Submitted:
29 July 2024
Posted:
29 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mechanism of Vascular Occlusion of COVID-19
3. CRVO after COVID-19 Infection
4. CRVO after COVID-19 Vaccination
5. BRVO after COVID-19 Infection
6. BRVO after COVID-19 Vaccination
7. CRAO after COVID-19 Infection
8. CRAO after Vaccination
9. BRAO after COVID-19 Infection
10. BRAO after COVID-19 Vaccination
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ullah, I.; Sohail, A; Shah, MUFA. ; Khurshid, M.; Diwan, MN.; Qadir, A.; Irfan, M. Central retinal vein occlusion in patients with COVID-19 infection: a systematic review. Ann Med Surg (Lond). 2021, 71, 102898. [Google Scholar] [CrossRef] [PubMed]
- Go, AS.; Reynolds, K.; Tabada, GH.; Prasad, PA.; Sung, SH.; Garcia, E.; Portugal, C.; Fan, D.; Pai, AP.; Fang, MC. COVID-19 and risk of VTE in ethnically diverse populations. Chest. 2021, 160, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Sastry, S.; Cuomo, F.; Muthusamy, J. COVID-19 and thrombosis: The role of hemodynamics. Thromb Res. 2022, 212, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Capaccione, KM.; Leb, JS.; D'souza, B.; Utukuri, P.; Salvatore, MM. Acute myocardial infarction secondary to COVID-19 infection: A case report and review of the literature. Clin Imaging. 2021, 72, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Manolis, AS.; Manolis, AA.; Manolis, TA.; Apostolopoulos, EJ.; Papatheou, D.; Melita, H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. 2020, 30, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, KS.; Bhadola, S.; Cervantes-Arslanian, AM. COVID-19 and the brain. Trends Cardiovasc Med. 2022, 32, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, EH.; Sund, M.; Lindmark, K.; Fors Connolly, AM. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ. 2022, 377, e069590. [Google Scholar] [CrossRef]
- D'Alessandro, E.; Kawasaki, A.; Eandi, CM. Pathogenesis of vascular retinal manifestations in COVID-19 patients: a review. Biomedicines. 2022, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Le, HG.; Shakoor, A. Diabetic and retinal vascular eye disease. Med Clin North Am. 2021, 105, 455–472. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Moss, SE.; Meuer, SM.; Klein, BE. The 15-year cumulative incidence of retinal vein occlusion: the Beaver Dam Eye Study. Arch Ophthalmol. 2008, 126, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Matsumoto, F.; Sakamoto, S.; Nakagawa, Y.; Suzuki, Y. Anti-VEGF therapy and retinal photocoagulation to prevent recurrence of central retinal vein occlusion: two case reports of young patients. Tokai J Exp Clin Med. 2020, 45, 249–253. [Google Scholar] [PubMed]
- Pielen, A.; Mirshahi, A.; Feltgen, N.; Lorenz, K.; Korb, C.; Junker, B.; Schaefer, C.; Zwiener, I.; Hattenbach, LO. ; RABAMES Study Group. Ranibizumab for branch retinal vein occlusion associated macular edema study (RABAMES): six-month results of a prospective randomized clinical trial. Acta Ophthalmol.
- Romano, F.; Lamanna, F.; Gabrielle, PH.; Teo, KYC. ; Battaglia, Parodi M.; Iacono P, Fraser-Bell S.; Cornish, EE.; Nassisi, M.; Viola, F.; Agarwal, A.; Samanta, A.; Chhablani, J.; Staurenghi, G.; Invernizzi, A. Update on retinal vein occlusion. Asia Pac J Ophthalmol (Phila). 2023, 12, 196–210. [Google Scholar] [CrossRef]
- Scott, IU.; Campochiaro, PA.; Newman, NJ.; Biousse, V. Retinal vascular occlusions. Lancet. 2020, 396(10266), 1927–1940. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulos, A.; Schutz, JS. Central retinal artery occlusion-A new, provisional treatment approach. Surv Ophthalmol. 2019, 64, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Madike, R.; Cugati, S.; Chen, C. A review of the management of central retinal artery occlusion. Taiwan J Ophthalmol. 2022, 12, 273–281. [Google Scholar]
- Hayreh, SS.; Zimmerman, MB. Central artery occlusion: visual outcome. Am J Ophthalmol. 2005, 140, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Iwasaki, A. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe. 2020, 27, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Onomoto, K.; Onoguchi, K.; Yoneyama, M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol. 2021, 18, 539–555. [Google Scholar] [CrossRef]
- Goshua, G.; Pine, AB.; Meizlish, ML.; Chang, CH.; Zhang, H.; Bahel, P.; Baluha, A.; Bar, N.; Bona, RD.; Burns, AJ.; Dela Cruz, CS.; Dumont, A.; Halene, S.; Hwa, J.; Koff, J.; Menninger, H.; Neparidze, N.; Price, C.; Siner, JM.; Tormey, C.; Rinder, HM.; Chun, HJ.; Lee, AI. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020, 7, e575–e582. [Google Scholar] [CrossRef]
- Loo, J.; Spittle, DA.; Newnham, M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021, 76, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, AT.; Wang, CY.; Zhu, WL.; Chen, W. Coagulation disorders and thrombosis in COVID-19 patients and a possible mechanism involving endothelial cells: a review. Aging Dis. 2022, 13, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, A.; Pellegrini, M.; Messenio, D.; Cereda, M.; Olivieri, P.; Brambilla, AM.; Staurenghi, G. Impending central retinal vein occlusion in a patient with Coronavirus disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020, 28, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Gaba, WH.; Ahmed, D.; Al Nuaimi, RK.; Dhanhani, AA.; Eatamadi, H. Bilateral central retinal vein occlusion in a 40-year-old man with severe Coronavirus disease 2019 (COVID-19) pneumonia. Am J Case Rep. 2020, 21, e927691. [Google Scholar] [CrossRef] [PubMed]
- Riazi-Esfahani H, Sadeghi, R. ; Soleymanzadeh, M.; Farrokhpour, H.; Bazvand, F.; Ebrahimiadib, N.; Khalili Pour E, Mirghorbani, M. Hemicentral retinal vein occlusion in a patient with a history of coronavirus disease 2019 infection: a case report and review of the literature. J Med Case Rep. 2024, 18, 50. [Google Scholar] [CrossRef]
- Sheth, JU.; Narayanan, R.; Goyal, J.; Goyal, V. Retinal vein occlusion in COVID-19: A novel entity. Indian J Ophthalmol. 2020, 68, 2291–2293. [Google Scholar] [CrossRef]
- Walinjkar, JA.; Makhija, SC.; Sharma, HR.; Morekar, SR.; Natarajan, S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J Ophthalmol. 2020, 68, 2572–2574. [Google Scholar] [PubMed]
- Kılıçarslan, O.; Çebi, AY.; Uçar, D. Central retinal vein occlusion and occlusive vasculopathy at macula in a patient with recent COVID-19 infection. Taiwan J Ophthalmol 2022, 12, 477–481. [Google Scholar]
- Raval, N.; Djougarian, A.; Lin, J. Central retinal vein occlusion in the setting of COVID-19 infection. J Ophthalmic Inflamm Infect. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Finn, AP.; Khurana, RN.; Chang, LK. Hemi-retinal vein occlusion in a young patient with COVID-19. Am J Ophthalmol Case Rep. 2021, 22, 101046. [Google Scholar] [CrossRef]
- Lin, CH.; Sun, IT. Bilateral simultaneous central retinal vein occlusion secondary to COVID-19: a case report. Case Rep Ophthalmol. 2023, 14, 56–61. [Google Scholar] [CrossRef]
- Yahalomi, T.; Pikkel, J.; Arnon, R.; Pessach, Y. Central retinal vein occlusion in a young healthy COVID-19 patient: A case report. Am J Ophthalmol Case Rep. 2020, 20, 100992. [Google Scholar] [CrossRef]
- Venkatesh, R.; Reddy, NG.; Agrawal, S.; Pereira, A. COVID-19-associated central retinal vein occlusion treated with oral aspirin. BMJ Case Rep. 2021, 14, e242987. [Google Scholar] [CrossRef] [PubMed]
- Shroff, D.; Kumar, S.; Naidu, A.; Gupta, C.; Shroff, CM. Retinal vasoocclusive spectrum following COVID-19. Indian J Ophthalmol. 2022, 70, 1412–1415. [Google Scholar] [PubMed]
- Staropoli, PC.; Payson, A.; Negron, CI.; Prakhunhungsit, S.; Laufer, P.; Berrocal, AM. CRVO associated with COVID-19 and MTHFR mutation in a 15-year-old male. Am J Ophthalmol Case Rep. 2022, 26, 101522. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazy, N.; Patel, NA.; Sridhar, J.; Yannuzzi, NA.; Belin, PJ.; Kaplan, R.; Kothari, N.; Benitez Bajandas GA, Kohly, RP. ; Roizenblatt, R.; Pinhas, A.; Mundae, R.; Rosen, RB.; Ryan EH Jr.; Chiang, A.; Chang, LK.; Khurana, RN.; Finn, AP. Hemi- and central retinal vein occlusion associated with COVID-19 infection in young patients without known risk factors. Ophthalmol Retina. 2022, 6, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Płatkowska-Adamska, B.; Kal, M.; Krupińska, J.; Biskup, M.; Odrobina, D. Central retinal vein occlusion after discontinuation of rivaroxaban therapy in a young patient with COVID-19 pulmonary embolism: a case report. Am J Case Rep. 2022, 23, e937739. [Google Scholar] [CrossRef] [PubMed]
- Quigley, C.; Butler, T.; Byrne, L.; Moore, D.; Doyle, A. Post-Coronavirus disease 2019 (COVID-19) syndrome associated with central retinal vein occlusion: a case report. Ocul Immunol Inflamm. 2023, 31, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hall, NE.; Pershing, S.; Hyman, L.; Haller, JA.; Lee, AY.; Lee, CS.; Chiang, M.; Lum, F.; Miller, JW.; Lorch, A.; Elze, T. Age, gender, and laterality of retinal vascular occlusion: a retrospective study from the IRIS® registry. Ophthalmol Retina. 2022, 6, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Fishman, GA.; Anderson, RJ.; Tozatti, MS.; Heckenlively, JR.; Weleber, RG.; Edwards, AO.; Brown, J Jr. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology. 1999, 106, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Gurudas, S.; Ramu, J.; Patrao, N.; Chandra, S.; Rasheed, R.; Nicholson, L.; Peto, T.; Sivaprasad, S.; Hykin, P. Predictors of visual acuity outcomes after anti-vascular endothelial growth factor treatment for macular edema secondary to central retinal vein occlusion. Ophthalmol Retina. 2021, 5, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Dărăbuș, DM.; Pac, CP.; Roşca, C.; Munteanu, M. Macular dynamics and visual acuity prognosis in retinal vein occlusions - ways to connect. Rom J Ophthalmol. 2023, 67, 312–324. [Google Scholar] [PubMed]
- Sonawane, NJ.; Yadav, D.; Kota, AR.; Singh, HV. Central retinal vein occlusion post-COVID-19 vaccination. Indian J Ophthalmol. 2022, 70, 308–309. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, K.; Hirano, Y.; Esaki, Y.; Yasukawa, T. Central retinal vein occlusion after mRNA COVID-19 vaccination. Case Rep Ophthalmol. 2023, 14, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sankhala, KK.; Bose, S.; Gallemore, RP. Combined central retinal artery and vein occlusion with ischemic optic neuropathy after COVID-19 vaccination. Int Med Case Rep J. 2022, 15, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. ; Lim, BXH.; Lim, DK.; Lingam, G.; Lim, CHL. Retinal vein occlusion following BNT162b2 (Pfizer-BioNTech) COVID-19 vaccination. Singapore Med J.
- Romano, D.; Morescalchi, F.; Romano, V.; Semeraro, F. COVID-19 adenoviral vector vaccine and central retinal vein occlusion. Ocul Immunol Inflamm. 2022, 30, 1286–1288. [Google Scholar] [CrossRef] [PubMed]
- Endo, B.; Bahamon, S.; Martínez-Pulgarín, DF. Central retinal vein occlusion after mRNA SARS-CoV-2 vaccination: A case report. Indian J Ophthalmol. 2021, 69, 2865–2866. [Google Scholar] [CrossRef] [PubMed]
- Sung, SY.; Jenny, LA.; Chang, YC.; Wang, NK.; Liu, PK. Central retinal vein occlusion in a young woman with diabetes and hypertension after mRNA-based COVID-19 vaccination-a case report and brief review of the literature. Vaccines (Basel). 2023, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Dutta Majumder, P.; Prakash, VJ. Retinal venous occlusion following COVID-19 vaccination: report of a case after third dose and review of the literature. Indian J Ophthalmol. 2022, 70, 2191–2194. [Google Scholar] [CrossRef]
- Shah, PP.; Gelnick, S.; Jonisch, J.; Verma, R. Central retinal vein occlusion following BNT162b2 (Pfizer-BioNTech) COVID-19 messenger RNA vaccine. Retin Cases Brief Rep. 2023, 17, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Takacs, A.; Ecsedy, M.; Nagy, ZZ. Possible COVID-19 mRNA vaccine-induced case of unilateral central retinal vein occlusion. Ocul Immunol Inflamm. 2023, 31, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Nangia, P.; Prakash. , VJ.; Dutta Majumder P. Retinal venous occlusion in a child following Corbevax COVID-19 vaccination. Indian J Ophthalmol. 2022, 70, 3713–3715. [Google Scholar]
- Bialasiewicz, AA.; Farah-Diab, MS.; Mebarki, HT. Central retinal vein occlusion occurring immediately after 2nd dose of mRNA SARS-CoV-2 vaccine. Int Ophthalmol. 2021, 41, 3889–3892. [Google Scholar] [CrossRef]
- Nourinia, R.; Ghassempour, M.; Ahmadieh, H.; Abtahi, SH. Branch retinal vein occlusion after COVID-19. J Fr Ophtalmol. 2021, 44, e441–e443. [Google Scholar] [CrossRef] [PubMed]
- Duff, SM.; Wilde, M.; Khurshid, G. Branch retinal vein occlusion in a COVID-19 positive patient. Cureus. 2021, 13, e13586. [Google Scholar] [CrossRef] [PubMed]
- Karasu, B.; Kesim, E. Bilateral branch retinal vein occlusion following the diagnosis of mild coronavirus disease. Arq Bras Oftalmol. 2023, 86, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Kapsis, P.; Agapitou, C.; Dimitriou, E.; Theodossiadis, P.; Chatziralli, I. Branch retinal vein occlusion after COVID-19 infection: a case report. Cureus. 2023, 15, e38172. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, HF.; Lima, LH.; Shiroma, YB.; Kanadani, TC.; Nobrega, MJ.; Andrade, G.; de Moraes Filho, MN.; Penha, FM. Retinal vascular occlusion in patients with the Covid-19 virus. Int J Retina Vitreous. 2022, 8, 45. [Google Scholar] [CrossRef]
- Güven, YZ.; Akbalık, T.; Akay, F. Nasal vein occlusion after COVID-19: a case report. Indian J Ophthalmol. 2022, 70, 2195–2196. [Google Scholar] [CrossRef] [PubMed]
- Lee, JY.; Yoon, YH.; Kim, HK.; Yoon, HS.; Kang, SW.; Kim, JG.; Park, KH.; Jo, YJ.; Korean RVO Study. Baseline characteristics and risk factors of retinal vein occlusion: a study by the Korean RVO Study Group. J Korean Med Sci. 2013, 28, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Pur, DR.; Catherine Danielle Bursztyn LL, Iordanous, Y. Branch retinal vein occlusion in a healthy young man following mRNA COVID-19 vaccination. Am J Ophthalmol Case Rep. 2022, 26, 101445. [Google Scholar] [CrossRef]
- Sugihara, K.; Kono, M.; Tanito, M. Branch retinal vein occlusion after messenger RNA-based COVID-19 vaccine. Case Rep Ophthalmol. 2022, 13, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Gironi, M.; D’Aloisio, R.; Verdina, T.; Shkurko, B. Bilateral branch retinal vein occlusion after mRNA-SARS-CoV-2 booster dose vaccination. J Clin Med. 2023, 12, 1325. [Google Scholar] [CrossRef]
- Tanaka, H.; Nagasato, D.; Nakakura, S.; Nagasawa, T.; Wakuda, H.; Kurusu, A.; Mitamura, Y.; Tabuchi, H. Branch retinal vein occlusion post severe acute respiratory syndrome coronavirus 2 vaccination. Taiwan J Ophthalmol. 2022, 12, 202–205. [Google Scholar]
- Karageorgiou, G.; Chronopoulou, K.; Georgalas, I.; Kandarakis, S.; Tservakis, I.; Petrou, P. Branch retinal vein occlusion following ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccine. Eur J Ophthalmol. 2023, 33, NP121–NP123. [Google Scholar] [CrossRef]
- Lee, J.; Ong, KW.; Wan Abdul Halim WH, Mohd Khialdin, S. ; Yong, MH. Case report: branch retinal vein occlusion post-mRNA SARS-CoV-2 (COVID-19) vaccination. Optom Vis Sci. 2023, 100, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Silva, LSCD. ; Finamor, LPS.; Andrade, GC.; Lima, LH.; Zett, C.; Muccioli, C.; Sarraf, EP.; Marinho, PM.; Peruchi, J.; Oliveira, RDL.; Giralt, L.; Charcan, I.; Fonollosa, A.; Diaz, JD.; Davis, JL.; Nascimento, H.; Belfort R Jr. Vascular retinal findings after COVID-19 vaccination in 11 cases: a coincidence or consequence? Arq Bras Oftalmol. 2022, 85, 158–165. [Google Scholar]
- Peters, MC.; Cheng, SSH. ; Sharma, A.; Moloney, TP. Retinal vein occlusion following COVID-19 vaccination. Clin Exp Ophthalmol. 2022, 50, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Seo, MH.; Choi, KE.; Lee, S.; Choi, B.; Yun, C.; Kim, SW.; Kim, YY. Vision-threatening ocular adverse events after vaccination against coronavirus disease 2019. J Clin Med. 2022, 11, 3318. [Google Scholar] [CrossRef] [PubMed]
- Bolletta, E.; Iannetta, D.; Mastrofilippo, V.; De Simone L, Gozzi, F. ; Croci, S.; Bonacini, M.; Belloni, L.; Zerbini, A.; Adani, C.; Fontana, L.; Salvarani, C.; Cimino, L. Uveitis and other ocular complications following COVID-19 vaccination. J Clin Med. 2021, 10, 5960. [Google Scholar] [CrossRef] [PubMed]
- Bapaye, MM.; Nair, AG.; Bapaye, CM.; Bapaye, MM.; Shukla, JJ. Simultaneous bilateral central retinal artery occlusion following COVID-19 infection. Ocul Immunol Inflamm. 2021, 29, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh, HR.; Abrishami, M.; Motamed Shariati, M.; Ghavami Shahri, SH.; Ansari Astaneh, MR. Atypical central retinal artery occlusion following COVID-19 infection: a case report. Case Rep Ophthalmol. 2023, 14, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Abbati, G.; Fazi, C.; Fortunato, P.; Trapani, S. Central retinal artery occlusion in a young child affected by COVID-19: a first case report. BMC Pediatr. 2023, 23, 462. [Google Scholar] [CrossRef]
- Montesel, A.; Bucolo, C.; Mouvet, V.; Moret, E.; Eandi, CM. Case report: central retinal artery occlusion in a COVID-19 patient. Front Pharmacol. 2020, 11, 588384. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, MR.; Lucena, ARV. ; Higino, TM.; Ventura, CV. Central retinal artery occlusion with cilioretinal artery sparing secondary to COVID-19: additional ocular complication. Indian J Ophthalmol. 2023, 71, 663–666. [Google Scholar] [CrossRef]
- Ucar, F.; Cetinkaya, S. Central retinal artery occlusion in a patient who contracted COVID-19 and review of similar cases. BMJ Case Rep. 2021, 14, e244181. [Google Scholar] [CrossRef] [PubMed]
- Yalçınbayır, Ö.; Uçan Gündüz, G.; Coşkun, F.; Hakyemez, B.; Doğanay, S. Different cases, different manifestations of post-COVID-19 retinal artery occlusion: a case series. Turk J Ophthalmol. 2023, 53, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Lekha, T.; Thomas, R.; Giridhar, A.; Gopalakrishnan, M. Retrospective diagnosis of COVID-19 following the detection of central retinal artery occlusion. Oman J Ophthalmol. 2022, 15, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Diamond, M.; Anwar, S.; Glaser, A.; Tyagi, P. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020, 21, e00867. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, RD.; Koduri, VA.; Chen, RC.; Subramanian, PS. Embolic abducens palsy and central retinal artery occlusion in a patient with COVID-19. J Neuroophthalmol. 2022, 42, e500–e501. [Google Scholar] [CrossRef] [PubMed]
- Been Sayeed SKJ. ; Chandra Das S.; Mahmud, R.; Moniruzzaman, M.; Rahman, MM. Acute ischemic stroke with central retinal artery occlusion as a rare presentation of COVID-19 disease. Cureus. 2021, 13, e17469. [Google Scholar]
- Lee, KE.; Tschoe, C.; Coffman, SA.; Kittel, C.; Brown, PA.; Vu, Q.; Fargen, KM.; Hayes, BH.; Wolfe, SQ. Management of acute central retinal artery occlusion, a "retinal stroke": an institutional series and literature review. J Stroke Cerebrovasc Dis. 2021, 30, 105531. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Zheng, X.; Patel, AP.; Bhatti, MT.; Gilbert, A.; Vora, RA. Central retinal artery occlusion: visual outcomes from a large northern California cohort. Ophthalmol Retina. 2024, 8, 566–570. [Google Scholar] [CrossRef] [PubMed]
- St Peter, D.; Na, D.; Sethuraman, K.; Mathews, MK.; Li, AS. Hyperbaric oxygen therapy for central retinal artery occlusion: visual acuity and time to treatment. Undersea Hyperb Med. 50.
- Abdin, AD.; Gärtner, BC.; Seitz, B. Central retinal artery occlusion following COVID-19 vaccine administration. Am J Ophthalmol Case Rep. 2022, 26, 101430. [Google Scholar] [CrossRef] [PubMed]
- Chow, SY.; Hsu, YR.; Fong, VH. Central retinal artery occlusion after Moderna mRNA-1273 vaccination. J Formos Med Assoc. 2022, 121, 2369–2370. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Peltzer, C.; Buchowicz, B.; Dawson Slaney, E.; Maleki, A. Progressive central retinal artery occlusion, ophthalmic artery occlusion, and hemispheric intracranial thrombosis after COVID-19 mRNA vaccine application: case report. Case Rep Ophthalmol. 2023, 14, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, A.; Kitamura, Y.; Baba, T. Recovery from central retinal artery occlusion accompanying paracentral acute middle maculopathy after COVID-19 vaccination. Cureus. 2024, 16, e51501. [Google Scholar] [CrossRef] [PubMed]
- Thakar, M.; Bhattacharya, S. Central retinal artery occlusion after vaccination with whole virion inactivated SARSCoV- 2 vaccine Covaxin. Indian J Ophthalmol. 2022, 70, 3716–3718. [Google Scholar] [PubMed]
- Wang, LU.; Chen, FT.; Wang, JK.; Huang, TL.; Chang, PY.; Chen, YJ.; Hsu, YR. Ocular inflammatory manifestations following COVID-19 vaccinations in Taiwan: a case series. Taiwan J Ophthalmol. 2022, 12, 465–471. [Google Scholar] [PubMed]
- Kido, A.; Tamura, H.; Ikeda, HO.; Miyake, M.; Hiragi, S.; Tsujikawa, A. Nationwide incidence of central retinal artery occlusion in Japan: an exploratory descriptive study using the National Database of Health Insurance Claims (2011–2015). BMJ Open. 2020, 10, e041104. [Google Scholar] [CrossRef] [PubMed]
- Ateş, O.; Yıldırım, M.; Yıldırım, K. Branch retinal artery occlusion in patient with COVID-19: case report. Korean J Ophthalmol 2021, 35, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, PK.; Navyasree, C.; Srija, YN. Combined central retinal vein occlusion with branch retinal artery occlusion in a leukaemic patient with COVID-19. Clin Exp Optom. 2023, 106, 933–934. [Google Scholar] [CrossRef]
- Hirosawa, K.; Inomata, T.; Sung, J.; Morooka, Y.; Huang, T.; Akasaki, Y.; Okumura, Y.; Nagino, K.; Omori, K.; Nakao, S. Unilateral branch retinal artery occlusion in association with COVID-19: a case report. Int J Ophthalmol. 2024, 17, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Uzun, A.; Keles Sahin, A.; Bektas, O. A unique case of branch retinal artery occlusion associated with a relatively mild Coronavirus disease 2019. Ocul Immunol Inflamm. 2021, 29, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Yatsuka, H.; Haruta, M.; Kimoto, K.; Yoshida, S.; Kubota, T. Branch retinal artery occlusions, paracentral acute middle maculopathy and acute macular neuroretinopathy after COVID-19 vaccinations. Clin Ophthalmol. 2022, 16, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Girbardt, C.; Busch, C.; Al-Sheikh, M.; Gunzinger, JM.; Invernizzi, A.; Xhepa, A.; Unterlauft, JD.; Rehak, M. Retinal vascular events after mRNA and adenoviral-vectored COVID-19 vaccines—a case series. Vaccines (Basel). 2021, 9, 1349. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Nagasato, D.; Tanaka, H.; Nakakura, S.; Nagasawa, T.; Mitamura, Y.; Tabuchi, H. Branch retinal artery occlusion with unruptured retinal arterial macroaneurysm post-SARS-CoV-2 vaccination: a case report. Eur J Ophthalmol. 2024, 34, NP53–NP56. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020, 395(10229), 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020, 18, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Choi, JJ.; Wehmeyer, GT.; Li, HA.; Alshak, MN.; Nahid, M.; Rajan, M.; Liu, B.; Schatoff, EM.; Elahjji, R.; Abdelghany, Y.; D'Angelo, D.; Crossman, D.; Evans, AT.; Steel, P.; Pinheiro, LC.; Goyal, P.; Safford, MM.; Mints, G.; DeSancho, MT. D-dimer cut-off points and risk of venous thromboembolism in adult hospitalized patients with COVID-19. Thromb Res. 2020, 196, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, LU.; Chen, FT.; Wang, JK.; Huang, TL.; Chang, PY.; Chen, YJ.; Hsu, YR. Ocular inflammatory manifestations following COVID-19 vaccinations in Taiwan: a case series. Taiwan J Ophthalmol. 2022, 12, 465–471. [Google Scholar] [PubMed]
- Monagle, P.; Ng, AP.; Linden, M.; Ignjatovic, V.; Farley, A.; Taoudi, S.; Pasricha, SR.; Torresi, J. Vaccine-induced immune thrombosis and thrombocytopenia syndrome following adenovirus-vectored severe acute respiratory syndrome coronavirus 2 vaccination: a novel hypothesis regarding mechanisms and implications for future vaccine development. Immunol Cell Biol. 2021, 99, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Patone, M.; Mei, XW.; Saatci, D.; Dixon, S.; Khunti, K.; Zaccardi, F.; Watkinson, P.; Shankar-Hari, M.; Doidge, J.; Harrison, DA.; Griffin, SJ.; Sheikh, A.; Coupland, CAC. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ. 2021, 374, n1931. [Google Scholar] [CrossRef] [PubMed]
- Cheruiyot, I.; Kipkorir, V.; Ngure, B.; Misiani, M.; Munguti, J.; Ogeng'o, J. Arterial thrombosis in Coronavirus disease 2019 patients: a rapid systematic review. Ann Vasc Surg. 2021, 70, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Malas, MB.; Naazie, IN.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EClinicalMedicine. 2020, 29, 100639. [Google Scholar] [CrossRef] [PubMed]
- Modjtahedi, BS.; Do, D.; Luong, TQ.; Shaw, J. Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis. JAMA Ophthalmol. 2022, 140, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Napal, B.; García-Palacios, JD.; González-Mesones, B.; Napal, JJ.; Hernández, JL. Retinal vein occlusion in the general population after COVID-19 vaccination and infection. Med Clin (Barc). 2023, 161, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Park, HS.; Kim, S.; Lee, CS.; Byeon, SH.; Kim, SS.; Lee, SW.; Kim, YJ. Retinal vascular occlusion risks during the COVID-19 pandemic and after SARS-CoV-2 infection. Sci Rep. 2023, 13, 16851. [Google Scholar] [CrossRef] [PubMed]
- Park, HS.; Lee, NK.; Lee, CS.; Byeon, SH.; Kim, SS.; Lee, SW.; Kim, YJ. Retinal artery and vein occlusion risks after coronavirus disease 2019 or coronavirus disease 2019 vaccination. Ophthalmology. 2024, 131, 322–332. [Google Scholar] [CrossRef]
- Al-Moujahed, A.; Boucher, N.; Fernando, R.; Saroj, N.; Vail, D.; Rosenblatt, TR.; Moshfeghi, DM. Incidence of retinal artery and vein occlusions during the COVID-19 pandemic. Ophthalmic Surg Lasers Imaging Retina. 2022, 53, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Yamana, H.; Iwagami, M.; Ono, S.; Takeuchi, Y.; Michihata, N.; Uemura, K.; Yasunaga, H.; Aihara, M.; Kaburaki, T. Ocular adverse events after Coronavirus disease 2019 mRNA vaccination: matched cohort and self-controlled case series studies using a large database. Ophthalmology. 2023, 130, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Rachman, MJ.; Kalanjati, VP.; Rimbun, R.; Khadijah, F. Retinal vein occlusion amongst people vaccinated by mRNA- and viral vector- COVID-19 vaccines: a systematic review. Clin Ophthalmol. 2023, 28, 17–2825. [Google Scholar] [CrossRef] [PubMed]
- Muto, T.; Sakamoto, M.; Kusuda, S.; Haruyama, Y.; Machida, S.; Imaizumi, S.; Sekiryu, T. Effect of the COVID-19 pandemic on Vogt-Koyanagi-Harada disease. Sci Rep. 2024, 14, 13211. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhang, M.; Chen, M.; Lin, TPH. ; Lai, M.; Chen, H. Ocular trauma during COVID-19 pandemic: a systematic review and meta-analysis. Asia Pac J Ophthalmol (Phila). 2022, 11, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Sterczewska, A.; Wojtyniak, A.; Mrukwa-Kominek, E. Ocular complaints from students during COVID-19 pandemic. Adv Clin Exp Med. 2022, 31, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Krolo, I.; Blazeka, M.; Merdzo, I.; Vrtar, I.; Sabol, I.; Petric-Vickovic, I. Mask-associated dry eye during COVID-19 pandemic-how face masks contribute to dry eye disease symptoms. Med Arch. 2021, 75, 144–148. [Google Scholar] [CrossRef]
- H, Fortes.; D, Tailor P.; T Xu T.; A, Churchill R.; R Starr, M. Clinical characteristics and outcomes of endophthalmitis before and during the COVID-19 pandemic. J Ophthalmic Vis Res.
- Sakamoto, T.; Terasaki, H.; Yamashita, T.; Shiihara, H.; Funatsu, R.; Uemura, A; Japanese Retina and Vitreous Society. Increased incidence of endophthalmitis after vitrectomy relative to face mask wearing during COVID-19 pandemic. Br J Ophthalmol. 2023, 107, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Danesh-Meyer, HV. A review of neuro-ophthalmic following COVID-19 infection and vaccination. Front Cell Infect Microbiol. 2024, 14, 1345683. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yang, K.; Lv, K.; Ma, Y.; Hou, X.; Liang, Y.; Bao, Y.; Wu, H. Increased incidence of acute primary angle closure during the COVID-19 outbreak in China: A retrospective analysis. Medicine (Baltimore). 2024, 103, e38030. [Google Scholar] [CrossRef] [PubMed]
- Muto, T.; Machida, S.; Imaizumi, S.; Kamoi, K. Possible association between vaccination against SARS-CoV-2 and recurrence of macular edema due to branch retinal vein occlusion: a case report. J Int Med Res. 2023, 51, 3000605231213777. [Google Scholar] [CrossRef]
- Muto, T.; Sakamoto, M.; Imaizumi, S.; Kamoi, K. Reactivation of previously controlled Vogt-Koyanagi-Harada disease more than 46 years following COVID-19 vaccination: a case study. J Int Med Res. 2024, 52, 3000605231221081. [Google Scholar] [CrossRef]
- Muto, T.; Sakamoto, M.; Machida, S.; Imaizumi, S.; Hamada, Y.; Kamoi, K. Branch retinal vein occlusion following COVID-19 vaccination and SARS-CoV-2 infection while taking oral contraceptives. 2024. [Google Scholar] [CrossRef]

| No. | Authors | Age | Sex | Laterality | Time between COVID-19 diagnosis and symptom onset (days) | Abnormal blood test findings |
|---|---|---|---|---|---|---|
| 1 | Invernizzi A et al. | 54 | F | R | 5 | CRP (31.1 mg/L) |
| Erythrocyte sedimentation rate (78) | ||||||
| lactate dehydrogenase (269 U/L) | ||||||
| PT 13.8 sec | ||||||
| aPTT 36.6 sec | ||||||
| fibrinogen (6.82 g/l) | ||||||
| d-dimer (426 μg/L) | ||||||
| 2 | Gaba WH et al. | 40 | M | R, L | 1 | ferritin (1518 μg/L) |
| lactate dehydrogenase (402 U/L) | ||||||
| d-dimer (>20 μg/L) | ||||||
| CRP (68 mg/L) | ||||||
| interlekin-6 (87.1 pg/mL) | ||||||
| 3 | Riazi-Esfahani H et al. | 35 | M | L | 120 | CRP borderline |
| homocysteine level borderline | ||||||
| 4 | Sheth JU, et al. | 52 | M | L | 10 | unremarkable |
| 5 | Walinjkar JA, et al. | 17 | F | R | 23 | not listed |
| 6 | Kılıçarslan O, et al. | 50 | M | R | 0 | PTT (20.3 s) |
| lactate dehydrogenase (222 U/L) | ||||||
| 7 | Raval et al. | 39 | M | R | 7 | unremarkable |
| 8 | Finn AP et al. | 32 | M | R | 30 | not listed |
| 9 | Lin CH et al. | 48 | M | R, L | 30 | d-dimer (1050 μg/L) |
| CRP (86.89 mg/L) | ||||||
| 10 | Yahalomi T et al. | 33 | M | L | 20 | unremarkable |
| 11 | Venkatesh R, et al. | 56 | F | L | 0 | d-dimer (707 μg/L) |
| ESR (52 mm) | ||||||
| 12 | Shroff D et al. | 41 | F | R | 21 | d-dimer (0.9 μg/L) |
| 13 | Staropoli PC et al. | 15 | M | L | 0 | no particular |
| 15 | Ashkenazy N et al. | 33 | M | 42 | not listed | |
| 29 | M | 84 | not listed | |||
| 24 | F | 28 | not listed | |||
| 36 | F | 98 | not listed | |||
| 22 | M | 63 | not listed | |||
| 18 | F | 21 | not listed | |||
| 50 | F | 126 | not listed | |||
| 41 | F | 105 | not listed | |||
| 34 | M | 98 | not listed | |||
| 30 | M | 42 | not listed | |||
| 31 | F | 7 | not listed | |||
| 38 | F | 28 | not listed | |||
| 16 | Płatkowska-Adamska B et al. | 38 | M | R | 180 | cholesterol (243 mg/dL) |
| d-dimer (543 ug/L) | ||||||
| 17 | Quigley C, et al. | 42 | M | R | 240 | WBC (3.5 x 109/L) |
| total cholesterol (5.4 mmol/L) | ||||||
| neutrophils (1.4 x 109/L) |
| No. | Authors | BCVA at initial visit | Treatment | Final BCVA |
|---|---|---|---|---|
| 1 | Invernizzi A et al. | 20/40 | oral prednisolone 60 mg/day | 20/20 (1 week) |
| 2 | Gaba WH et al. | 6/9 in the right eye | rivaroxaban 15 mg twice daily | |
| 6/18 in the left eye | ||||
| 3 | Riazi-Esfahani H et al. | CF | IV anti-VEGF (3 times) | not listed |
| 4 | Sheth JU, et al. | 6/60 | oral methylprednisolone (40 mg/day) | 6/9 (1 month) |
| IV Ranibizumab BS | ||||
| 5 | Walinjkar JA, et al. | 6/24 | IVR | 6/12 (2 month) |
| 6 | Kılıçarslan O, et al. | CF | IVA Systemic steroid therapy | CF (3 months) |
| 7 | Raval et al. | 20/150 | IVB | 20/30 |
| 8 | Finn AP et al. | 20/20 | not listed | not listed |
| 9 | Lin CH et al. | CF (both eyes) | IV anti-VEGF | not listed |
| 10 | Yahalomi T et al. | 20/25 | not listed | not listed |
| 11 | Venkatesh R, et al. | 6/18 | oral aspirin | 6/6 (1 month) |
| 12 | Shroff D et al. | 3/60 | IV anti-VEGF | not listed |
| 13 | Staropoli PC et al. | E” at 2 feet | Doxycycline 100mg twice daily | 20/200 |
| prednisolone eye drops | ||||
| IVB | ||||
| 15 | Ashkenazy N et al. | 20/20 | 20/15 | |
| 20/80 | IVB | 20/20 | ||
| 20/60 | 20/30 | |||
| 20/70 | IVB | 20/20 | ||
| 20/20 | 20/20 | |||
| 20/25 | 20/20 | |||
| 20/30 | plavix | 20/25 | ||
| 20/50 | 20/30 | |||
| 20/20 | 20/20 | |||
| CF | oral prednisolone | 20/20 | ||
| oral aspirin | ||||
| IVB | ||||
| 20/20 | 20/20 | |||
| 20/20 | IVB | 20/60 | ||
| 16 | Płatkowska-Adamska B et al. | 5/25 | IVR | 20/20 |
| 17 | Quigley C, et al. | 6/18 | IVB | not listed |
| No. | Authors | Age | Sex | Laterality | Time between vaccination and刘symptom onset (days) |
|---|---|---|---|---|---|
| 1 | Sonawane NJ et al. | 50 | M | R | 4 |
| 43 | F | R | 3 | ||
| 2 | Ishiguro K et al. | 47 | M | R | 0 (8 hours) |
| 3 | Lee S et al. | 34 | M | L | 10-12 |
| 4 | Wu D et al. | 54 | M | L | 9 |
| 5 | Romano D et al. | 54 | F | R | 2 |
| 6 | Endo B et al. | 52 | M | L | 15 |
| 7 | Sung SY et al. | 25 | F | L | 10 |
| 8 | Dutta Majumder P et al. | 28 | M | R | 25 |
| 9 | Shah PP et al. | 27 | F | L | 10 |
| 10 | Takacs A et al. | 35 | M | R | 14 |
| 11 | Nangia P et al. | 13 | M | L | 15 |
| 12 | Bialasiewicz AA et al. | 50 | M | L | 0 |
| No. | Authors | Vaccine type | Vaccine number |
|---|---|---|---|
| 1 | Sonawane NJ et al. | Oxford-AstraZeneca (ChAdOx1 nCoV-19/ AZD1222) | second |
| Oxford-AstraZeneca (ChAdOx1 nCoV-19/ AZD1222) | second | ||
| 2 | Ishiguro K et al. | Pfizer/BioNTech (BNT162b2) | first |
| 3 | Lee S et al. | Pfizer/BioNTech (BNT162b2) | second |
| 4 | Wu D et al. | Pfizer/BioNTech (BNT162b2) | second |
| 5 | Romano D et al. | Oxford-AstraZeneca (ChAdOx1 nCoV-19/ AZD1222) | second |
| 6 | Endo B et al. | Pfizer/BioNTech (BNT162b2) | first |
| 7 | Sung SY et al. | Pfizer/BioNTech (BNT162b2) | third |
| 8 | Dutta Majumder P et al. | Oxford-AstraZeneca (ChAdOx1 nCoV-19/ AZD1222) | third |
| 9 | Shah PP et al. | Pfizer/BioNTech (BNT162b2) | first |
| 10 | Takacs A et al. | mRNA vaccine | first |
| 11 | Nangia P et al. | Corbevax COVID-19 vaccine | first |
| 12 | Bialasiewicz AA et al. | Pfizer/BioNTech (BNT162b2) | second |
| No | Authors | Abnormal blood test findings | BCVA at initial visit |
|---|---|---|---|
| 1 | Sonawane NJ et al. | HbA1c 13.2% | 6/60 |
| Cre 1.9 mg/dL | |||
| ESR 49 | 5/60 | ||
| CRP 14.6 | |||
| RF 11 | |||
| d-dimer 6,077.4 ng/mL | |||
| 2 | Ishiguro K et al. | triglyceride 256 mg/dL | 20/200 |
| aPTT 30.6 s | |||
| CRP 177% | |||
| 3 | Lee S et al. | total cholesterol 227 | CF |
| LDL 159 | |||
| ESR 26 | |||
| 4 | Wu D et al. | not listed | 6/30 |
| 5 | Romano D et al. | normal | 20/400 |
| 6 | Endo B et al. | normal | 20/20 |
| 7 | Sung SY et al. | HbA1c 9.2% | 20/100 |
| 8 | Dutta Majumder P et al. | normal | 2/60 |
| 9 | Shah PP et al. | not listed | 20/20 |
| 10 | Takacs A et al. | serum prothrombin time 9.1 s | 0.5 |
| anti-prothrombin 123% | |||
| serum homocysteine 16.4 μmol/l | |||
| 11 | Nangia P et al. | normal | 6/7.5 |
| 12 | Bialasiewicz AA et al. | normal | 0.5 |
| No. | Authors | Treatment | Final BCVA |
|---|---|---|---|
| 1 | Sonawane NJ et al. | IV anti-VEGF | not listed |
| none | not listed | ||
| 2 | Ishiguro K et al. | IVA (5 treatments) | 20/20 (10 months) |
| 3 | Lee S et al. | oral methylprednisolone | 20/30 (3 weeks) |
| IV methylprednisolone | |||
| 4 | Wu D et al. | IVB | 6/12 |
| 5 | Romano D et al. | intravitreal dexamethasone implant | 20/200 |
| PRP | |||
| 6 | Endo B et al. | IV dexamethasone | 20/20 |
| IVB, oral apixaban | |||
| 7 | Sung SY et al. | IVR, IVA (3 treatments) | 20/30 |
| 8 | Dutta Majumder P et al. | pulse corticosteroid | 6/9 |
| oral corticosteroid | |||
| 9 | Shah PP et al. | IVR (3 treatments) | not listed |
| Acetazolamide | |||
| intravenous iron infusions | |||
| 10 | Takacs A et al. | IVA | 1.0 (2 months) |
| oral ASA protect | |||
| 11 | Nangia P et al. | pulse corticosteroid | 6/6 |
| 12 | Bialasiewicz AA et al. | aspirin | 1.0 (3 days) |
| IVA |
| No. | Authors | Age | Sex | Laterality | Time between COVID-19 diagnosis and symptom onset (days) | Abnormal blood test findings |
|---|---|---|---|---|---|---|
| 1 | Nourinia R, et al. | 60 | F | L | 10 | slightly prolonged PT and PTT |
| high ESR level | ||||||
| high CRP level | ||||||
| high d-dimer level | ||||||
| high ferritin level | ||||||
| elevated WBC | ||||||
| 2 | Duff S, et al. | 74 | F | L | 90 | not listed |
| 3 | Karasu B, et al. | 48 | M | L | 60 | not listed |
| R | 90 | not listed | ||||
| 4 | Kapsis P, et al. | 65 | M | L | not listed | normal |
| 5 | Shiroma HF, et al. | 54 | F | not listed | 7 | not listed |
| 36 | M | not listed | 90 | not listed | ||
| 64 | M | not listed | 7 | not listed | ||
| 6 | Güven YZ, et al. | 53 | M | L | not listed | ESR 74 mm/h |
| CRP 29.8 mg/L | ||||||
| d-dimer 404 μg/L |
| No. | Authors | BCVA at Initial visit | Treatment | Final BCVA |
|---|---|---|---|---|
| 1 | Nourinia R, et al. | 20/200 | IVB | not listed |
| 2 | Duff S, et al. | 20/50 | intravitreal dexamethasone implant | not listed |
| 3 | Karasu B, et al. | 20/100 | heparin | 30/100 |
| 10/100 | pantoprazole | 40/100 | ||
| favipiravir | ||||
| 4 | Kapsis P, et al. | 6/36 | IVA | 6/9 |
| 5 | Shiroma HF, et al. | 20/25 | ketorolacid | 20/20 |
| 20/30 | IV anti VEGF | 20/20 | ||
| CF | IV anti VEGF | 20/200 | ||
| 6 | Güven YZ, et al. | 20/20 | not listed | not listed |
| No. | Authors | Age | Sex | Laterality | Time between vaccine and symptom onset (days) |
|---|---|---|---|---|---|
| 1 | Pur DR, et al. | 34 | M | R | 2 |
| 2 | Sugihara K, et al. | 38 | M | L | 2 |
| 3 | Gironi M, et al. | 50 | M | R | 1 |
| L | |||||
| 4 | Tanaka H, et al. | 50 | F | R | 3 |
| 56 | F | R | 3 | ||
| 5 | Karageorgiou G, et al. | 60 | M | R | 7 |
| 6 | Lee J, et al. | 41 | F | R | 2 |
| 7 | Silva LSCD, et al. | 66 | F | R | 16 |
| 8 | Peters MC, et al. | 71 | M | not listed | 2 |
| 73 | F | not listed | 3 | ||
| 47 | F | not listed | 5 | ||
| 9 | Choi M, et al. | 66 | M | L | 7 |
| 69 | F | L | 3 | ||
| 10 | Bolletta E, et al. | not listed | not listed | L | 23 |
| not listed | not listed | L | 2 | ||
| not listed | not listed | L | 2 | ||
| not listed | not listed | L | 3 |
| No. | Authors | type of vaccines | Numbers of times of vaccines |
|---|---|---|---|
| 1 | Pur DR, et al. | BNT162b2 (Pfizer-BioNTech) | first |
| 2 | Sugihara K, et al. | BNT162b2 (Pfizer-BioNTech) | second |
| 3 | Gironi M, et al. | mRNA-1237 vaccine (Moderna). | booster dose |
| 4 | Tanaka H, et al. | BNT162b2 (Pfizer-BioNTech) | first |
| BNT162b2 (Pfizer-BioNTech) | first | ||
| 5 | Karageorgiou G, et al. | ChAdOxl nCoV-19 (Oxford-AstraZeneca) | not listed |
| 6 | Lee J, et al. | not listed | second |
| 7 | Silva LSCD, et al. | ChAdOxl nCoV-19 (Oxford-AstraZeneca) | not listed |
| 8 | Peters MC, et al. | ChAdOxl nCoV-19 (Oxford-AstraZeneca) | first |
| ChAdOxl nCoV-19 (Oxford-AstraZeneca) | first | ||
| BNT162b2 (Pfizer-BioNTech) | first | ||
| 9 | Choi M, et al. | ChAdOxl nCoV-19 (Oxford-AstraZeneca) | second |
| ChAdOxl nCoV-19 (Oxford-AstraZeneca) | first | ||
| 10 | Bolletta E, et al. | not listed | second |
| not listed | first | ||
| not listed | second | ||
| not listed | second |
| No. | Authors | Abnormal blood test findings | BCVA at initial visit |
|---|---|---|---|
| 1 | Pur DR, et al. | normal | 20/20 |
| 2 | Sugihara K, et al. | normal | 0.9 |
| 3 | Gironi M, et al. | mild alteration in liver function | 20/200 |
| 20/28 | |||
| 4 | Tanaka H, et al. | not listed | 20/25 |
| not listed | 13/20 | ||
| 5 | Karageorgiou G, et al. | normal | 20/20 |
| 6 | Lee J, et al. | ESR 46 mm/h | 6/18 |
| 7 | Silva LSCD, et al. | CRP 1.0 mg/dL | not listed |
| 8 | Peters MC, et al. | not listed | not listed |
| not listed | 6/60 | ||
| not listed | 6/19 | ||
| 9 | Choi M, et al. | not listed | 6/9.6 |
| not listed | 20/20 | ||
| 10 | Bolletta E, et al. | not listed | 20/20 |
| not listed | 20/20 | ||
| not listed | 20/100 | ||
| not listed | 20/32 | ||
| not listed | 20/22 |
| No. | Authors | Treatment | Final BCVA |
|---|---|---|---|
| 1 | Pur DR, et al. | observation | 20/20 |
| 2 | Sugihara K, et al. | second dose of IVA | 1.2 |
| 3 | Gironi M, et al. | IVR PC | not listed |
| IVR PC | not listed | ||
| 4 | Tanaka H, et al. | three doses of IVR | 20/20 |
| three doses of IVR | 20/20 | ||
| 5 | Karageorgiou G, et al. | not listed | not listed |
| 6 | Lee J, et al. | three doses of IVR | 6/6 |
| 7 | Silva LSCD, et al. | not listed | not listed |
| 8 | Peters MC, et al. | not listed | not listed |
| IVB | not listed | ||
| IVA | not listed | ||
| 9 | Choi M, et al. | IVB | not listed |
| observation | not listed | ||
| 10 | Bolletta E, et al. | oral aspirin | not listed |
| IV anti-VEGF | 20/20 | ||
| IV anti-VEGF | 20/40 | ||
| IV anti-VEGF | 20/25 | ||
| IV anti-VEGF | 20/20 |
| No. | Authors | Age | Sex | Laterality | Time between COVID-19 diagnosis and symptom onset (days) | Abnormal blood test findings |
|---|---|---|---|---|---|---|
| 1 | Bapaye MM, et al. | 42 | M | B | 13 | normal |
| 2 | Heidarzadeh HR, et al. | 44 | M | L | 21 | normal |
| 3 | Abbati G, et al. | 6 | F | L | 0 | CRP 1.12 mg/L |
| R | 0 | |||||
| 4 | Montesel A, et al. | 59 | M | L | 10 | normal |
| 5 | de Oliveira MR, et al. | 68 | F | L | 23 | d-dimer 1,386 μg/L |
| CRP 22.9 mg/L | ||||||
| fibrinogen 587 mg/dL | ||||||
| 6 | Ucar F, et al. | 54 | M | L | not listed | fibrinogen 405.1 mg/dL |
| CRP 128.29 mg/L | ||||||
| d-dimer 1041 μg/L | ||||||
| ferritin 458.53 | ||||||
| platelets 486x109 | ||||||
| 7 | Yalçınbayır Ö, et al. | 48 | F | R | 14 | elevated d-dimer levels |
| elevated fibrinogen levels | ||||||
| elevated factor VIII levels | ||||||
| elevated von Willebrand factor levels | ||||||
| decreased antithrombin levels | ||||||
| 66 | M | L | 22 | elevated d-dimer levels | ||
| elevated fibrinogen levels | ||||||
| elevated factor VIII levels | ||||||
| elevated von Willebrand factor levels | ||||||
| 8 | Lekha T, et al. | 47 | M | R | unknown | not listed |
| 9 | Acharya S, et al. | 60 | M | R | 12 | not listed |
| 10 | Larochelle RD, et al. | 68 | M | R | 0 | not listed |
| 11 | Been Sayeed SKJ, et al. | 38 | M | L | unknown | not listed |
| No. | Authors | BCVA at initial visit | Treatment | Final BCVA |
|---|---|---|---|---|
| 1 | Bapaye MM, et al. | LP | not listed | LP |
| 2 | Heidarzadeh HR, et al. | LP | oral prednisolone, PRP | NLP |
| 3 | Abbati G,et al | HM | heparin | CF |
| NLP | intravenous steroid | NLP | ||
| oral prednisolone | ||||
| 4 | Montesel A, et al. | LP | not listed | CF |
| 5 | de Oliveira MR, et al. | 20/400 | ocular massage | CF |
| hypotensive eyedrops | ||||
| 6 | Ucar F, et al. | CF | 20% mannitol | not listed |
| anterior chamber paracentesis | ||||
| topical brimonidine | ||||
| dorzolamide/timolol | ||||
| moxifloxacin/dexamethasone combination drops | ||||
| oral acetazolamide | ||||
| oral aspirin | ||||
| 7 | Yalçınbayır Ö, et al. | HM | anterior chamber paracentesis | HM |
| LP | amoxicillin clavulanic acid | LP | ||
| prednisolone | ||||
| 8 | Lekha T, et al. | 6/36 | not listed | not listed |
| 9 | Acharya S, et al. | NLP | not listed | not listed |
| 10 | Larochelle RD, et al. | LP | not listed | not listed |
| 11 | Been Sayeed SKJ, et al. | CF | not listed | not listed |
| 11 | Been Sayeed SKJ, et al. | CF | not listed | not listed |
| No. | Authors | Age | Sex | Laterality | Time between vaccine and symptom onset (days) |
|---|---|---|---|---|---|
| 1 | Abdin AD, et al. | 76 | F | L | 2 |
| 2 | Chow SY, et al. | 70 | M | R | 5 |
| 3 | Chen J, et al. | 40 | F | L | 21 |
| 4 | Yamagishi A, et al. | 33 | F | L | 1 |
| 5 | Thakar M, et al. | 44 | M | L | 10 |
| 6 | Wang LU, et al. | 70 | M | R | 5 |
| No. | Authors | Vaccine type | Vaccine number |
|---|---|---|---|
| 1 | Abdin AD, et al. | ChAdOxl nCoV-19 (Oxford-AstraZeneca) | first |
| 2 | Chow SY, et al. | mRNA-1237 vaccine (Moderna). | first |
| 3 | Chen J, et al. | BNT162b2 (Pfizer-BioNTech) | first |
| 4 | Yamagishi A, et al. | BNT162b2 (Pfizer-BioNTech) | second |
| 5 | Thakar M, et al. | Covaxin (Bharat Biotech, BBV152) | second |
| 6 | Wang LU, et al. | mRNA-1237 vaccine (Moderna). | not listed |
| No. | Authors | Abnormal blood test findings | BCVA at initial visit |
|---|---|---|---|
| 1 | Abdin AD, et al. | normal | HM |
| 2 | Chow SY, et al. | unremarkable | CF |
| 3 | Chen J, et al. | LDL 125 mg/dL | 20/40 |
| 4 | Yamagishi A, et al. | not listed | not listed |
| 5 | Thakar M, et al. | ESR 28 mm/h | LP |
| 6 | Wang LU, et al. | anti-PF 4 73.34 ng/mL | CF |
| No. | Authors | Treatment | Final BCVA |
|---|---|---|---|
| 1 | Abdin AD, et al. | ocular massage | not listed |
| 500 ml pentoxifylline IV | |||
| dorzolamide eye drop | |||
| aspirin 100 mg | |||
| 2 | Chow SY, et al. | clopidogrel and hyperbaric oxygen therapy | CF |
| 3 | Chen J, et al. | heparin | NLP |
| 4 | Yamagishi A, et al. | intravenous D-mannitol | 1.2 |
| acetazolamide | |||
| 10-minute ocular massage | |||
| 5 | Thakar M, et al. | not listed | not listed |
| 6 | Wang LU, et al. | hyperbaric oxygen therapy | CF |
| topical antiglaucoma drops |
| No. | Authors | Age | Sex | Laterality | Time between COVID-19 diagnosis and symptom onset (days) | Abnormal blood test findings |
|---|---|---|---|---|---|---|
| 1 | Ateş O, et al. | 34 | F | R | 107 | CRP levels slightly abnormal |
| lupus anticoagulant levels slightly abnormal | ||||||
| fibrinogen levels slightly abnormal | ||||||
| d-dimer levels slightly abnormal | ||||||
| ferritin levels slightly abnormal | ||||||
| 2 | Panigrahi PK, et al. | 23 | F | R | 21 | PT 16 s |
| d-dimer 732 ng/ml | ||||||
| serum ferritin 411 µg/L | ||||||
| 3 | Hirosawa K, et al. | 43 | F | R | 30 | WBC 11.7 x 109/L |
| 4 | Uzun A, et al. | 65 | F | L | 5 w | d-dimer 1.76 mg/L |
| No. | Authors | BCVA at initial visit | Treatment | Final BCVA |
|---|---|---|---|---|
| 1 | Ateş O, et al. | 10/10 | hyperbaric oxygen therapy | not listed |
| 2 | Panigrahi PK, et al. | 6/9 | systemic anticoagulants | not listed |
| 3 | Hirosawa K, et al. | 20/25 | alprostadil | not listed |
| 4 | Uzun A, et al. | 20/25 | aspirin | not listed |
| No. | Authors | Age | Sex | Laterality | Time between vaccine and symptom onset (days) |
|---|---|---|---|---|---|
| 1 | Ishibashi, et al. | 38 | F | R | 15 |
| 80 | M | R | 42 | ||
| 86 | M | L | 4 | ||
| 57 | F | R | 61 | ||
| 2 | Girbardt, et al. | 38 | M | R | 3 |
| 3 | Murata, et al. | 75 | M | R | 1 |
| No. | Authors | Vaccine type | Number of the vaccine received |
|---|---|---|---|
| 1 | Ishibashi, et al. | BNT162b2 (Pfizer-BioNTech) | first |
| BNT162b2 (Pfizer-BioNTech) | second | ||
| BNT162b2 (Pfizer-BioNTech) | second | ||
| BNT162b2 (Pfizer-BioNTech) | second | ||
| 2 | Girbardt, et al. | Comirnaty (Pfizer-BioNTech) | second |
| 3 | Murata, et al. | BNT162b2 (Pfizer-BioNTech) | fourth |
| No. | Authors | Abnormal blood test findings | BCVA at initial visit |
|---|---|---|---|
| 1 | Ishibashi, et al. | not listed | 20/13 |
| not listed | 20/20 | ||
| not listed | 20/25 | ||
| not listed | 20/13 | ||
| 2 | Girbardt, et al. | normal | not listed |
| 3 | Murata, et al. | normal except those affected by diabetes | 0.7 |
| No. | Authors | Treatment | Final BCVA |
|---|---|---|---|
| 1 | Ishibashi, et al. | not listed | not listed |
| not listed | not listed | ||
| not listed | not listed | ||
| not listed | not listed | ||
| 2 | Girbardt, et al. | aspirin | not listed |
| simvastatin | |||
| 3 | Murata, et al. | no treatment | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
