Submitted:
07 August 2024
Posted:
07 August 2024
You are already at the latest version
Abstract
Keywords:
Contents
- Introduction
-
Elements of crystallography of chiral minerals
- 2.1
-
The relation between symmetry and chirality
- 2.1.1
- Enantiomorphism
- 2.1.2
- Symmetry elements, point-group symmetries, and their relation to chirality
- 2.2
- The lattice system
- 2.3
- The unit-cell (UC)
- 2.4
- The glide symmetry elements and the helical handedness labeling
- 2.5
-
Space-group symmetry
- 2.5.1
- The space-group symmetry label of chiral crystals
- 2.5.2
- Chiral crystals - Söhncke space-group symmetries
- 2.6
- The asymmetric unit
- 2.7
- Conglomerates and racemates
-
The chiral minerals found in nature
- 3.1
- The abundance of chiral minerals and the “missing glove” situation
- 3.2
- Chiral minerals in the 22 enantiomorphic space-group symmetries
- 3.3
- Chiral minerals in the 43 non-enantiomorphic Söhncke space-groups
- 3.4
- Chiral organic and carbonate minerals
- 3.5
- Chiral polymorphic phase-transitioned minerals
-
Formation and transformations of chiral minerals
- 4.1
- Crystallization from the melt
- 4.2
- Chirality aspects of crystallization of minerals from aqueous solutions
- 4.3
-
Polymerizations leading to chiral minerals
- 4.3.1
- The silicates
- 4.3.2
- Opals
- 4.3.3
- Ambers
- 4.4
-
Chemical transformations of chiral minerals
- 4.4.1
- Hydrolyses
- 4.4.2
- Carbonations
- 4.4.3
- Oxygenations
-
Chirality of the macroscopic mineral
- 5.1
-
Molecular level descriptors of the macroscopic crystal
- 5.1.1
- The crystal class
- 5.1.2
- The crystal forms
- 5.2
-
Chiral habits of minerals
- 5.2.1
- Growth conditions and randomness as sources of habit chirality
- 5.2.2
- Chiral twins
- 5.2.3
- Chiral habits of biominerals
- 5.3
- Chiral gemstone minerals
- 5.4
-
Handedness labeling of the chiral minerals
- 5.4.1
- The problem of handedness labeling
- 5.4.2
- The enantiomeric excess
-
Physical, analytical and chemical properties of chiral minerals
- 6.1
- The diastereomeric interactions of chiral minerals with polarized light
- 6.2
- The interaction with x-rays and electrons: Absolute chiral configuration determination
- 6.3
- Physical properties of non-centrosymmetric crystals
- 6.4
- Surface chirality: the diastereomeric interactions of chiral minerals with chiral molecules
- 6.5
- Property/chirality correlations: Quantifying the degree of chirality
1. Introduction
2. Elements of Crystallography of Chiral Minerals
2.1. The Relation between Symmetry and Chirality
2.1.1. Enantiomorphism
2.1.2. Symmetry Elements, Point-Group Symmetries, and Their Relation to Chirality


2.2. The Lattice System
2.3. The Unit-Cell (UC)
2.4. The Glide Symmetry Elements and the Helical Handedness Labeling

2.5. Space-Group Symmetry
2.5.1. The Space-Group Symmetry Label of Chiral Crystals
2.5.2. Chiral Crystals - Söhncke Space-Group Symmetries

2.6. The Asymmetric Unit
2.7. Conglomerates and Racemates
3. The Chiral Minerals Found in Nature
3.1. The Abundance of Chiral Minerals and the “Missing Glove” Situation
3.2. Chiral Minerals in the 22 Enantiomorphic Space-Group Symmetries
| Table 2. Chiral minerals in the 22 enantiomorphic space-group symmetries. |
3.3. Chiral Minerals in the 43 Non-Enantiomorphic Söhncke Space-Groups
| Table 3. Chiral minerals in the 43 non-enantiomorphic space-group symmetries. Total numbers and representative minerals. |
3.4. Chiral Organic and Carbonate Minerals
3.5. Chiral Polymorphic Phase-Transitioned Minerals
4. Formation and Transformations of Chiral Minerals
4.1. Crystallization from the Melt
4.2. Chirality Aspects of Crystallization of Minerals from Aqueous Solutions
4.3. Polymerizations Leading to Chiral Minerals
4.3.1. The Silicates
4.3.2. Opals
4.3.3. Ambers
4.4. Chemical Transformations of Chiral Minerals
4.4.1. Hydrolyses
4.4.2. Carbonations
4.4.3. Oxygenations
5. Chirality of the Macroscopic Mineral
5.1. Molecular Level Descriptors of the Macroscopic Crystal
5.1.1. The Crystal Class

5.1.2. The Crystal Forms
5.2. Chiral Habits of Minerals
5.2.1. Growth Conditions and Randomness as Sources of Habit Chirality
5.2.2. Chiral Twins
5.2.3. Chiral Habits of Biominerals
5.3. Chiral Gemstone Minerals
5.4. Handedness Labeling of the Chiral Minerals
5.4.1. The Problem of Handedness Labeling
5.4.2. The Enantiomeric Excess
6. Physical, Analytical and Chemical Properties of Chiral Minerals
6.1. The Diastereomeric Interactions of Chiral Minerals with Polarized Light
6.2. The Interaction with X-rays and Electrons: Absolute Chiral Configuration Determination
6.3. Physical Properties of Non-Centrosymmetric Crystals
6.4. Surface Chirality: The Diastereomeric Interactions of Chiral Minerals with Chiral Molecules
6.5. Property/Chirality Correlations: Quantifying the Degree of Chirality
- Faheyite, Be2Mn2+Fe3+2(PO4)4·6H2O
References
- Addadi, L., Geva, M. 2003. Molecular recognition at the interface between crystals and biology: generation, manifestation and detection of chirality at crystal surfaces Cryst. Eng. Comm. 5, 140–146. [CrossRef]
- Amber, https://www.mindat.org/min-188.html.
- Amber, https://www.kremer-pigmente.com/elements/resources/products/files/60200e.pdf.
- Armstrong, D.W. et al, 1996. Enantiomeric composition and prevalence of some bicyclic monoterpenoids in amber. Chirality 8, 39 – 48. [CrossRef]
- Austinite, https://en.wikipedia.org/wiki/Austinite.
- Avnir, D., Editor, 1989. The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers. Wiley, Chichester, 1989. 3rd printing: 1992.
- Avnir, D., Huylebrouck, D. 2013. On Left and Right: Chirality in Architecture. Nexus Network Journal: Architecture and Mathematics 15, 171-182. [CrossRef]
- Avnir, D., 2021. Critical review of chirality indicators of extraterrestrial life. New Astronomy Rev. 92, 101596. [CrossRef]
- Avrahami, E.M., 2022. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 376, 312–316. [CrossRef]
- Bayliss, P., 1982. A further crystal structure refinement of gersdorffite. American Mineralogist 67, 1058-1064.
- Beta-Tridymite, https://www.mindat.org/min-47886.html.
- Bouropoulos, N. et al, 2001. Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chemistry A Europ. J. 7, 1881-1888. [CrossRef]
- Bouska, V., et al, 1998. Hartite from Bilina. American Mineralogist 83, 1340–1346. [CrossRef]
- Buchen, J. et al, 2019. Twins in YAl3(BO3)4 and K2Al2B2O7 crystals as revealed by changes in optical activity. Crystals 9, 8. [CrossRef]
- Cambridge Structural Database, https://www.ccdc.cam.ac.uk/media/CSD-Space-Group-Statistics-Space-Group-Number-Ordering-2024.pdf.
- Carbon Mineral Challenge, https://en.wikipedia.org/wiki/Carbon_Mineral_Challenge.
- Carretero-Genevrier, A. et al, 2015. Chiral habit selection on nanostructured.
- epitaxial quartz films. Faraday Discuss., 179, 227-233. [CrossRef]
- Chandrasekhar, S., 1953. The optical rotatory dispersion of cinnabar. Proc. Indian Acad. Sci. 37, 697–703. [CrossRef]
- Chemicool Dictionary, https://www.chemicool.com/definition/lattice_crystal.html.
- Claborn, K. et al, 2008. Optical Rotation of Achiral Compounds. Angew. Chem. Int. Ed. 47, 5706 – 5717. [CrossRef]
- Cody, A.M., Cody, R.D., 1991. Chiral habit modifications of gypsum from epitaxial-like adsorption of stereospecific growth inhibitors. Journal of Crystal Growth 113, 508—519. [CrossRef]
- Cooper, M. et al, 2000. Refinement of the crystal structure of cyrilovite from Cyrilov, Western Moravia, Czech Republic. Journal of the Czech Geological Society, 45, 95 - 100.
- Crystalografia, https://www.xtal.iqf.csic.es/Cristalografia/parte_03_4-en.html.
- Cyrilovite, https://gemstone.fandom.com/wiki/Cyrilovite.
- Dapiaggi, M., 2015. The formation of silica high temperature polymorphs from quartz: Influence of grain size and mineralising agents. Journal of the European Ceramic Society 35, 4547–4555. [CrossRef]
- Damien Daval, D., 2018. Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties. npj Materials Degradation 2, 11. [CrossRef]
- Disphenoid, https://en.wikipedia.org/wiki/Disphenoid.
- Dong, Z., Ma, Y., 2020. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nature Commun. 11, 1588. [CrossRef]
- Downs, R.T., Hazen, R.M., 2004. Chiral indices of crystalline surfaces as a measure of enantioselective potential. J. Mol. Catal. A Chem. 216, 273–285. [CrossRef]
- Drewitt, J.W.E et al, 2022. From short to medium range order in glasses and melts by diffraction and Raman spectroscopy. Reviews in Mineralogy and Geochemistry 87, 55–103. [CrossRef]
- Drees, L.R. et al, 1989. Silica in Soils: Quartz and Disordered Silica Polymorphs. Chapter 19 in Minerals in Soil Environments, Volume 1, Editors: Dixon, J.B., Weed, S.B. The Soil Science Society of America, Inc. [CrossRef]
- Dryzun, C., Avnir, D., 2012. On the abundance of chiral crystals. Chem. Commun. 48, 5874–5876. [CrossRef]
- Dryzun, C. et al., 2009. Chiral silicate zeolites. J. Mater. Chem. 19, 2062–2069. [CrossRef]
- Erez, J., 2003. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in Mineralogy and Geochemistry 54, 115–149. https://doi.org/10.2113/0540115. [CrossRef]
- External Symmetry of Crystals, 32 Crystal Classes, https://www2.tulane.edu/~sanelson/eens211/32crystalclass.htm.
- Fábián, L., Brock, C.P., 2010. A list of organic kryptoracemates. Acta Crystallogr. B 66, 94-103. [CrossRef]
- Flack H.D., 2003. Chiral and achiral crystal structures. Helvetica Chim. Acta 86, 905-921. [CrossRef]
- Fortes, A.D. 2005. From Surrey to the moons of Jupiter (via Mars): The story of epsomite. Axis, 1, 1-28. https://mineralogicalrecord.com/wp-content/uploads/2020/10/pdfs/Epsomite-Article-Figs.pdf.
- V. M. Fridkin, V.M. et al, 1982. The linear and circular bulk photovoltaic effect in piezoelectric crystals Er(HCOO)3· 2H2O and HgS. Ferroelectrics 44, 27- 31. [CrossRef]
- Friis, H., Balic-Zunic, T., 2005. Complex twinning and incorporation of REE into leucophanite. In CER200 – Rare earth minerals, GFF, 127:1, 35. [CrossRef]
- Gatta, G.D., et al, 2019. A single-crystal neutron diffraction study of wardite, NaAl3(PO4)2(OH)4·2H2O. Phys Chem Minerals 46, 427–435. [CrossRef]
- Gault, H.R., 1949. The frequency of twin types in quartz crystals. American Mineralogist 34, 142–162. http://www.minsocam.org/msa/collectors_corner/arc/qtztwin.htm.
- Glassy igneous rock, https://www.mindat.org/min-50714.html.
- Glazer, A.M., 2018. Confusion over the description of the quartz structure yet again. J. Appl. Cryst. 51, 915–918. [CrossRef]
- Glazer, A.M., Stadnicka, K., 1986. On the origin of optical activity in crystal structures. J. Appl. Cryst. 19, 108-122. [CrossRef]
- Glazer, A.M., Stadnicka, K., 1989. On the Use of the Term 'Absolute' in Crystallography. Acta Cryst. A 45, 234-238. [CrossRef]
- Goodman, P., Secomb, T.W., 1977. Identification of enantiomorphously related space groups by electron diffraction. Acta Cryst. A33, 126-133. [CrossRef]
- Goslarite Mineral Data, https://webmineral.com/data/Goslarite.shtml.
- Götze, J. et al., 2021. Mineralogy and mineral chemistry of quartz: A review. Mineralogical Magazine 85, 639–664. [CrossRef]
- Hahn,Th., Klapper, H., 2006. Tables 10.1.2.2 and 10.1.2.3 in International Tables for Crystallography Vol. A, Section 10.1.2, pp. 771 and 791. [CrossRef]
- Hahn, Th. et al, 2016. Table 3.2.1.3 in International Tables for Crystallography (2016), Vol. A, p.724. https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/.
- Halasyamani, P.S., and Kenneth R. Poeppelmeier, K.R., 1998. Noncentrosymmetric oxides. Chem. Mater. 10, 2753-2769. [CrossRef]
- Hatch, D.M., Ghose, S., 1991. The a-b Phase Transition in Cristobalite, SiO2. Phys. Chem. Minerals 17, 554-562.
- Hazen, R.M. et al, 2001. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. PNAS 98, 5487–5490. www.pnas.orgycgiydoiy10.1073ypnas.101085998.
- Hazen, R.M., 2004. Chiral crystal faces of common rock-forming minerals. Chapter 11 in Progress in Biological Chirality, Palyi, G. et al, Eds. Oxford: Elsevier, pp.137-151.
- Hazen, R.M. et al, 2009. Evolution of uranium and thorium minerals. American Mineralogist 94, 1293–1311. [CrossRef]
- Hazen, R.M. et al, 2016. Carbon mineral ecology: Predicting the undiscovered minerals of carbon. American Mineralogist 101, 889–906. [CrossRef]
- Hazen, R.M., 2019. Symphony in C: Carbon and the Evolution of (Almost) Everything. W. W. Norton & Company.
- Hazen, R.M. et al, 2022. On the paragenetic modes of minerals: A mineral evolution perspective. American Mineralogist 107, 1262–1287. [CrossRef]
- Hejl, E., Finger, F. 2018. Chiral Proportions of Nepheline Originating from.
- Low-Viscosity Alkaline Melts. A Pilot Study. Symmetry 10, 410. [CrossRef]
- Helman, D.S., 2016. Symmetry-based electricity in minerals and rocks: A review with examples of centrosymmetric minerals that exhibit pyro and piezoelectricity. Periodico di Mineralogia 85, 201-248. [CrossRef]
- Hoffmann, F., 2016. Introduction to Crystallography. Springer Fachmedien Wiesbaden GmbH. [CrossRef]
- Hoffmann, F. Frank Hoffmann, https://www.youtube.com/@FrankHoffmann1000.
- Hong, W. et al 1986. The piezoelectric and elastic properties of berlinite and the effect of defects on the physical properties. Journal of Crystal Growth 79, 227-231. [CrossRef]
- Hongu, H., et al, 2019. Crystal structure and XANES investigation of petzite, Ag3AuTe2. Acta Cryst. B75, 273–278. [CrossRef]
- Horwell, C.J. et al, 2013. The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bull Volcanol (2013) 75:696. [CrossRef]
- Huang, T-Y., et al, 2024. Recent progress in chiral zeolites: Structure, synthesis, characterization and applications, Chinese Chemical Letters, in press. [CrossRef]
- Hummer, D.R. et al, 2022. Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals. Nature Commun. 13, 960. [CrossRef]
- Iggland, M., Mazzotti, M., 2011. A population balance model for chiral resolution via Viedma ripening. Cryst. Growth Des. 11, 4611–4622. [CrossRef]
- Inui, H. et al, 2007. Enantiomorph identification of crystals belonging to the point groups 321 and 312 by convergent-beam electron diffraction. J. Appl. Cryst. 40, 241–249. [CrossRef]
- Jiang, W. et al, 2019. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nature Commun. 10, 2318. [CrossRef]
- Kaminsky, W. et al, 2004. Polarimetric imaging of crystals. Chem. Soc. Rev. 33, 514–525. [CrossRef]
- Kaolinite Subgroup, https://www.mindat.org/min-43755.html.
- Katzenelson, O. et al. 1996. Chirality of large random supramolecular structures. Chemistry - A European J. 2, 174 – 181. [CrossRef]
- Kavasmaneck, P.R., Bonner, W.A., 1977. Adsorption of amino acid derivatives by d- and l-quartz. Journal of the American Chemical Society 99, 44-50. [CrossRef]
- I. B. Kobyakov, I.B. et al, 1982. On a peculiarity of the piezoeffect in carbonate-cancrinite crystals. Sov. Phys. JETP 56, 1112-1115.
- Kozlovskaya, K.A. et al, 2023. Determination of the absolute cnfiguration of monoatomic chiral crystals using three-wave X-ray diffraction. Crystallography Reports 68, 374–379. [CrossRef]
- Kremer, D. et al, 2022. Separation of reaction products from ex-situ mineral carbonation and utilization as a substitute in cement, paper, and rubber applications. Journal of CO2 Utilization 62, 102067. [CrossRef]
- Labéguerie, P. et al, 2010. Structural, electronic, elastic, and piezoelectric properties of α-quartz and MXO4 (M=Al, Ga, Fe; X=P, As) isomorph compounds: A DFT study. Phys. Rev. B 81, 045107. [CrossRef]
- Lee, C. et al, 2022. Chirality in organic and mineral Systems: A review of reactivity and alteration processes relevant to prebiotic chemistry and life detection missions. Symmetry 14, 460. [CrossRef]
- List of gemstones by species, https://en.wikipedia.org/wiki/List_of_gemstones_by_species and other listings.
- Loiacono, G.M. et al, 1982. Resolution of space group ambiguities in minerals. American Mineralogist 67, 846–847.
- Liu, X-H et al, 2023. Genetic significance of trace elements in hydrothermal quartz from the Xiangzhong metallogenic province, South China. Ore Geology Reviews 152, 105229. [CrossRef]
- Mace, H.A., Peterson, R.C., 1995. The crystal structure of fichtelite, a naturally occurring hydrocarbon. Can. Mineral., 33, 7–11.
- Matsuura, T., Koshima, H., 2005. Introduction to chiral crystallization of achiral organic compounds. Spontaneous generation of chirality. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6, 7–24. [CrossRef]
- McLaren, A.C., Phakey. P.P., 1969. Diffraction contrast from Dauphine twin boundries in quartz. Phys. Stat. Sol. 31, 723-737. [CrossRef]
- Meierhenrich, U., 2008. Note 4, p.64 in Amino Acids and the Asymmetry of Life. Advances in Astrobiology and Biogeophysics. Springer-Verlag Berlin Heidelberg.
- Nassau, K.,1978. The origins of color in minerals. American Mineralogist 63, 219-229.
- Ng, H.N., C. Calvo, C., 1976. X-ray study of the α–β transformation of berlinite (AlPO4). Canadian Journal of Physics 54, 638-647. [CrossRef]
- Ok, K.M. et al, 2006. Bulk characterization methods for non-centrosymmetric materials: second harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 35, 710–717. [CrossRef]
- Overview of Silica Polymorphs, http://www.quartzpage.de/gen_mod.html.
- E. I. Parkhomenko, E.I., 1971. Piezoelectric and Pyroelectric Effects in Minerals, in Electrification Phenomena in Rocks, Chapter 2. Springer Science+Business Media New York.
- Pažout, R. et al, 2018. Refikite from Krásno, Czech Republic: a crystal-and molecular-structure study Mineralogical Magazine 79, 59 – 70. [CrossRef]
- Perkins, D., et al, 2023. Forms and Point Groups. Section 10.5.1 in Mineralogy, LibreTextsTM. https://geo.libretexts.org/Bookshelves/Geology/Mineralogy_(Perkins_et_al.).
- Piezoelectric Gems, https://classicgems.net/info_Piezoelectricity.htm.
- Petrícek, V. et al, 1990. Orientational disorder in phenanthrene. Structure determination at 248, 295, 339 and 344 K. Acta Cryst. B46, 830-832. [CrossRef]
- Pinto, Y. et al, 1966. Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers. J. Chem Soc. Faraday Trans. 92, 2523 – 2527.
- Pinto Y, Avnir D., 2001. A generalized handedness labeling strategy: Addressing latent handedness in chiral structures. Enantiomer 6, 211-217.
- Pogge von Strandmann, P.A.E., et al 2019.rRapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nature Commun. 10, 1983. [CrossRef]
- Poole, P.H., 1995. Amorphous polymorphism. Computational Materials Science 4, 373-382. [CrossRef]
- Powder Diffraction on the WEB, http://pd.chem.ucl.ac.uk/pdnn/symm3/sgpfreq.htm.
- Rekis, T., 2020. Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database? Acta Cryst. B76, 307–315. [CrossRef]
- Ruby Dreamscape™ Cut, https://www.johndyergems.com/gemstones/ruby-7397.html.
- Samotoin, N.D., 2011. Enantiomorphism of kaolinite: manifestation at the levels of elementary layer and microcrystals. Crystallography Reports 56, 327–334. [CrossRef]
- Shindo, H. et al, 2013. Asymmetric autocatalysis induced by cinnabar: Observation of the enantioselective adsorption of a 5-pyrimidyl alkanol on the crystal Surface. Angew. Chem. Int. Ed. 52, 9135 –9138. See also the supporting information. [CrossRef]
- Smith, P.P.K., 1979. The observation of enantiomorphous domains in a natural maghemite. Contr. Mineral. and Petrol. 69, 249–254. [CrossRef]
- Kenso Soai, K., et al, 1999. d- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound. J. Am. Chem. Soc. 121, 11235-11236. [CrossRef]
- Staples, L.W., 1935. Austinite, a new arsenate mineral, from Gold Hill, Utah. American Mineralogist 20, 112–119.
- Strunz, H., 1962. Fichtelit. Dimethyl-isopropyl-perhydropenanthren. Naturwissen., 49, 9–10. [CrossRef]
- Symmetry@Otterbein, https://symotter.org/tutorial/intro.
- Támara, M., Preston, M.R., 2009. A statistical reassessment of the evidence for the racemic distribution of quartz enantiomorphs. American Mineralogist 94, 1556–1559. [CrossRef]
- Tanaka, Y., et al, 2008. Right handed or left handed? Forbidden X-ray diffraction reveals chirality. Phys. Rev. Lett. 100, 145502. [CrossRef]
- Tanaka, Y., et al, 2010. Determination of structural chirality of berlinite and quartz using resonant x-ray diffraction with circularly polarized x-rays. Phys. Rev. B 81, 144104. DOI: 10.1103/PhysRevB.81.144104. Erratum: 2011. Phys. Rev. B 84, 219905(E). [CrossRef]
- The Mineral Cristobalite, https://www.minerals.net/mineral/cristobalite.aspx.
- The Mineral Quartz, https://www.minerals.net/mineral/quartz.aspx;%20https:/www.mindat.org/min-3337.html.
- The Quartz Page, http://www.quartzpage.de/.
- The Quartz Page, http://www.quartzpage.de/crs_forms.html.
- The Quartz Page, http://www.quartzpage.de/gen_struct.html.
- The Structure of Materials, http://som.web.cmu.edu/structures/S092-wollastonite.html.
- The Structure of Materials, http://som.web.cmu.edu/structures/S097-alpha-quartz.html.
- Thomas, P.A. 1988. The crystal structure and absolute optical chirality of paratellurite, α-TeO2. J. Phys. C: Solid State Phys. 21, 4611-4267. [CrossRef]
- Thompson, A.L., Watkin, D.J., 2009. X-ray crystallography and chirality: understanding the limitations. Tetrahedron: Asymmetry 20, 712–717. [CrossRef]
- Tridymite, https://en.wikipedia.org/wiki/Tridymite.
- Tuvi-Arad, I. et al, 2024. CSM software: Continuous symmetry and chirality measures for quantitative structural analysis. J. Chem. Inf. Model. in press. [CrossRef]
- Urusov, V.S., Nadezhina, T.N., 2009. Frequency distribution and selection of space groups in inorganic crystal chemistry. Journal of Structural Chemistry 50, 22-37. [CrossRef]
- Valentín-Pérez, Á. et al, 2022. Chirality determination in crystals. Chirality 34, 163–181. [CrossRef]
- Van Dyke, K.S., 1940. On the right- and left-handedness of quartz and its relation to elastic and other properties. Proceedings of the Institute of Radio Engineers (I.R.E.), September, 1940, 399-406.
- Van der Biest, O., Thomas, G., 1975. Identification of Enantiomorphism in Crystals by Electron Microscopy. Acta Cryst. A31, 70-76. https://doi.org/10.1107/S0567739475000137. [CrossRef]
- Vinegrad, E. et al, 2018. Circular Dichroism of Single Particles. ACS Photonics 5, 2151−2159. [CrossRef]
- Ward, R.M. et al, 2010. Enantiomorphic symmetry breaking in crystallization of molten.
- sodium chlorate. Chem. Commun. 46, 7634–7636. [CrossRef]
- Watkin, D.J., and Richard Ian Cooper< R.I., 2020. Howard Flack and the Flack Parameter. Chemistry 2, 796–804. [CrossRef]
- Webmineral, http://webmineral.com/crystal/Triclinic.shtml.
- Wenk, H.-R., 2006. Neutron Diffraction Texture Analysis. Reviews in Mineralogy & Geochemistry 63, 399-426. [CrossRef]
- Williams, S.A., de Azevedo, J., 1967. Austinite from Gold Hill, Utah. American Mineralogist 52, 1224–1226.
- Wilson, P. 1979. Experimental investigation of etch pit formation on quartz sand grains. Geological Magazine 116, 477-482. [CrossRef]
- Winkelmann, A., Nolze, G., 2014. Chirality determination of quartz crystals using Electron Backscatter Diffraction. Ultramicroscopy 149, 58-63. [CrossRef]
- Christopher J. Winta, C.J. et al, 2018. Second-harmonic phonon spectroscopy of α-quartz. Phys. Rev. B 97, 094108. [CrossRef]
- Wukovitz, S.W., Yeates, T.O., 1995.Why protein crystals favour some space-groups over others. Nat. Struct. Biol. 2,1062-7. [CrossRef]
- Yogev-Einot, D., Avnir, D., 2003. Quantitative symmetry and chirality of the molecular building blocks of quartz. Chem. Mater. 15, 464 – 472. [CrossRef]
- Yogev-Einot, D., Avnir, D., 2004. Pressure and temperature effects on the degree of symmetry and chirality of the molecular building blocks of low quartz, Acta Cryst. B60, 163–173. [CrossRef]
- Yogev-Einot, D., Avnir, D., 2006. The temperature-dependent optical activity of quartz: from Le Chatelier to chirality measures. Tetrahedron: Asymmetry 17, 2723 – 2725. [CrossRef]
- Yogev-Einot, D., Avnir, D., 2007. Left/right handedness assignment to chiral tetrahedral AB4 structures. Tetrahedron: Asymmetry 18, 2295–2299. [CrossRef]
- H. Zabrodsky, H., et al, 1992. Continuous Symmetry Measures, J. Am. Chem. Soc. 114, 7843-7851. [CrossRef]
- H. Zabrodsky, H., Avnir, D., 1995. Continuous Symmetry Measures, IV: Chirality. J. Am. Chem. Soc. 117, 462-473. [CrossRef]
|
Crystal class and system a |
Space group b |
|---|---|
| 1 (C1) Pedial Triclinic |
P1 (#1) |
| 2 (C2) Sphenoidal Monoclinic |
P2 (#3), P21 (#4), C2 (or A2, B2) (#5) |
| 222 (D2) Rhombic-disphenoidal Orthorhombic |
P222 (#16), P2221 (#17), P21212 (#18), P212121 (#19), C2221 (#20), C222 (#21), F222 (#22), I222 (#23), I212121 (#24) |
| 4 (C4) Tetragonal-pyramidal Tetragonal |
P4 (#75), P42 (#77), I4 (#79), I41 (#80) P41 (#76)/P43 (#78) |
| 422 (D4) Tetragonal-trapezohedral Tetragonal |
P422(#89), P4212(#90), P4222 (#93), P42212 (#94), I422 (#97), I4122 (#98) P4122 (#91)/P4322 (#95), P41212(#92)/P43212 (#96) |
| 3 (C3) Trigonal-pyramidal Trigonal |
P3 (#143), R3 (#146) P31 (#144)/P32 (#145) |
| 32 (D3) Trigonal-trapezohedral Trigonal |
P312 (#149), P321 (#150), R32 (#155) P3112 (#151)/P3212 (#153), P3121 (#152)/P3221 (#154) |
| 6 (C6) Hexagonal-pyramidal Hexagonal |
P6 (#168), P63 (#173) P61 (#169)/P65 (#170), P62 (#171)/P64 (#172) |
| 622 (D6) Hexagonal-trapezohedral Hexagonal |
P622 (#177), P6322 (#182) P6122(#178)/P6522 (#179), P6222(#180)/P6422(#181) |
| 23 (T) Tetaroidal Cubic |
P23 (#195), F23 (#196), I23 (#197), P213 (#198), I213 (#199) |
| 432 (O) Gyroidal Cubic |
P432 (#207), P4232 (#208), F432 (#209), F4132 (#210), I432 (#211), I4132 (#214) P4332 (#212)/P4132 (#213) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).