the ranking does not increase monotonically with the number of star centers.
- VARS and HDMR methods provide similar results in terms of rankings and significance of the most influential parameters. However, they show slight differences in the ranking of parameters of intermediate and low influence. The ranking of the least relevant input variables with the different methods is less consistent.
- Graphical methods and HDMR results highlight that the most important input parameter interactions occur between SS and KVs1 for groundwater flow between aquifer/reservoir groundwater flux when the water level of the reservoir is high at time t2.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cvetkovic, V.; Soltani, S.; Vigouroux, G. Global Sensitivity Analysis of Groundwater Transport. Journal of Hydrology 2015, 531, 142–148. [Google Scholar] [CrossRef]
- Bordbar, M.; Neshat, A.; Javadi, S. A New Hybrid Framework for Optimization and Modification of Groundwater Vulnerability in Coastal Aquifer. Environ Sci Pollut Res 2019, 26, 21808–21827. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, S.; Roy, A.; Ierapetritou, M.G.; Flach, G.P.; Georgopoulos, P.G. A Comparative Assessment of Efficient Uncertainty Analysis Techniques for Environmental Fate and Transport Models: Application to the FACT Model. J. Hydrol. 2005, 307, 204–218. [Google Scholar] [CrossRef]
- Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J.M. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling. Water Resources Research 2017, 53, 4327–4343. [Google Scholar] [CrossRef]
- Bianchi Janetti, E.; Guadagnini, L.; Riva, M.; Guadagnini, A. Global Sensitivity Analyses of Multiple Conceptual Models with Uncertain Parameters Driving Groundwater Flow in a Regional-Scale Sedimentary Aquifer. Journal of Hydrology 2019, 574, 544–556. [Google Scholar] [CrossRef]
- Maples, S.R.; Foglia, L.; Fogg, G.E.; Maxwell, R.M. Sensitivity of Hydrologic and Geologic Parameters on Recharge Processes in a Highly Heterogeneous, Semi-Confined Aquifer System. Hydrol. Earth Syst. Sci. 2020, 24, 2437–2456. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Yin, S.; Wallace, C.D.; Soltanian, M.R.; Dai, Z.; Ritzi, R.W.; Ma, Z.; Zhan, C.; Lü, X. Application of Upscaling Methods for Fluid Flow and Mass Transport in Multi-Scale Heterogeneous Media: A Critical Review. Applied Energy 2021, 303, 117603. [Google Scholar] [CrossRef]
- Carrera, J.; Saaltink, M.W.; Soler-Sagarra, J.; Wang, J.; Valhondo, C. Reactive Transport: A Review of Basic Concepts with Emphasis on Biochemical Processes. Energies 2022, 15, 925. [Google Scholar] [CrossRef]
- He, X.; Jiang, L.; Moulton, J.D. A Stochastic Dimension Reduction Multiscale Finite Element Method for Groundwater Flow Problems in Heterogeneous Random Porous Media. J. Hydrol. 2013, 478, 77–88. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.-F.; Mark, O. Global Sensitivity Analysis of Bioretention Cell Design for Stormwater System: A Comparison of VARS Framework and Sobol Method. Journal of Hydrology 2023, 617, 128895. [Google Scholar] [CrossRef]
- Greskowiak, J.; Prommer, H.; Liu, C.; Post, V.; Ma, R.; Zheng, C.; Zachara, J. Comparison of Parameter Sensitivities between a Laboratory and Field-Scale Model of Uranium Transport in a Dual Domain, Distributed Rate Reactive System. Water Resources Research - WATER RESOUR RES 2010, 46. [Google Scholar] [CrossRef]
- Abdelaziz, R.; Merkel, B.J. Sensitivity Analysis of Transport Modeling in a Fractured Gneiss Aquifer. Journal of African Earth Sciences 2015, 103, 121–127. [Google Scholar] [CrossRef]
- Samper, J.; Naves, A.; Montenegro, L.; Mon, A. Reactive Transport Modelling of the Long-Term Interactions of Corrosion Products and Compacted Bentonite in a HLW Repository in Granite: Uncertainties and Relevance for Performance Assessment. Applied Geochemistry 2016, 67, 42–51. [Google Scholar] [CrossRef]
- Montenegro, L.; Samper, J.; Mon, A.; De Windt, L.; Samper, A.-C.; García, E. A Non-Isothermal Reactive Transport Model of the Long-Term Geochemical Evolution at the Disposal Cell Scale in a HLW Repository in Granite. Applied Clay Science 2023, 242, 107018. [Google Scholar] [CrossRef]
- Saltelli, A.; Sobol’, I.M. About the Use of Rank Transformation in Sensitivity Analysis of Model Output. Reliability Engineering & System Safety 1995, 50, 225–239. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index. Computer Physics Communications 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity Analysis of Environmental Models: A Systematic Review with Practical Workflow. Environmental Modelling & Software 2016, 79, 214–232. [Google Scholar] [CrossRef]
- Plischke, E. An Adaptive Correlation Ratio Method Using the Cumulative Sum of the Reordered Output. Reliability Engineering & System Safety 2012, 107, 149–156. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An Effective Screening Design for Sensitivity Analysis of Large Models. Environmental Modelling & Software 2007, 22, 1509–1518. [Google Scholar] [CrossRef]
- Uddameri, V.; Hernandez, E.A.; Singaraju, S. A Successive Steady-State Model for Simulating Freshwater Discharges and Saltwater Wedge Profiles at Baffin Bay, Texas. Environ. Earth Sci. 2014, 71, 2535–2546. [Google Scholar] [CrossRef]
- Rabitz, H.; Aliş, Ö.F. General Foundations of High-Dimensional Model Representations. Journal of Mathematical Chemistry 1999, 25, 197–233. [Google Scholar] [CrossRef]
- Dai, H.; Ye, M. Variance-Based Global Sensitivity Analysis for Multiple Scenarios and Models with Implementation Using Sparse Grid Collocation. Journal of Hydrology 2015, 528, 286–300. [Google Scholar] [CrossRef]
- Gatel, L.; Lauvernet, C.; Carluer, N.; Weill, S.; Paniconi, C. Sobol Global Sensitivity Analysis of a Coupled Surface/Subsurface Water Flow and Reactive Solute Transfer Model on a Real Hillslope. Water 2020, 12, 121. [Google Scholar] [CrossRef]
- Dell’Oca, A.; Riva, M.; Guadagnini, A. Moment-Based Metrics for Global Sensitivity Analysis of Hydrological Systems. Hydrology and Earth System Sciences 2017, 21, 6219–6234. [Google Scholar] [CrossRef]
- Maina, F.Z.; Guadagnini, A. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers. Water Resources Research 2018, 54, 501–518. [Google Scholar] [CrossRef]
- Razavi, S.; Gupta, H.V. A New Framework for Comprehensive, Robust, and Efficient Global Sensitivity Analysis: 1. Theory. Water Resources Research 2016, 52, 423–439. [Google Scholar] [CrossRef]
- Razavi, S.; Gupta, H.V. A New Framework for Comprehensive, Robust, and Efficient Global Sensitivity Analysis: 2. Application. Water Resources Research 2016, 52, 440–455. [Google Scholar] [CrossRef]
- Razavi, S.; Gupta, H.V. A Multi-Method Generalized Global Sensitivity Matrix Approach to Accounting for the Dynamical Nature of Earth and Environmental Systems Models. Environmental Modelling & Software 2019, 114, 1–11. [Google Scholar] [CrossRef]
- Puy, A.; Becker, W.; Lo Piano, S.; Saltelli, A. The Battle of Total-Order Sensitivity Estimators; 2020;
- Malaguerra, F.; Albrechtsen, H.-J.; Binning, P.J. Assessment of the Contamination of Drinking Water Supply Wells by Pesticides from Surface Water Resources Using a Finite Element Reactive Transport Model and Global Sensitivity Analysis Techniques. Journal of Hydrology 2013, 476, 321–331. [Google Scholar] [CrossRef]
- Zou, Y.; Yousaf, M.S.; Yang, F.; Deng, H.; He, Y. Surrogate-Based Uncertainty Analysis for Groundwater Contaminant Transport in a Chromium Residue Site Located in Southern China. Water 2024, 16, 638. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, J.; Sun, X.; Ruan, D.; Gu, Z. Sensitivity-Dependent Dynamic Searching Approach Coupling Multi-Intelligent Surrogates in Homotopy Mechanism for Groundwater DNAPL-Source Inversion. J. Contam. Hydrol. 2023, 255, 104151. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Tang, H. Global Sensitivity Analysis of the Hydraulic Parameters of the Reservoir Colluvial Landslides in the Three Gorges Reservoir Area, China. Landslides 2020, 17, 483–494. [Google Scholar] [CrossRef]
- Mishra, S.; Deeds, N.; Ruskauff, G. Global Sensitivity Analysis Techniques for Probabilistic Ground Water Modeling. Ground Water 2009, 47, 727–744. [Google Scholar] [CrossRef]
- Samper, J.; López-Vázquez, C.; Pisani, B.; Mon, A.; Samper-Pilar, A.-C.; Samper-Pilar, F.J. VARS Analysis of Reactive Transport Models for Radioactive Waste Disposal, Applied Geochemistry, (under Review). 2024.
- Santos, A.; Fernández, J.; Guadaño, J.; Lorenzo, D.; Romero, A. Chlorinated Organic Compounds in Liquid Wastes (DNAPL) from Lindane Production Dumped in Landfills in Sabiñanigo (Spain). Environmental Pollution 2018, 242, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Sobral, B.; Samper, J.; Montenegro, L.; Mon, A.; Guadaño, J.; Gómez, J.; San Román, J.; Delgado, F.; Fernández, J. 2D Model of Groundwater Flow and Total Dissolved HCH Transport through the Gállego Alluvial Aquifer Downstream the Sardas Landfill (Huesca, Spain). Journal of Contaminant Hydrology 2024, 265, 104370. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Arjol, M.A.; Cacho, C. POP-Contaminated Sites from HCH Production in Sabiñánigo, Spain. Environ Sci Pollut Res 2013, 20, 1937–1950. [Google Scholar] [CrossRef]
- Biosca, B.; Arévalo-Lomas, L.; Izquierdo-Díaz, M.; Díaz-Curiel, J. Detection of Chlorinated Contaminants Coming from the Manufacture of Lindane in a Surface Detritic Aquifer by Electrical Resistivity Tomography. Journal of Applied Geophysics 2021, 191, 104358. [Google Scholar] [CrossRef]
- Samper, J.; Sobral, B.; Pisani, B.; Naves, A.; Guadaño, J.; Gómez, J.; Fernández, J. Groundwater Flow Model along a Vertical Profile of the Sardas Landfill in Sabiñánigo, Huesca, Spain. Water 2023, 15, 3457. [Google Scholar] [CrossRef]
- Guadaño, J.; Gómez, J.; Fernández, J.; Lorenzo, D.; Domínguez, C.M.; Cotillas, S.; García-Cervilla, R.; Santos, A. Remediation of the Alluvial Aquifer of the Sardas Landfill (Sabiñánigo, Huesca) by Surfactant Application. Sustainability 2022, 14, 16576. [Google Scholar] [CrossRef]
- Pankow, J.F.; Cherry, J.A. Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior, and Remediation; Waterloo Press: Portland, Or, 1996; ISBN 978-0-9648014-1-7. [Google Scholar]
- Casado, I.; Mahjoub, H.; Lovera, R.; Fernández, J.; Casas, A. Use of Electrical Tomography Methods to Determinate the Extension and Main Migration Routes of Uncontrolled Landfill Leachates in Fractured Areas. Science of The Total Environment 2015, 506–507, 546–553. [Google Scholar] [CrossRef]
- Julià, X.; González, G. ; Alonso, M Estudio Batimétrico y de Caracterización de Sedimentos Del Embalse de Sabiñánigo. URS. Technical Report for the Ebre River Water District. Zaragoza 2009.
- Shuai, P.; Chen, X.; Song, X.; Hammond, G.E.; Zachara, J.; Royer, P.; Ren, H.; Perkins, W.A.; Richmond, M.C.; Huang, M. Dam Operations and Subsurface Hydrogeology Control Dynamics of Hydrologic Exchange Flows in a Regulated River Reach. Water Resources Research 2019, 55, 2593–2612. [Google Scholar] [CrossRef]
- Espinha Marques, J.; Samper, J.; Pisani, B.; Alvares, D.; Carvalho, J.M.; Chaminé, H.I.; Marques, J.M.; Vieira, G.T.; Mora, C.; Sodré Borges, F. Evaluation of Water Resources in a High-Mountain Basin in Serra Da Estrela, Central Portugal, Using a Semi-Distributed Hydrological Model. Environ Earth Sci 2011, 62, 1219–1234. [Google Scholar] [CrossRef]
- Plischke, E.; Röhlig, K.-J. Methodological Approaches to Uncertainty and Sensitivity Analysis. Final Version as of 07.05.2024 of Deliverable D10.4 of the HORIZON 2020 Project EURAD. EC Grant Agreement No: 847593. Available online: https://www.ejp-eurad.eu/publications/eurad-d104-methodological-approaches-uncertainty-and-sensitivity-analysis (accessed on 2 August 2024).
- Sobol’, I.M. On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals. USSR Computational Mathematics and Mathematical Physics 1967, 7, 86–112. [Google Scholar] [CrossRef]
- Sobol’, I.M. Sensitivity Estimates for Nonlinear Mathematical Models. Matematicheskoe Modelirovanie 1990, 2, 112–118. [Google Scholar]
- Sobol’, I.M. Sensitivity Analysis for Non-Linear Mathematical Models. Mathematical Modelling and Computational Experiment 1993, 1, 407–414, [English translation of the original paper of Sobol (1990) in Russian]. [Google Scholar]
- Homma, T.; Saltelli, A. Importance Measures in Global Sensitivity Analysis of Nonlinear Models. Reliability Engineering & System Safety 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Razavi, S.; Sheikholeslami, R.; Gupta, H.V.; Haghnegahdar, A. VARS-TOOL: A Toolbox for Comprehensive, Efficient, and Robust Sensitivity and Uncertainty Analysis. Environmental Modelling & Software 2019, 112, 95–107. [Google Scholar] [CrossRef]
- Halton, J.H. On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals. Numer. Math. 1960, 2, 84–90. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Samper, J.; Xu, T.; Yang, C. A Sequential Partly Iterative Approach for Multicomponent Reactive Transport with CORE2D. Comput Geosci 2009, 13, 301–316. [Google Scholar] [CrossRef]
- Poonoosamy, J.; Wanner, C.; Alt Epping, P.; Águila, J.F.; Samper, J.; Montenegro, L.; Xie, M.; Su, D.; Mayer, K.U.; Mäder, U.; et al. Benchmarking of Reactive Transport Codes for 2D Simulations with Mineral Dissolution–Precipitation Reactions and Feedback on Transport Parameters. Comput Geosci 2021, 25, 1337–1358. [Google Scholar] [CrossRef]
- Águila, J.F.; Montoya, V.; Samper, J.; Montenegro, L.; Kosakowski, G.; Krejci, P.; Pfingsten, W. Modeling Cesium Migration through Opalinus Clay: A Benchmark for Single- and Multi-Species Sorption-Diffusion Models. Comput Geosci 2021, 25, 1405–1436. [Google Scholar] [CrossRef]
- Naves, A.; Samper, J.; Pisani, B.; Mon, A.; Dafonte, J.; Montenegro, L.; García-Tomillo, A. Hydrogeology and Groundwater Management in a Coastal Granitic Area with Steep Slopes in Galicia (Spain). Hydrogeol J 2021, 29, 2655–2669. [Google Scholar] [CrossRef]
- Mon, A.; Samper, J.; Montenegro, L.; Turrero, M.J.; Torres, E.; Cuevas, J.; Fernández, R.; De Windt, L. Reactive Transport Models of the Geochemical Interactions at the Iron/Bentonite Interface in Laboratory Corrosion Tests. Applied Clay Science 2023, 240, 106981. [Google Scholar] [CrossRef]
- González, P.; Prado-Rodriguez, R.; Gábor, A.; Saez-Rodriguez, J.; Banga, J.R.; Doallo, R. Parallel Ant Colony Optimization for the Training of Cell Signaling Networks. Expert Systems with Applications 2022, 208, 118199. [Google Scholar] [CrossRef]
- Vourlioti, P.; Kotsopoulos, S.; Mamouka, T.; Agrafiotis, A.; Nieto, F.J.; Sánchez, C.F.; Llerena, C.G.; García González, S. Maximizing the Potential of Numerical Weather Prediction Models: Lessons Learned from Combining High-Performance Computing and Cloud Computing. In Proceedings of the Advances in Science and Research; Copernicus GmbH, March 20 2023; Vol. 20, pp. 1–8.
- Herman, J.; Usher, W. SALib: An Open-Source Python Library for Sensitivity Analysis. Journal of Open Source Software 2017, 2, 97. [Google Scholar] [CrossRef]
- Ziehn, T.; Tomlin, A.S. GUI–HDMR – A Software Tool for Global Sensitivity Analysis of Complex Models. Environmental Modelling & Software 2009, 24, 775–785. [Google Scholar] [CrossRef]
- Kocis, L.; Whiten, W.J. Computational Investigations of Low-Discrepancy Sequences. ACM Trans. Math. Softw. 1997, 23, 266–294. [Google Scholar] [CrossRef]
















| Parameter | Minimum | Maximum | Unit | Distribution |
|---|---|---|---|---|
| Aquifer conductivity K1 | 10 | 103 | m/d | Log-uniform |
| Aquifer conductivity K2 | 10 | 103 | m/d | Log-uniform |
| Aquifer conductivity K3 | 10 | 103 | m/d | Log-uniform |
| Aquifer conductivity K4 | 10 | 103 | m/d | Log-uniform |
| Storage coefficient Ss | 10-5 | 10-3 | 1/m | Log-uniform |
| Aquitard conductivity KVs1 | 10-3 | 1 | m/d | Log-uniform |
| Aquitard conductivity KVs2 | 10-3 | 1 | m/d | Log-uniform |
| Aquitard conductivity KVs3 | 10-4 | 10-1 | m/d | Log-uniform |
| Leakage coefficient αr | 10 | 103 | m2/d | Log-uniform |
| Conductance αd | 1 | 100 | m2/d | Log-uniform |
| Boundary inflow Q6 | 3·10-3 | 0.05 | m3/d/m | Uniform |
| Boundary inflow Q7 | 2·10-3 | 0.20 | m3/d/m | Uniform |
| Boundary inflow Q9 | 0.25 | 1.00 | m3/d/m | Uniform |
| Boundary inflow Q2 | 1.70·10-2 | 1.70 | m3/d/m | Uniform |
| Boundary inflow Q1 | 2·10-3 | 10-1 | m3/d/m | Uniform |
| Recharge rc | 5 | 200 | mm/year | Uniform |
| Recharge ru | 20 | 401.5 | mm/year | Uniform |
| Output | Methods | K1 | K2 | K3 | K4 | Ss | KVs1 | KVs2 | KVs3 | αr | αd | Q6 | Q7 | Q9 | Q2 | Q1 | rc | ru |
| ST1Ct1 | VARS-TO | 17 | 4 | 1 | 6 | 13 | 3 | 8 | 7 | 5 | 9 | 16 | 11 | 14 | 2 | 10 | 12 | 15 |
| IVARS50 | 16 | 4 | 1 | 6 | 12 | 3 | 8 | 7 | 5 | 9 | 17 | 11 | 14 | 2 | 10 | 13 | 15 | |
| VARS-ABE | 17 | 5 | 1 | 6 | 9 | 4 | 11 | 10 | 3 | 8 | 16 | 12 | 14 | 2 | 7 | 13 | 15 | |
| SALib | 17 | 5 | 1 | 10 | 6 | 3 | 13 | 7 | 4 | 8 | 15 | 12 | 14 | 2 | 9 | 11 | 16 | |
| GUI-HDMR | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
| CUSUNORO | 17 | 5 | 1 | 6 | 13 | 3 | 11 | 9 | 4 | 7 | 16 | 10 | 14 | 2 | 8 | 12 | 15 | |
| MAEg | VARS-TO | 14 | 3 | 1 | 7 | 16 | 5 | 8 | 6 | 4 | 9 | 17 | 12 | 13 | 2 | 11 | 10 | 15 |
| IVARS50 | 14 | 4 | 1 | 7 | 16 | 5 | 8 | 6 | 3 | 9 | 17 | 12 | 13 | 2 | 11 | 10 | 15 | |
| VARS-ABE | 14 | 4 | 1 | 6 | 16 | 5 | 11 | 8 | 3 | 10 | 17 | 12 | 13 | 2 | 9 | 7 | 15 | |
| SALib | 14 | 5 | 1 | 6 | 17 | 4 | 12 | 7 | 3 | 10 | 16 | 11 | 13 | 2 | 9 | 8 | 15 | |
| GUI-HDMR | 14 | 4 | 1 | 7 | 17 | 5 | 11 | 6 | 3 | 8 | 15 | 12 | 13 | 2 | 10 | 9 | 16 | |
| CUSUNORO | 14 | 5 | 1 | 6 | 17 | 4 | 12 | 7 | 3 | 10 | 16 | 11 | 13 | 2 | 8 | 9 | 15 | |
| Qt1 | VARS-TO | 17 | 9 | 4 | 6 | 5 | 1 | 14 | 12 | 2 | 8 | 16 | 7 | 10 | 3 | 11 | 13 | 15 |
| IVARS50 | 17 | 9 | 4 | 6 | 5 | 1 | 14 | 11 | 2 | 7 | 16 | 8 | 10 | 3 | 12 | 13 | 15 | |
| VARS-ABE | 17 | 11 | 5 | 7 | 4 | 1 | 14 | 13 | 2 | 8 | 16 | 6 | 12 | 3 | 9 | 10 | 15 | |
| SALib | 17 | 9 | 13 | 10 | 6 | 1 | 15 | 12 | 2 | 5 | 16 | 4 | 11 | 3 | 7 | 8 | 14 | |
| GUI-HDMR | 17 | 9 | 5 | 8 | 4 | 1 | 14 | 13 | 2 | 7 | 16 | 6 | 11 | 3 | 10 | 12 | 15 | |
| CUSUNORO | 17 | 8 | 13 | 10 | 6 | 1 | 15 | 12 | 2 | 5 | 16 | 4 | 11 | 3 | 7 | 9 | 14 | |
| qav | VARS-TO | 4 | 3 | 2 | 7 | 16 | 5 | 9 | 10 | 6 | 8 | 17 | 14 | 13 | 1 | 11 | 12 | 15 |
| IVARS50 | 4 | 3 | 2 | 8 | 16 | 6 | 9 | 10 | 5 | 7 | 17 | 14 | 13 | 1 | 11 | 12 | 15 | |
| VARS-ABE | 4 | 3 | 2 | 7 | 16 | 6 | 12 | 11 | 5 | 9 | 17 | 14 | 13 | 1 | 8 | 10 | 15 | |
| SALib | 4 | 3 | 2 | 9 | 16 | 6 | 13 | 10 | 5 | 8 | 15 | 17 | 12 | 1 | 7 | 11 | 14 | |
| GUI-HDMR | 4 | 3 | 2 | 7 | 14 | 6 | 12 | 10 | 5 | 8 | 15 | 17 | 13 | 1 | 9 | 11 | 16 | |
| CUSUNORO | 4 | 3 | 2 | 8 | 17 | 6 | 13 | 11 | 5 | 9 | 16 | 15 | 12 | 1 | 7 | 10 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
