Submitted:
27 July 2024
Posted:
30 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Model and Design
2.1. Mixture Model
2.2. Design
3. Optimal Design Criteria and Equivalence Theorems
4. Main Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornell, J.A. Experiments with mixtures-designs, models, and the analysis of mixture data; Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Scheffé, H. The simplex-centroid design for experiments with mixtures. J. R. Stat. Soc. B. 1963, 25, 235–251. [Google Scholar] [CrossRef]
- Goos, P.; Jones, b.; Syafitri, U. I-optimal design of mixture experiments. J. Amer. Stat. Assoc. 2016, 111, 899–911. [Google Scholar] [CrossRef]
- Hao, H.H.; Zhu, X.Y.; Zhang, X.F.; Zhang, C.Q. R-optimal design of the second-order Scheffé mixture model. Stat. Probabil. Lett. 2021, 173, 109069. [Google Scholar] [CrossRef]
- He, L.; Yue, R.X. R-optimal designs for trigonometric regression models. Stat. Pap. 2020, 61, 1997–2013. [Google Scholar] [CrossRef]
- Li, J.P.; Li, G.H.; Zhang, C.Q. Weighted R-efficiency optimal design for experiments with mixture. Commun. Stat. Theor. M. 2024, 53, 1241–1256. [Google Scholar] [CrossRef]
- Luo, J.C.; Zhang, C.Q. R-optimal designs for mixture models in two types of regions. Commun. Stat. Theor. M. 2024, 53, 1851–1863. [Google Scholar] [CrossRef]
- Ling, L.; Li, G.H.; Zhu, X.Y.; Zhang, C.Q. R-optimal designs for second-order Scheffé model with qualitative factors. AIMS Math. 2022, 7, 4540–4551. [Google Scholar] [CrossRef]
- Jiang, H.S.; Zhang, C.Q.; Chen, J.L. K-optimal designs for the second-order Scheffé polynomial model. Commun. Stat. Theor. M. 2023. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Hao, H.H.; Li, W.X.; Zhang, C.Q. Equivalence theorem of D-optimal equal allocation design for multiresponse mixture experiments. Hacet. J. Math. Stat. 2021, 50, 1212–1224. [Google Scholar] [CrossRef]
- Gong, Z.; Zhu, X.Y.; Zhang, C.Q. D-optimal design of the additive mixture model with multi-response. Math. Biosci. Eng. 2022, 19, 4737–4748. [Google Scholar] [CrossRef]
- Dette, H.; Liu, X.; Yue, R.X. Design admissibility and de la Garza phenomenon in multifactor experiments. Ann. Stat. 2022, 50, 1247–1265. [Google Scholar] [CrossRef]
- Leng, W.; Yin, J.L. Bayesian Φq-optimal designs for multi-factor additive non linear models with heteroscedastic errors. Commun. Stat. Theor. M. 2023. [Google Scholar] [CrossRef]
- Chen, J.L.; Ling, L.; Zhang, C.Q. D- and A-optimal designs for multi-response mixture experiments with qualitative factors. Commun. Stat. Theor. M. 2024, 53, 5593–5611. [Google Scholar] [CrossRef]
- Li, W.X.; Zhu, Z.B.; Zhu, X.Y.; Zhang, C.Q. Mixture design model with uncertain response and its application. Commun. Stat. Simul. C. 2023, 52, 2310–2319. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C. Construction of full order-of-addition generalization simplex-centroid designs by the directed graph approach. Mathematics 2022, 10, 443. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, C.Q. The mixture design threshold accepting algorithm for generating D-optimal designs of the mixture models. Metrika 2022, 85, 345–371. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhu, Z.B.; Zhang, C.Q. Multi-stage differential evolution algorithm for constrained D-optimal design. AIMS Math. 2021, 6, 2956–2969. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, C.Q. Random search algorithm for optimal mixture experimental design. Commun. Stat. Theor. M. 2018, 47, 1413–1422. [Google Scholar] [CrossRef]
- Goos, P. The fish patty experiment: a strip-plot look. J. Qual. Technol. 2022, 54, 236–248. [Google Scholar] [CrossRef]
- Goos, P.; Hamidouche, H. Choice models with mixtures: an application to a cocktail experiment. Food Qual. Pefer. 2019, 77, 135–146. [Google Scholar] [CrossRef]
- Chan, L.Y. Optimal designs for experiments with mixtures: a survey. Commun. Stat. Theor. M. 2000, 29, 2281–2312. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Hao, H.H. A-optimal design for the special cubic mixture model. Commun. Stat. Theor. M. 2024, 53, 1081–1090. [Google Scholar] [CrossRef]
- Chan, L.Y.; Guan, Y.N.; Zhang, C.Q. A-optimal designs for an additive quadratic mixture model. Stat. Sinica 1998, 8, 979–990. [Google Scholar]
- Zhu, Z.B.; Li, G.H.; Zhang, C.Q. A-optimal designs for mixture central polynomial model with qualitative factors. Commun. Stat. Theor. M. 2019, 48, 2345–2355. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.Q. A-optimal designs for quadratic mixture canonical polynomials with spline. J. Stat. Plan. Infer. 2020, 207, 1–9. [Google Scholar] [CrossRef]
- Yan, F.; Li, J.P.; Jiang, H.S.; Zhang, C.Q. A-optimal designs for mixture polynomial models with heteroscedastic errors. AIMS Math. 2023, 8, 26745–26757. [Google Scholar] [CrossRef]
- Pal, M.; Mandal, N.K.; Aggarwal, M.L. A-optimal designs for optimum mixture in an additive quadratic mixture model. Statistics-Abingdon 2017, 51, 265–276. [Google Scholar] [CrossRef]
- Atwood, C.L. Optimal and efficient designs of experiments. Ann. Math. Stat. 1969, 40, 1570–1602. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
