Submitted:
06 August 2024
Posted:
06 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Data Preprocessing
2.1.2. Calculation of Cloud Shadow Direction
2.1.3. Calculation of the Cloud Shadow Range
2.1.4. Cloud Shadow Detection
2.1. Materials and Validation Method
3. Results
3.1. Verification of Cloud Shadow Direction
3.2. Cloud Shadow Detection Accuracy
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, J.; Kim, G.; Jeong, Y.; Kim, S.; Youn, Y.; Cho, S.; Lee, Y. U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images. Korean Journal of Remote Sensing. 2021, 37(5_1), 1149–1161. [CrossRef]
- Shahtahmassebi, A.; Yang, N.; Wang, K.; Moore, N.; Shen, Z. Review of shadow detection and de-shadowing methods in remote sensing. Chin. Geogr. Sci. 2013, 23, 403–420. [CrossRef]
- Mostafa, Y. A review on various shadow detection and compensation techniques in remote sensing images. Can. J. Remote Sens. 2017, 43, 545–562. [CrossRef]
- Aboutalebi, M.; Torres-Rua, A. F.; Kustas, W. P.; Nieto, H.; Coopmans, C.; McKee, M. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrigation science. 2019, 37, 407-429. [CrossRef]
- Liu, X.; Yang, F.; Wei, H.; Gao, M. Shadow Removal from UAV Images Based on Color and Texture Equalization Compensation of Local Homogeneous Regions. Remote Sens. 2022, 14, 2616. [CrossRef]
- Alavipanah, S.K.; Karimi Firozjaei, M.; Sedighi, A.; Fathololoumi, S.; Zare Naghadehi, S.; Saleh, S.; Naghdizadegan, M.; Gomeh, Z.; Arsanjani, J.J.; Makki, M.; et al. The Shadow Effect on Surface Biophysical Variables Derived from Remote Sensing: A Review. Land 2022, 11, 2025. [CrossRef]
- Mao, K.B.; Yuan, Z.J.; Zuo, Z.Y.; Xu, T.R.; Shen, X.Y.; Gao, C.Y. Changes in global cloud cover based on remote sensing data from 2003 to 2012. Chin. Geogr. Sci. 2019, 29, 306–315. [CrossRef]
- Kim, B. H.; Kim, Y.; Han, Y. K.; Choi, W. S.; Kim, Y. Fully Automated Generation of Cloud-free Imagery Using Landsat-8. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 2014, 32(2), 133–142. [CrossRef]
- Byeon, Y.; Choi, S.; Jin, D.; Seong, N.; Jung, D.; Sim, S.; Woo, J.; Jeon, U.; Han, K. Quality Evaluation through Inter-Comparison of Satellite Cloud Detection Products in East Asia. Korean Journal of Remote Sensing. 2021, 37(6_2), 1829–1836. [CrossRef]
- Zekoll, V.; de los Reyes, R.; Richter, R. A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method. Remote Sens. 2022, 14, 2922. [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [CrossRef]
- Le Hegarat-Mascle, S.; Andre, C. Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical images. ISPRS J. Photogramm. Remote Sens. 2009, 64, 351–366.
- Fisher, A. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction. Remote Sens. 2014, 6, 776-800. [CrossRef]
- Zhong, B.; Chen, W.; Wu, S.; Hu, L.; Luo, X.; Liu, Q. A cloud detection method based on relationship between objects of cloud and cloud-shadow for Chinese moderate to high resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4898–4908. [CrossRef]
- Pailot-Bonnétat, S.; Harris, A.J.L.; Calvari, S.; De Michele, M.; Gurioli, L. Plume Height Time-Series Retrieval Using Shadow in Single Spatial Resolution Satellite Images. Remote Sens. 2020, 12, 3951. [CrossRef]
- Prabhakar, M.; Gopinath, K.; Reddy, A.; Thirupathi, M.; Rao, C.S. Mapping hailstorm damaged crop area using multispectral satellite data. Egypt. J. Remote Sens. Space Sci. 2019, 22, 73–79.
- Elsharkawy, A.; Elhabiby, M.; El-Sheimy, N. New combined pixel/object-based technique for efficient urban classsification using WorldView-2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2012, 39, 191-195.
- Satellite Imagery Product Specifications. Available online: https://assets.planet.com/docs/1601.RapidEye.Image.Product.Specs_Jan16_V6.1_ENG.pdf (accessed on 10 January 2024).
- Luo, Y.; Trishchenko, A.P.; Khlopenkov, K.V. Developing Clear-Sky, Cloud and Cloud Shadow Mask for Producing Clear-Sky Composites at 250-Meter Spatial Resolution for the Seven MODIS Land Bands over Canada and North America. Remote Sens. Environ. 2008, 112, 4167–4185.
- Sun, L.; Liu, X.; Yang, Y.; Chen, T.T.; Wang, Q.; Zhou, X. A Cloud Shadow Detection Method Combined with Cloud Height Iteration and Spectral Analysis for Landsat 8 OLI Data. ISPRS J. Photogramm. Remote Sens. 2018, 138, 193–207.
- Yoon, W. A Study on Development of Automatic GCP Matching Technology for CAS-500 Imagery. Master’s thesis, Inha University, Incheon, Republic of Korea, 2019.
- Park, H.; Son, J. H.; Jung, H. S.; Kweon, K. E.; Lee, K. D.; Kim, T. Development of the Precision Image Processing System for CAS-500. Korean Journal of Remote Sensing. 2020, 36(5–2): 881–891. [CrossRef]
- Son, J. H.; Yoon, W.; Kim, T.; Rhee, S. Iterative Precision Geometric Correction for High-Resolution Satellite Images. Korean Journal of Remote Sensing. 2021, 37(3), 431–447. [CrossRef]




















| No. | Scene-1 | Scene-2 | Scene-3 | |
| Category | ||||
| Acquisition date | 2018. 09. 17 | 2018. 09. 27 | 2018. 09. 22 | |
| Cloud cover (%) | 1.33 | 0.58 | 12.66 | |
| Sun’s azimuth / zenith angle (°) |
159.4 / 39.6 | 155.6 / 44.0 | 151.4 / 42.6 | |
| Viewing’s azimuth / zenith angle (°) |
281.3 / 16.3 | 99.8 / 3.8 | 98.8 / 17.1 | |
| Used band | Red (555.0 nm), Near-infrared (710.0 nm) | |||
| Product level | L1B | |||
| Spatial resolution | 5m | |||
| Case | |||||
| Case 1 | 339.4° | 325.2° | 322.8° | 16.6° | 2.4° |
| Case 2 | 324.4° | 15.0° | 0.8° | ||
| Case 3 | 323.8° | 15.6° | 1.4° | ||
| Case 4 | 321.3° | 18.1° | 3.9° | ||
| Case 5 | 321.8° | 17.6° | 3.4° | ||
| Case 6 | 323.0° | 16.4° | 2.2° | ||
| Case 7 | 324.5° | 14.9° | 0.7° | ||
| Case 8 | 322.3° | 17.1° | 2.9° | ||
| Case 9 | 316.2° | 23.2° | 9.0° | ||
| Case 10 | 319.3° | 20.1° | 5.9° | ||
| Absolute Mean | - | - | - | 17.4° | 3.2° |
| Case | |||||
| Case 1 | 335.6° | 339.1° | 337.2° | -1.6 | 1.9 |
| Case 2 | 336.5° | -0.9 | 2.6 | ||
| Case 3 | 335.1° | 0.5 | 4 | ||
| Case 4 | 334.5° | 1.1 | 4.6 | ||
| Case 5 | 337.9° | -2.3 | 1.2 | ||
| Case 6 | 337.7° | -2.1 | 1.4 | ||
| Case 7 | 337.8° | -2.1 | 1.3 | ||
| Case 8 | 338.3° | -2.7 | 0.8 | ||
| Case 9 | 335.1° | 0.5 | 4 | ||
| Case 10 | 337.3° | -1.7 | 1.8 | ||
| Absolute Mean | - | - | - | 1.5° | 2.3° |
| Case | |||||
| Case 1 | 331.3° | 349.8° | 355.1° | -23.8° | -5.3° |
| Case 2 | 351.8° | -20.5° | -2.0° | ||
| Case 3 | 354.0° | -22.7° | -4.2° | ||
| Case 4 | 354.1° | -22.8° | -4.3° | ||
| Case 5 | 346.0° | -14.7° | 3.8° | ||
| Case 6 | 351.4° | -20.1° | -1.6° | ||
| Case 7 | 356.7° | -25.4° | -6.9° | ||
| Case 8 | 355.6° | -24.3° | -5.8° | ||
| Case 9 | 352.4° | -21.1° | -2.6° | ||
| Case 10 | 349.3° | -18.0° | 0.5° | ||
| Absolute Mean | - | - | - | 21.3° | 3.7° |
| No. | Accuracy of cloud shadow detection in Scene-1 using | Accuracy of cloud shadow detection in Scene-2 using | Accuracy of cloud shadow detection in Scene-3 using | |||
| Precision | 0.79 | 0.87 | 0.80 | 0.82 | 0.93 | 0.96 |
| Recall | 0.32 | 0.59 | 0.45 | 0.45 | 0.33 | 0.62 |
| F1 score | 0.46 | 0.70 | 0.58 | 0.58 | 0.49 | 0.76 |
| Detection ratio (%) | 86.2 | 97.5 | 99.6 | 98.3 | 80.8 | 94.0 |
| Total cloud objects | 1332 | 300 | 2011 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
