Preprint
Article

This version is not peer-reviewed.

Weighted Composition Operators between Bers-Type Spaces on Generalized Hua-Cartan-Hartogs Domains

A peer-reviewed article of this preprint also exists.

Submitted:

03 July 2024

Posted:

04 July 2024

You are already at the latest version

Abstract
We address weighted composition operators between Bers-type spaces on generalized Hua-Cartan-Hartogs domains and provide necessary and sufficient conditions for their boundedness and compactness. We then apply our results to study the boundedness and the compactness of weighted composition operators between Bers-type spaces on five different domains: generalized Hua domains, Cartan-Hartogs domains, generalized Cartan-Hartogs domains, generalized Cartan-Hartogs domains over different Cartan domains and generalized ellipsoidal-type domains.
Keywords: 
;  ;  ;  

1. Introduction

Throughout this paper, we denote by Ω a bounded domain of C n and by H ( Ω ) the set of all holomorphic functions on Ω . We also denote by ϕ a holomorphic map of Ω on itself (self-map) and by ψ a generic element of H ( Ω ) . A weighted composition operator ψ C ϕ is defined as
ψ C ϕ f ( z ) = ψ ( z ) ( f ϕ ( z ) ) , z Ω .
If ψ 1 , ψ C ϕ reduces to the composition operator, usually denoted by C ϕ . If ϕ ( z ) = z , we have the multiplication operator, usually denoted by M ψ .
In recent years, there has been great interest in the study of (weighted) composition operators between spaces of various domains. For example, on the unit disk, some properties of weighted composition operators between H and Bloch space and between Bloch space and weighted Banach space have been extensively discussed by Allen in [1,2], respectively. Pu characterised the sufficient and necessary conditions of bounded and compact composition operators from Bloch space to Bers-type space and small Bers-type space [3]. Zhong, Wang and Liu [4,5] also discussed sufficient and necessary conditions for the boundedness and compactness of weighted composition operator between Bers-type spaces, obtaining the same results.
For the unit ball, Jin and Tang [6] investigated the sufficient and necessary conditions for the boundedness and compactness of weighted composition operator between Bers-type spaces, which generalize the results obtained for the unit disk in [4,5]. Du and Li [7] studied the properties of weighted composition operators from H space to Bloch space. In [8], Dai described the characteristics of Lipschitz space on the unit ball, and gave the necessary and sufficient conditions for the weighted composition operators on Lipschitz space to be bounded and compact. Zhou et al. studied the properties of weighted composition operators from Bers-type space to Bloch space [9].
Concerning the polydisc, Li and Zhang [10] discussed the equivalence of compactness conditions for composition operators between Bloch type spaces on the polydisc, and gave the simplest representation of the compactness conditions. The boundedness and compactness of composition operators of general weight Bloch spaces were studied by Hu in [11]. Stevi c ´ investigated the boundedness and compactness of composition operators between special weight Bloch space and H space in [12]. Later, in [13,14], together with Li , the conclusions were extended to the case of weighted composition operators.
In 1930, E. Cartan [15] fully characterized the irreducible bounded symmetric domains into six types: four types of Cartan domains and two exceptional domains of complex dimensions 16 and 27, respectively. The four types of Cartan domains are defined as follows:
I ( m , n ) : = Z C m × n : I Z Z ¯ > 0 . II ( p ) : = Z C p × p : I Z Z ¯ > 0 , Z = Z . III ( q ) : = Z C q × q : I + Z Z ¯ > 0 , Z = Z . IV ( N ) : = z C N : 1 + | z z | 2 2 z z ¯ > 0 , 1 | z z | 2 > 0 .
where m , n , p , q , N are positive integers, Z C m × n means that Z is a m × n complex matrix, Z ¯ denotes the conjugate of Z and Z denotes the transpose of Z.
For the sake of convenience, the four Cartan domains will be denoted by the shorthands I , II , III and IV , respectively, throughout the papers. Su revisited the classical extremal problem on Cartan domains in [16]. Wang and Liu studied the Bloch constant on Cartan domain of the first kind in [17].
In 1998, building on the notion of Cartan domains, Yin was inspired by Roos to construct a new type of domain called the Cartan-Hartogs domains:
Y I ( N ; m , n ; k ) : = ξ C N , Z I ( m , n ) : | ξ | 2 k < det ( I Z Z ¯ ) , Y II ( N ; p ; k ) : = ξ C N , Z II ( p ) : | ξ | 2 k < det ( I Z Z ¯ ) , Y III ( N ; q ; k ) : = ξ C N , Z III ( q ) : | ξ | 2 k < det ( I Z Z ¯ ) , Y IV ( N ; n ; k ) : = ξ C N , z IV ( n ) : | ξ | 2 k < ( 1 + | z z | 2 2 | z | 2 ) .
where I ( m , n ) , II ( p ) , III ( q ) and IV ( n ) denote respectively the Cartan domains of the first type, second type, third type and fourth type, Z ¯ denotes the conjugate of Z and Z denotes the transpose of Z, N , m , n , p , q are positive integers, k is positive real number.
In this framework, Bai [18] discussed the boundedness and compactness of weighted composition operators between Bers-type spaces on Cartan-Hartogs domain of the first type, and obtained necessary and sufficient conditions. In [19], Su and Zhang studied the boundedness and compactness of weighted composition operators from H to the special weight Bloch space on Cartan-Hartogs domain of the first type. The boundedness and compactness of composition operators between special weight Bloch spaces on Cartan-Hartogs domain of the fourth type were studied by Su and Zhang in [20].
For m = k = 1 , the Cartan-Hartogs domain of the first type Y I reduces to the unit ball.
Yin then constructed four types of Cartan-Egg domains [21], later extending the Cartan-Egg domains to Hua domains [22]:
HE I ( n 1 , n 2 , , n r ; m , n ; p 1 , p 2 , , p r ) = ξ j C n j , Z I ( m , n ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) , j = 1 , 2 , , r HE II ( n 1 , n 2 , , n r ; p ; p 1 , p 2 , , p r ) = ξ j C n j , Z II ( p ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) , j = 1 , 2 , , r HE III ( n 1 , n 2 , , n r ; q ; p 1 , p 2 , , p r ) = ξ j C n j , Z III ( q ) : j = 1 r | ξ j | 2 p j < det ( I + Z Z ¯ ) , j = 1 , 2 , , r HE IV ( n 1 , n 2 , , n r ; n ; p 1 , p 2 , , p r ) = ξ j C n j , z IV ( n ) : j = 1 r | ξ j | 2 p j < ( 1 + | z z | 2 2 z z ¯ ) , j = 1 , 2 , , r
where ξ j = ( ξ j 1 , , ξ j n j ) , | ξ j | 2 = i = 1 n j | ξ j i | 2 ( j = 1 , 2 , , r ) . n 1 , , n r , m , n , p , q are positive integers, p 1 , , p r are positive real numbers.
The explicit formula of the Bergman kernel function on the four types of Hua domains have been obtained in [22]. Li, Su and Wang [23] discussed an extremal problem on Hua domains of the second type. In [24,25,26], Liu et al. studied the convexity of Hua domains of the first, second and third type respectively, and computed the Carath e ´ odory metric and Kobayashi metric on these three domains. Su et al investigated the boundness and compactness of composition operators between u-Bloch space and v-Bloch space on Hua domains of the first type [27]. The necessary and sufficient conditions for the boundedness and compactness of weighted composite operators between Bers-type spaces on four types of Hua domains are characterized by Jiang and Li in [28].
In 2003, Yin once again extended the Hua domains to the generalized Hua domains [29]:
GHE I ( n 1 , n 2 , , n r ; m , n ; p 1 , p 2 , , p r ; k ) = ξ j C n j , Z I ( m , n ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) k , j = 1 , 2 , , r GHE II ( n 1 , n 2 , , n r ; p ; p 1 , p 2 , , p r ; k ) = ξ j C n j , Z II ( p ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) k , j = 1 , 2 , , r GHE III ( n 1 , n 2 , , n r ; q ; p 1 , p 2 , , p r ; k ) = ξ j C n j , Z III ( q ) : j = 1 r | ξ j | 2 p j < det ( I + Z Z ¯ ) k , j = 1 , 2 , , r GHE IV ( n 1 , n 2 , , n r ; n ; p 1 , p 2 , , p r ; k ) = ξ j C n j , z IV ( n ) : j = 1 r | ξ j | 2 p j < ( 1 + | z z | 2 2 z z ¯ ) k , j = 1 , 2 , , r
where ξ j = ( ξ j 1 , , ξ j n j ) ; | ξ j | 2 = i = 1 n j | ξ j i | 2 ( j = 1 , 2 , , r ) . n 1 , , n r , m , n , p , q are positive integers, p 1 , , p r , k are positive real numbers. When k = 1 , the generalized Hua domains are the Hua domains.
The explicit formula of the Bergman kernel function on the four types of generalized Hua domains have been obtained in [29]. Su and Wang studied the boundedness and compactness of operators ψ C ϕ : B α A β between Bloch space and Bers space on generalized Hua domains of the first type, and obtained some sufficient conditions and necessary conditions [30].
In 2005, Yin extended the generalized Hua domains and proposed a type of domains named Hua Constructions [31]. Both Hua domains and generalized Hua domains are special cases of Hua Construction. Cartan-Hartogs domains, Cartan-Egg domains, Hua domains, generalized Hua domains and Hua Constructions are collectively referred to as Hua domains, see [33]. The Hua domains is generally not transitive except for the unit ball. It is thus very meaningful to study the problem on Hua domains.
Ahn-Park [35]introduced the generalized Cartan-Hartogs domain:
Ω ^ m = ξ C m , Z k Ω k : | ξ | 2 < N Ω 1 ( Z 1 , Z 1 ) μ 1 N Ω t ( Z t , Z t ) μ t , μ k > 0 .
where Ω k is one of the six bounded symmetric domains, and N Ω k ( Z k , Z k ) is the corresponding generic norm of Ω k . k = 1 , , t . m is positive integer. This type of domains generalizes the Cartan-Hartogs domain introduced by Yin and Roos.
Wang et al. proved vanishing theorem on generalized Cartan-Hartogs domains of the second type in [36,37], and [38] discussed the boundedness and compactness of composition operators between weighted Bloch spaces on generalized Cartan-Hartogs domain of the first type. A considerable attention has been devoted to Rawnsley’s ε -functions and to the comparison theorem for the Einstein-Kahler and Kobayashi metrics on generalized Cartan-Hartogs domains, see e.g., [39,40]. Other conclusions on the generalized Cartan-Hartogs domains can be found in [41,42,43]. On the other hand, the properties of weighted composition operators between Bers-type spaces on generalized Cartan-Hartogs domains have not been studied.
Starting from these results, we introduce a novel type of domains, which we term the generalized Hua-Cartan-Hartogs domain:
H ( n 1 , , n r ; p 1 , , p r ; A 1 , , A t ) = ξ j C n j , Z k A k : j = 1 r | ξ j | 2 p j < N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) , j = 1 , , r ; k = 1 , , t . .
where n 1 , , n r , t , r are positive integers, p 1 , , p r are positive real numbers, and ξ j = ( ξ j 1 , ξ j 2 , , ξ j n j ) , A 1 , A 2 , , A t { I , II , III , IV } . The generic norm N k ( Z k , W k ¯ ) are holomorphic for Z k and antl-holomorphic for W k , where Z k , W k A k , k = 1 , , t . N k ( Z k , W k ¯ ) should meet the following two conditions:
( 1 ) 0 < N k ( Z k , Z k ¯ ) 1 , k = 1 , , t .
( 2 ) 2 | N k ( Z k , W k ¯ ) | N k ( Z k , Z k ¯ ) + N k ( W k , W k ¯ ) , Z k , W k A k , k = 1 , , t .
We use the shorthand H for the generalized Hua-Cartan-Hartogs domain and denote the points of H by ( Z 1 , Z 2 , , Z t , ξ 1 , ξ 2 , , ξ r ) = ( Z , ξ ) , where ( Z 1 , Z 2 , , Z t ) = Z , ( ξ 1 , ξ 2 , , ξ r ) = ξ .
In the fourth Section of this paper, we will further prove that generalized Hua domains, Cartan-Hartogs domains, generalized Cartan-Hartogs domains, generalized Cartan-Hartogs domains with different types of Cartan domains as bases, and generalized ellipsoidal-type domains are special generalized Hua-Cartan-Hartogs domain.
A Bers-type space on H is defined as follows:
Definition 1.1. 
Let α > 0 . A Bers-type space on H , denoted by A α ( H ) , consists of all holomorphic functions on H satisfying
f A α ( H ) = sup ( Z , ξ ) H N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) j = 1 r | ξ j | 2 p j α | f ( Z , ξ ) | < + .
It is easy to see that A α ( H ) is a Banach space.
In this paper, we study the boundedness and compactness of weighted composition operator between Bers-type spaces on the generalized Hua-Cartan-Hartogs domain, and obtain necessary and sufficient conditions, which are relevant generalizations of some previous conclusions.
As some applications, in the fourth section of this paper, we will prove sufficient and necessary conditions for the boundedness and compactness of weighted composition operators between Bers-type spaces on five domains: generalized Hua domains, Cartan-Hartogs domains, generalized Cartan-Hartogs domains, generalized Cartan-Hartogs domains with different types of Cartan domains as bases, and generalized ellipsoidal-type domains. Here, we briefly anticipate them:
( 1 ) For t = 1 , if Z A , A = I , II , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = det ( I Z Z ¯ ) k , if z IV , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = ( 1 + | z z | 2 2 | z | 2 ) k , where k is positive real number. In this case, the generalized Hua-Cartan-Hartogs domains are equivalent to generalized Hua domains.
( 2 ) For t = 1 , starting from the generalized Hua domains, let p 1 = p 2 = p r = 1 . If Z A , A = I , II , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = det ( I Z Z ¯ ) k , if z IV , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = ( 1 + | z z | 2 2 | z | 2 ) k , where k is positive real number. In this case, the generalized Hua-Cartan-Hartogs domains are Cartan-Hartogs domains.
( 3 ) For t = 2 , if Z k A k , A k = I , II , then let N k ( Z k , Z k ¯ ) = det ( I Z k Z k ¯ ) s k , if z k IV , then let N k ( Z k , Z k ¯ ) = ( 1 + | z k z k | 2 2 | z k | 2 ) s k , where s k are positive real numbers, k = 1 , 2 . In this case, the generalized Hua-Cartan-Hartogs domains are generalized Cartan-Hartogs domains. The boundedness and compactness of weighted composition operator between Bers-type spaces on generalized Cartan-Hartogs domains will be discussed by examples from generalized Cartan-Hartogs domains and generalized Cartan-Hartogs domains over different types of Cartan domains, respectively.
( 4 ) For t = 1 , if Z I ( m , n ) , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = 1 | Z | 2 m ; if Z II ( p ) , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = 1 | Z | 2 p ; if Z III ( q ) , then let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = 1 | Z | 2 [ q 2 ] , where [ q 2 ] denotes the integer part of q 2 and if z IV ( N ) , let N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = 1 | z | 2 . In this case, we refer to this generalized Hua-Cartan-Hartogs domains as generalized ellipsoidal-type domains.
Constants will be denoted by C , C 1 , C 2 , , they are positive and may differ in the different cases. Without loss of generality, we assume that n j = 1 , that is ξ j C , j = 1 , 2 , , r , ξ = ( ξ 1 , ξ 2 , , ξ r ) and ξ 2 = j = 1 r | ξ j | 2 p j .

2. Preliminaries

This section is devoted to present and prove few lemmas that will be used in the following theorems about the boundedness and compactness of weighted composition operators ψ C ϕ : A α ( H ) A β ( H ) .
Lemma 2.1 
(see [34]). Given the sequence a k , C , k = 1 , 2 , , n , then when p 1
k = 1 n | a k | p k = 1 n | a k | p n p 1 k = 1 n | a k | p .
and when 0 < p < 1
k = 1 n | a k | p k = 1 n | a k | p n p 1 k = 1 n | a k | p .
Lemma 2.2 
(see [34]). (The product-type Minkowski inequality) Let a k , b k 0 , k = 1 , 2 , , n , then
k = 1 n ( a k + b k ) 1 n k = 1 n a k 1 n + k = 1 n b k 1 n .
with the equality that holds iff a k = C b k , k = 1 , 2 , , n .
Lemma 2.3 
(see [32]). Given the m × n matrix ( m n )
Z = z 11 z 12 z 1 n z 21 z 22 z 2 n z m 1 z m 2 z m n ,
then there exist an m × m unitary matrix U and an n × n unitary matrix V such that
Z = U λ 1 0 0 0 0 0 λ 2 0 0 0 0 0 λ m 0 0 V ( λ 1 λ 2 λ m 0 ) .
Lemma 2.4 
(see [32]). Given two diagonal m × m matrices Λ 1 , Λ 2
Λ 1 = λ 1 0 0 0 λ 2 0 0 0 λ m ( λ 1 λ 2 λ m 0 )
and
Λ 2 = μ 1 0 0 0 μ 2 0 0 0 μ m ( μ 1 μ 2 μ m 0 )
satisfying
λ j μ k < 1 ( j , k = 1 , , m ) ,
then there exists a permutation matrix P such that
inf U U ¯ = I , V V ¯ = I | det ( I Λ 1 U Λ 2 U ¯ V ) | = | det ( I Λ 1 P Λ 2 P ) | .
The infimum is achieved for U = Θ P , V = I , where
Θ = e i θ 1 0 0 0 e i θ 2 0 0 0 e i θ m .
Lemma 2.5. 
For any α > 0 , ( Z , ξ ) H and f A α ( H ) , one has
| f ( Z , ξ ) | f A α ( H ) [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α .
Proof. 
By f A α ( H ) , we have
f A α ( H ) = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α | f ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α | f ( Z , ξ ) | ,
and so
| f ( Z , ξ ) | f A α ( H ) [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α ,
and the lemma is proved. □
Lemma 2.6. 
Given α , β > 0 , the weighted composition operator ψ C ϕ : A α ( H ) A β ( H ) is compact if and only if ψ C ϕ is bounded in A β ( H ) and for any bounded sequence { f k } k 1 in A α ( H ) converging to 0 uniformly on every compact subsets of H one has that
lim k ψ C ϕ f k A β ( H ) = 0 .
Proof. 
Assume that ψ C ϕ : A α ( H ) A β ( H ) is compact, then it must be a bounded operator. Let { f k } k 1 be a bounded sequence in A α ( H ) such that f k 0 on every compact subsets of H as k .
If ψ C ϕ f k A β ( H ) 0 as k , then there exists a subsequence { f k j } of { f k } such that
inf j N ψ C ϕ f k j A β ( H ) > 0 .
Since ψ C ϕ is compact, then there exists a function g A β ( H ) and a subsequence of { f k j } (still written by { f k j } without loss of generality), such that
lim j ψ C ϕ f k j g A β ( H ) = 0 .
Let K be a compact subset of H , for ( Z , ξ ) K H and ψ C ϕ f k j g A β ( H ) , it follows from Lemma 2.5 that
| ψ C ϕ f k j ( Z , ξ ) g ( Z , ξ ) | ψ C ϕ f k j g A β ( H ) [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β .
This means that ψ C ϕ f k j g 0 on compact subset K as j , and that for ε > 0 , J 1 > 0 , such that for j > J 1 , we have
| ψ C ϕ f k j ( Z , ξ ) g ( Z , ξ ) | < ε , ( Z , ξ ) K .
Since f k j 0 on every compact subsets of H as j , then for the above ε , J 2 > 0 , such that for j > J 2 we have
| f k j ( ϕ ( Z , ξ ) ) | < ε , ( Z , ξ ) K .
In this case, let J = max { J 1 , J 2 } , M = max ( Z , ξ ) K | ψ ( Z , ξ ) | , that is | ψ ( Z , ξ ) | M on K, when j > J , for ( Z , ξ ) K , we obtain
| g ( Z , ξ ) | < | ψ C ϕ f k j ( Z , ξ ) | + ε = | ψ ( Z , ξ ) | | f k j ( ϕ ( Z , ξ ) ) | + ε M ε + ε = ( M + 1 ) ε .
From the arbitrariness of ε , we have g ( Z , ξ ) 0 on K. Then, by the uniqueness theorem of analytic functions, we have g 0 on H . It follows that
lim j ψ C ϕ f k j A β ( H ) = 0 .
which contradicts with inf j N ψ C ϕ f k j A β ( H ) > 0 . Therefore, lim k ψ C ϕ f k A β ( H ) = 0 .
Conversely, assume that { f k } k 1 is a bounded sequence in A α ( H ) , and that f k A α ( H ) C 1 , k = 1 , 2 , . Then { f k } k 1 is locally uniformly bounded on H . According to Montel’s theorem, there exists a subsequence { f k j } of { f k } such that f k j f on every compact subset of H as j . This means that f k j f 0 on every compact subset of H as j .
For ( Z 0 , ξ 0 ) H , there exists a compact subset K ( Z 0 , ξ 0 ) such that ( Z 0 , ξ 0 ) K ( Z 0 , ξ 0 ) . Since f k j f , j , ( Z , ξ ) K ( Z 0 , ξ 0 ) , then J 0 > 0 , such that for j > J 0 , we have
| f k j ( Z , ξ ) f ( Z , ξ ) | < 1 , ( Z , ξ ) K ( Z 0 , ξ 0 ) ,
and we also know that
| f ( Z 0 , ξ 0 ) | | f ( Z 0 , ξ 0 ) f k j ( Z 0 , ξ 0 ) | + | f k j ( Z 0 , ξ 0 ) | .
Hence,
[ k = 1 t N k ( Z k , 0 , Z k , 0 ¯ ) ξ 0 2 ] α | f ( Z 0 , ξ 0 ) | [ k = 1 t N k ( Z k , 0 , Z k , 0 ¯ ) ξ 0 2 ] α | f ( Z 0 , ξ 0 ) f k j ( Z 0 , ξ 0 ) | + [ k = 1 t N k ( Z k , 0 , Z k , 0 ¯ ) ξ 0 2 ] α | f k j ( Z 0 , ξ 0 ) | 1 + C 1 .
From the arbitrariness of ( Z 0 , ξ 0 ) ,
[ k = 1 t N k ( Z k , Z k ¯ ) ξ 2 ] α | f ( Z , ξ ) | 1 + C 1 , ( Z , ξ ) H
i.e.,
f A α ( H ) = sup ( Z , ξ ) H [ k = 1 t N k ( Z k , Z k ¯ ) ξ 2 ] α | f ( Z , ξ ) | 1 + C 1 .
Then, for the sequence of functions { f k j f } j 1 , we have
f k j f A α ( H ) f k j A α ( H ) + f A α ( H ) C 1 + 1 + C 1 = 1 + 2 C 1 ,
that is, { f k j f } j 1 is bounded in A α ( H ) . Due to the hypothesis,
lim k ψ C ϕ ( f k j f ) A β ( H ) = lim k ψ C ϕ f k j ψ C ϕ f A β ( H ) = 0 ,
which shows that ψ C ϕ : A α ( H ) A β ( H ) is compact, and the lemma is proved. □
Lemma 2.7 
(Hua-type inequality). If Z , S A 1 × A 2 × × A t , then
N k ( Z k , Z k ¯ ) · N k ( S k , S k ¯ ) | N k ( Z k , S k ¯ ) | 2 , k = 1 , 2 , , t .
Proof. 
If Z , S A 1 × A 2 × × A t , combine (1.2) and a 2 + b 2 2 a b , we have
2 | N k ( Z k , S k ¯ ) | N k ( Z k , Z k ¯ ) + N k ( S k , S k ¯ ) 2 [ N k ( Z k , Z k ¯ ) ] 1 2 · [ N k ( S k , S k ¯ ) ] 1 2 .
Then, we have,
N k ( Z k , Z k ¯ ) · N k ( S k , S k ¯ ) | N k ( Z k , S k ¯ ) | 2 , k = 1 , 2 , , t .
and the lemma is proved. □
Lemma 2.8. 
If Z , S A 1 × A 2 × × A t , then
N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) · N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | 2 .
Proof. 
By (2.4), we get directly
N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) · N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) = N 1 ( Z 1 , Z 1 ¯ ) N 1 ( S 1 , S 1 ¯ ) N t ( Z t , Z t ¯ ) N t ( S t , S t ¯ ) | N 1 ( Z 1 , S 1 ¯ ) | 2 | N t ( Z t , S t ¯ ) | 2 = | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | 2 ,
and the lemma is proved. □
Lemma 2.9. 
If ( Z , ξ ) , ( S , ς ) H , then
| j = 1 r ξ j p j ς ¯ j p j | ξ ς
and
ξ ς < | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | .
Proof. 
| j = 1 r ξ j p j ς ¯ j p j | j = 1 r | ξ j | p j · | ς ¯ j | p j j = 1 r | ξ j | 2 p j · j = 1 r | ς ¯ j | 2 p j 1 2 = ( ξ 2 ς 2 ) 1 2 = ξ ς .
For ( Z , ξ ) , ( S , ς ) H , we have
ξ 2 < N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ )
ς 2 < N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) .
From (2.5), it follows that
ξ ς < [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) · N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ] 1 2 | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | ,
and the lemma is proved. □
Lemma 2.10. 
If ( Z , ξ ) , ( S , ς ) H , then
[ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] [ | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | ξ ς ] 2 .
Proof. 
Assume that a , b , c , d are nonnegative real numbers with b a , d c , then we have ( a 2 b 2 ) ( c 2 d 2 ) ( a c b d ) 2 . From this inequality and (2.5), we obtain
[ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ] 1 2 [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ] 1 2 ξ ς 2 [ | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | ξ ς ] 2 ,
and the lemma is proved. □
Lemma 2.11. 
Let α > 0 , if ( S , ς ) H , then f ( S , ς ) ( Z , ξ ) A α ( H ) , where the function f ( S , ς ) ( Z , ξ ) is defined as
f ( S , ς ) ( Z , ξ ) = [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] α [ N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) j = 1 r ξ j p j ς ¯ j p j ] 2 α
with f ( S , ς ) A α ( H ) 1 .
Proof. 
From (2.6) and (2.7), we have
[ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α | f ( S , ς ) ( Z , ξ ) | = [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] α | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) j = 1 r ξ j p j ς ¯ j p j | 2 α [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] α [ | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | | j = 1 r ξ j p j ς ¯ j p j | ] 2 α [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] α [ | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | ξ ς ] 2 α 1 ,
which shows that
f ( S , ς ) A α ( H ) = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] α | f ( S , ς ) ( Z , ξ ) | 1 ,
and f ( S , ς ) A α ( H ) . The lemma is thus proved. □
Lemma 2.12. 
If Z , S A 1 × A 2 × × A t , then
2 t | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) + N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) .
Proof. 
By (1.2)
2 | N k ( Z k , S k ¯ ) | N k ( Z k , Z k ¯ ) + N k ( S k , S k ¯ ) , k = 1 , 2 , , t .
So
2 t | N 1 ( Z 1 , S 1 ¯ ) N t ( Z t , S t ¯ ) | = 2 | N 1 ( Z 1 , S 1 ¯ ) | · 2 | N 2 ( Z 2 , S 2 ¯ ) | 2 | N t ( Z t , S t ¯ ) | [ N 1 ( Z 1 , Z 1 ¯ ) + N 1 ( S 1 , S 1 ¯ ) ] [ N 2 ( Z 2 , Z 2 ¯ ) + N 2 ( S 2 , S 2 ¯ ) ] [ N t ( Z t , Z t ¯ ) + N t ( S t , S t ¯ ) ] N 1 ( Z 1 , Z 1 ¯ ) N 2 ( Z 2 , Z 2 ¯ ) N t ( Z t , Z t ¯ ) + N 1 ( S 1 , S 1 ¯ ) N 2 ( S 2 , S 2 ¯ ) N t ( S t , S t ¯ ) ,
and the lemma is proved. □
Lemma 2.13. 
If ( Z , ξ ) , ( S , ς ) H , then
2 t | k = 1 t N k ( Z k , S k ¯ ) ξ ς | k = 1 t N k ( Z k , Z k ¯ ) ξ 2 + k = 1 t N k ( S k , S k ¯ ) ς 2 .
Proof. 
Since ( Z , ξ ) , ( S , ς ) H , we have
ξ 2 < k = 1 t N k ( Z k , Z k ¯ ) ,
ς 2 < k = 1 t N k ( S k , S k ¯ ) .
Given a permutation i 1 , i 2 , , i t of 1 , 2 , , t , we write
M i 1 , , i k ; i k + 1 , , i t = l = 1 k N i l ( Z i l , Z i l ¯ ) l = k + 1 t N i l ( S i l , S i l ¯ ) , k = 1 , 2 , , t 1 .
then
M i 1 , , i k ; i k + 1 , , i t + M i k + 1 , , i t ; i 1 , , i k 2 ξ ς = l = 1 k N i l ( Z i l , Z i l ¯ ) l = k + 1 t N i l ( S i l , S i l ¯ ) + l = 1 k N i l ( S i l , S i l ¯ ) l = k + 1 t N i l ( Z i l , Z i l ¯ ) 2 ξ ς 2 l = 1 k N i l ( Z i l , Z i l ¯ ) 1 2 l = k + 1 t N i l ( S i l , S i l ¯ ) 1 2 l = 1 k N i l ( S i l , S i l ¯ ) 1 2 l = k + 1 t N i l ( Z i l , Z i l ¯ ) 1 2 2 ξ ς = 2 l = 1 t N i l ( Z i l , Z i l ¯ ) 1 2 l = 1 t N i l ( S i l , S i l ¯ ) 1 2 2 ξ ς > 2 ξ ς 2 ξ ς = 0 .
Hence,
2 t | k = 1 t N k ( Z k , S k ¯ ) ξ ς | 2 t | k = 1 t N k ( Z k , S k ¯ ) | 2 t ξ ς k = 1 t [ N k ( Z k , Z k ¯ ) + N k ( S k , S k ¯ ) ] 2 ξ ς ( 2 t 2 ) ξ ς = k = 1 t N k ( Z k , Z k ¯ ) + k = 1 t N k ( S k , S k ¯ ) 2 ξ ς + M ( 2 t 2 ) ξ ς k = 1 t N k ( Z k , Z k ¯ ) + k = 1 t N k ( S k , S k ¯ ) ξ 2 ς 2 = k = 1 t N k ( Z k , Z k ¯ ) ξ 2 + k = 1 t N k ( S k , S k ¯ ) ς 2 ,
where M denotes the sum of all terms in k = 1 t [ N k ( Z k , Z k ¯ ) + N k ( S k , S k ¯ ) ] except k = 1 t N k ( Z k , Z k ¯ ) and k = 1 t N k ( S k , S k ¯ ) , and M ( 2 t 2 ) ξ ς 0 . The lemma is thus proved. □

3. Main Results

In this Section, we present few charaterization theorems about the boundedness and compactness of weighted composition operators ψ C ϕ : A α ( H ) A β ( H ) .
Theorem 3.1. 
Consider two positive numbers α , β > 0 , a holomorphic self-map ϕ of H and a function ψ H ( H ) . Then, the weighted composition operator ψ C ϕ : A α ( H ) A β ( H ) is bounded if and only if
M ˜ = sup ( Z , ξ ) H | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α < + ,
where ( W , η ) = ϕ ( Z , ξ ) .
Proof. 
Assume that ψ C ϕ : A α ( H ) A β ( H ) is bounded. Then, for each f A α ( H ) , there exists a positive constant C such that ψ C ϕ f A β ( H ) C f A α ( H ) . For the fixed point ( S , ς ) H , consider the function
f ( S , ς ) ( Z , ξ ) = [ N 1 ( A 1 , A 1 ¯ ) N t ( A t , A t ¯ ) ζ 2 ] α [ N 1 ( Z 1 , A 1 ¯ ) N t ( Z t , A t ¯ ) j = 1 r ξ j p j ζ ¯ j p j ] 2 α , ( Z , ξ ) H
where ( A , ζ ) = ϕ ( S , ς ) . From Lemma 2.11, it follows that f ( S , ς ) A α ( H ) and f ( S , ς ) A α ( H ) 1 . By direct computation, we have
ψ C ϕ f ( S , ς ) A β ( H ) = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f ( S , ς ) ( Z , ξ ) | [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] β | ψ C ϕ f ( S , ς ) ( S , ς ) | = [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] β | ψ ( S , ς ) f ( S , ς ) ( A , ζ ) | = [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] β | ψ ( S , ς ) | [ N 1 ( A 1 , A 1 ¯ ) N t ( A t , A t ¯ ) ζ 2 ] α [ N 1 ( A 1 , A 1 ¯ ) N t ( A t , A t ¯ ) j = 1 r ζ j p j ζ ¯ j p j ] 2 α = | ψ ( S , ς ) | [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] β [ N 1 ( A 1 , A 1 ¯ ) N t ( A t , A t ¯ ) ζ 2 ] α .
We also know that ψ C ϕ f ( S , ς ) A β ( H ) C f ( S , ς ) A α ( H ) C < + , which shows that,
| ψ ( S , ς ) | [ N 1 ( S 1 , S 1 ¯ ) N t ( S t , S t ¯ ) ς 2 ] β [ N 1 ( A 1 , A 1 ¯ ) N t ( A t , A t ¯ ) ζ 2 ] α C , ( A , ζ ) = ϕ ( S , ς ) ,
that is,
M ˜ = sup ( Z , ξ ) H | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α < + , ( W , η ) = ϕ ( Z , ξ ) .
Conversely, if
M ˜ = sup ( Z , ξ ) H | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α < + ,
then, for all f A α ( H ) , we obtain from Lemma 2.5
ψ C ϕ f A β ( H ) = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f ( Z , ξ ) | = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ ( Z , ξ ) f ( W , η ) | sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ ( Z , ξ ) | f A α ( H ) [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α = M ˜ f A α ( H ) ,
which implies that ψ C ϕ : A α ( H ) A β ( H ) is bounded. This proves the desired result. □
Theorem 3.2. 
Consider two positive numbers α , β > 0 , a holomorphic self-map ϕ of H , and a function ψ H ( H ) . Then, the weighted composition operator ψ C ϕ : A α ( H ) A β ( H ) is compact if and only if ψ A β ( H ) and
lim ϕ ( Z , ξ ) H | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α = 0 ,
where ( W , η ) = ϕ ( Z , ξ ) .
Proof. 
Assume that the weighted composition operator ψ C ϕ : A α ( H ) A β ( H ) is compact, then ψ C ϕ is bounded. By taking f 1 , we have
[ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ ( Z , ξ ) | = [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f ( Z , ξ ) | < + .
This shows that ψ A β ( H ) . Let us now consider a sequence ( S i , ς i ) ( i = 1 , 2 , . ) in H such that ϕ ( S i , ς i ) H as i . If such a sequence does not exist, then (3.1) holds. If such a sequence exists, let ( A i , ζ i ) = ϕ ( S i , ς i ) , i = 1 , 2 , , and define the sequence of functions f i ( Z , ξ ) = f ( S i , ς i ) ( Z , ξ ) , i = 1 , 2 , .
f i ( Z , ξ ) = f ( S i , ς i ) ( Z , ξ ) = [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) ζ i 2 ] α [ N 1 ( Z 1 , A 1 i ¯ ) N t ( Z t , A t i ¯ ) j = 1 r ξ j p j ζ j i ¯ p j ] 2 α .
From Lemma 2.11, it follows that f ( S i , ς i ) A α ( H ) and f ( S i , ς i ) A α ( H ) 1 , that is { f i } is bounded in A α ( H ) . Taking i , it follows that ( A i , ζ i ) H , and therefore [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) ζ i 2 ] 0 , as i .
According to the two inequalities (2.6) and (2.9),
| N 1 ( Z 1 , A 1 i ¯ ) N t ( Z t , A t i ¯ ) j = 1 r ξ j p j ζ j i ¯ p j | | N 1 ( Z 1 , A 1 i ¯ ) N t ( Z t , A t i ¯ ) | | j = 1 r ξ j p j ζ j i ¯ p j | | N 1 ( Z 1 , A 1 i ¯ ) N t ( Z t , A t i ¯ ) | ξ ζ i 2 t [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] + 2 t [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) ζ i 2 ] 2 t [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] .
[ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] has thus a positive lower bound in the compact subset. Hence, f i 0 on every compact subsets of H as i . Then, by making use of Lemma 2.6,
lim i ψ C ϕ f i A β ( H ) = 0 .
ψ C ϕ f i A β ( H ) = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f i ( Z , ξ ) | [ N 1 ( S 1 i , S 1 i ¯ ) N t ( S t i , S t i ¯ ) ς i 2 ] β | ψ C ϕ f i ( S i , ς i ) | = [ N 1 ( S 1 i , S 1 i ¯ ) N t ( S t i , S t i ¯ ) ς i 2 ] β | ψ ( S i , ς i ) f i ( A i , ζ i ) | = [ N 1 ( S 1 i , S 1 i ¯ ) N t ( S t i , S t i ¯ ) ς i 2 ] β | ψ ( S i , ς i ) | [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) ζ i 2 ] α [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) j = 1 r ζ j i p j ζ j i ¯ p j ] 2 α = | ψ ( S i , ς i ) | [ N 1 ( S 1 i , S 1 i ¯ ) N t ( S t i , S t i ¯ ) ς i 2 ] β [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) ζ i 2 ] α .
This leads to
lim i | ψ ( S i , ς i ) | [ N 1 ( S 1 i , S 1 i ¯ ) N t ( S t i , S t i ¯ ) ς i 2 ] β [ N 1 ( A 1 i , A 1 i ¯ ) N t ( A t i , A t i ¯ ) ζ i 2 ] α = 0 ,
where ( A i , ζ i ) = ϕ ( S i , ς i ) , and then
lim ϕ ( Z , ξ ) H | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α = 0 ,
where ( W , η ) = ϕ ( Z , ξ ) .
Conversely, suppose that (3.1) holds, then
sup ( Z , ξ ) H | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α < + ,
that is, ψ C ϕ is bounded. Let { f i } i 1 be a bounded sequence of functions in A α ( H ) which converges to 0 uniformly on every compact subsets of H . Upon denoting by f i A α ( H ) C 2 , i = 1 , 2 , , we have, by (3.1), that ε > 0 , σ > 0 , such that ( Z , ξ ) E = { ( Z , ξ ) H : dist ( ϕ ( Z , ξ ) , H ) < σ } , we have
| ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α < ε .
By (3.2) and Lemma 2.5, we obtain
sup ( Z , ξ ) E [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f i ( Z , ξ ) | = sup ( Z , ξ ) E [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ ( Z , ξ ) | | f i ( W , η ) | sup ( Z , ξ ) E [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ ( Z , ξ ) | f i A α ( H ) [ N 1 ( W 1 , W 1 ¯ ) N t ( W t , W t ¯ ) η 2 ] α C 2 ε .
On the other hand, if we set
E σ = { ( Z , ξ ) H : dist ( ϕ ( Z , ξ ) , H ) σ } ,
it is clear that E σ is a compact subset of H . By hypothesis, we know that { f i } converges to 0 uniformly on every compact subsets of H . Since ψ A β ( H ) , we can assume that ψ A β ( H ) C 3 . Then, for such ε > 0 ,
sup ( Z , ξ ) E σ [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f i ( Z , ξ ) | = sup ( Z , ξ ) E σ [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ ( Z , ξ ) | | f i ( ϕ ( Z , ξ ) ) | sup ( Z , ξ ) E σ | ψ ( Z , ξ ) | [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β · sup ( Z , ξ ) E σ | f i ( ϕ ( Z , ξ ) ) | C 3 ε .
By combining the above two cases, for i , we have
ψ C ϕ f i A β ( H ) = sup ( Z , ξ ) H [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f i ( Z , ξ ) | ( sup ( Z , ξ ) E + sup ( Z , ξ ) E σ ) [ N 1 ( Z 1 , Z 1 ¯ ) N t ( Z t , Z t ¯ ) ξ 2 ] β | ψ C ϕ f i ( Z , ξ ) | ( C 2 + C 3 ) ε .
That is, lim i ψ C ϕ f i A β ( H ) = 0 . From Lemma 2.6, we obtain that the weighted composition operator ψ C ϕ : A α ( H ) A β ( H ) is compact. This completes the proof of the theorem. □

4. Main applications

In this Section, we discuss several special cases of generalized Hua-Cartan-Hartogs domains, and obtain five specific domains in which the necessary and sufficient condition for the boundness and compactness of weighted composition operators between Bers-type spaces may be specifically characterized.

4.1. The generalized Hua domains

For t = 1 , consider the quantity
N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = det ( I Z Z ¯ ) k , Z I ( m , n ) det ( I Z Z ¯ ) k , Z II ( p ) ( 1 + | z z | 2 2 | z | 2 ) k , z IV ( N )
where k is positive real number. In this case, the generalized Hua-Cartan-Hartogs domains are the generalized Hua domains:
GHE I : = ξ j C n j , Z I ( m , n ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) k , j = 1 , , r , GHE II : = ξ j C n j , Z II ( p ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) k , j = 1 , , r , GHE IV : = ξ j C n j , z IV ( N ) : j = 1 r | ξ j | 2 p j < ( 1 + | z z | 2 2 | z | 2 ) k , j = 1 , , r .
GHE I , GHE II , GHE IV denote respectively the generalized Hua domains of the first, second, and the fourth kind. The Bers-type spaces on GHE I , GHE II , GHE IV may be defined as follows
Definition 4.1. 
Let α > 0 .
( i ) The Bers-type space A α ( GHE I ) consists of all f H ( GHE I ) satisfying
f A α ( GHE I ) = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k j = 1 r | ξ j | 2 p j ] α | f ( Z , ξ ) | < + .
( ii ) The Bers-type space A α ( GHE II ) consists of all f H ( GHE II ) satisfying
f A α ( GHE II ) = sup ( Z , ξ ) GHE II [ det ( I Z Z ¯ ) k j = 1 r | ξ j | 2 p j ] α | f ( Z , ξ ) | < + .
( iii ) The Bers-type space A α ( GHE IV ) consists of all f H ( GHE IV ) satisfying
f A α ( GHE IV ) = sup ( z , ξ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k j = 1 r | ξ j | 2 p j ] α | f ( z , ξ ) | < + .
To prove that the above generalized Hua domains are special cases of the generalized Hua-Cartan-Hartogs domains, we need to verify that det ( I Z W ¯ ) k , Z , W I , II and ( 1 + z z w w ¯ 2 z w ¯ ) k , z , w IV satisfy conditions (1.1) and (1.2). Indeed, we have
Lemma 4.1. 
The following statements hold.
( i ) If Z , W I ( m , n ) and 0 < k m 1 , then
2 | det ( I Z W ¯ ) k | det ( I Z Z ¯ ) k + det ( I W W ¯ ) k .
( ii ) If Z , W II ( p ) and 0 < k p 1 , then
2 | det ( I Z W ¯ ) k | det ( I Z Z ¯ ) k + det ( I W W ¯ ) k .
Proof. ( 1 ) Assume that Z , W I ( m , n ) , and that m n .
For m = n , applying Lemma 2.3, there exist m × m unitary matrixes U 1 , U 2 , V 1 , V 2 such that
Z = U 1 λ 1 0 0 0 λ 2 0 0 0 λ m V 1 = U 1 Λ 1 V 1 ( 1 > λ 1 λ 2 λ m 0 ) ,
and
W = U 2 μ 1 0 0 0 μ 2 0 0 0 μ m V 2 = U 2 Λ 2 V 2 ( 1 > μ 1 μ 2 μ m 0 ) .
Then, it turns out that
det ( I Z W ¯ ) = det ( I U 1 Λ 1 V 1 V 2 ¯ Λ 2 ¯ U 2 ¯ ) = det ( U 1 U 1 ¯ U 1 Λ 1 V 1 V 2 ¯ Λ 2 ¯ U 2 ¯ ) = det U 1 det ( U 1 ¯ Λ 1 V 1 V 2 ¯ Λ 2 ¯ U 2 ¯ ) = det ( I Λ 1 V 1 V 2 ¯ Λ 2 ¯ V 2 V 1 ¯ V 1 V 2 ¯ U 2 ¯ U 1 ) ,
and according to Lemma 2.4, there exists a square matrix P, such that
| det ( I Z W ¯ ) | | det ( I Λ 1 P Λ 2 P ) | = i = 1 m ( 1 λ i μ k i ) ,
where k 1 , k 2 , , k m is a permutation of 1 , 2 , , m . Using (2.2) and (2.3), we have
2 | det ( I Z W ¯ ) k | = 2 1 m k 2 m k | det ( I Z W ¯ ) k | = 2 1 m k 2 m | det ( I Z W ¯ ) | k 2 1 m k 2 m i = 1 m ( 1 λ i μ k i ) k = 2 1 m k i = 1 m ( 2 2 λ i μ k i ) k 2 1 m k i = 1 m ( 2 λ i 2 μ k i 2 ) k = 2 1 m k i = 1 m [ ( 1 λ i 2 ) + ( 1 μ k i 2 ) ] 1 m m k 2 1 m k i = 1 m ( 1 λ i 2 ) 1 m + i = 1 m ( 1 μ k i 2 ) 1 m m k 2 1 m k 2 m k 1 i = 1 m ( 1 λ i 2 ) 1 m × m k + i = 1 m ( 1 μ k i 2 ) 1 m × m k = i = 1 m ( 1 λ i 2 ) k + i = 1 m ( 1 μ k i 2 ) k = det ( I Z Z ¯ ) k + det ( I W W ¯ ) k .
For m < n , there exists a unitary matrix U ( n ) such that
Z = ( Z 1 ( m ) , 0 ) U , W = ( W 1 ( m ) , W 2 ) U .
By (4.6), we obtain
2 | det ( I Z W ¯ ) k | = 2 | det ( I Z 1 W 1 ¯ ) k | det ( I Z 1 Z 1 ¯ ) k + det ( I W 1 W 1 ¯ ) k det ( I Z 1 Z 1 ¯ ) k + det ( I W 1 W 1 ¯ W 2 W 2 ¯ ) k = det ( I Z Z ¯ ) k + det ( I W W ¯ ) k .
This completes the proof of (4.2).
( 2 ) Assume Z , W II ( p ) , then the polar decompositions of Z , W are similar to (4.4) and (4.5), thus (4.3) can be proved in the same way. □
Lemma 4.2 
(see [32]). The linear transformation:
w 1 = z 1 + i z 2 , w 2 = z 1 i z 2
w 3 = i z 3 z 4 , w 4 = i z 3 + z 4
maps the domain IV ( 4 ) :
1 + | z 1 2 + z 2 2 + z 3 2 + z 4 2 | 2 2 ( | z 1 | 2 + | z 2 | 2 + | z 3 | 2 + | z 4 | 2 ) > 0
1 | z 1 2 + z 2 2 + z 3 2 + z 4 2 | 2 > 0
onto the domain I ( 2 , 2 ) :
I W W ¯ > 0 , W = w 1 w 3 w 4 w 2 .
Lemma 4.3 
(see [32]). If Z , W are m × n matrices which satisfy I Z Z ¯ 0 , I W W ¯ > 0 , then I W ¯ Z ( W ¯ Z ) ¯ > 0 and I W ¯ Z is nonsingular.
Lemma 4.4. 
Let z , w IV ( N ) , then there exist two second-order square matrices Z , W such that
1 + z z w w ¯ 2 z w ¯ = det ( I W ¯ Z ) 0 ,
1 + | z z | 2 2 | z | 2 = det ( I Z Z ¯ ) ,
1 + | w w | 2 2 | w | 2 = det ( I W W ¯ ) .
Proof. 
If z , w IV ( N ) , then there exists a N × N real orthogonal square matrix Γ such that the two N-dimensional vectors z and w can be written as
z = ( z 1 * , z 2 * , z 3 * , z 4 * , 0 , , 0 ) Γ ,
w = ( w 1 * , w 2 * , w 3 * , w 4 * , 0 , , 0 ) Γ .
According to Lemma 4.2, we have
I Z Z ¯ > 0 , I W W ¯ > 0 ,
where
Z = z 1 * + i z 2 * i z 3 * z 4 * i z 3 * + z 4 * z 1 * i z 2 * I ( 2 , 2 ) ,
W = w 1 * + i w 2 * i w 3 * w 4 * i w 3 * + w 4 * w 1 * i w 2 * I ( 2 , 2 ) .
By Lemma 4.3, we get det ( I W ¯ Z ) 0 . Hence,
1 + z z w w ¯ 2 z w ¯ = 1 + [ ( z 1 * ) 2 + ( z 2 * ) 2 + ( z 3 * ) 2 + ( z 4 * ) 2 ] [ ( w 1 * ) 2 + ( w 2 * ) 2 + ( w 3 * ) 2 + ( w 4 * ) 2 ] ¯ 2 ( z 1 * w 1 * ¯ + z 2 * w 2 * ¯ + z 3 * w 3 * ¯ + z 4 * w 4 * ¯ ) = det ( I W ¯ Z ) 0 .
and
1 + | z z | 2 2 | z | 2 = 1 + | ( z 1 * ) 2 + ( z 2 * ) 2 + ( z 3 * ) 2 + ( z 4 * ) 2 | 2 2 ( | z 1 * | 2 + | z 2 * | 2 + | z 3 * | 2 + | z 4 * | 2 ) = det ( I Z Z ¯ ) ,
1 + | w w | 2 2 | w | 2 = 1 + | ( w 1 * ) 2 + ( w 2 * ) 2 + ( w 3 * ) 2 + ( w 4 * ) 2 | 2 2 ( | w 1 * | 2 + | w 2 * | 2 + | w 3 * | 2 + | w 4 * | 2 ) = det ( I W W ¯ ) .
This completes the proof of the Lemma. □
Lemma 4.5. 
If z , w IV ( N ) , and 0 < k 1 2 , then
( 1 + | z z | 2 2 | z | 2 ) k + ( 1 + | w w | 2 2 | w | 2 ) k 2 | ( 1 + z z w w ¯ 2 z w ¯ ) k | .
Proof. 
For z , w IV ( N ) , Lemma 4.4 ensures that there exist two second-order square matrices Z , W I ( 2 , 2 ) such that
( 1 + | z z | 2 2 | z | 2 ) k = det ( I Z Z ¯ ) k ,
( 1 + | w w | 2 2 | w | 2 ) k = det ( I W W ¯ ) k ,
( 1 + z z w w ¯ 2 z w ¯ ) k = det ( I Z W ¯ ) k ,
where Z , W are identical to (4.7) and (4.8), respectively. By (4.2), we have
( 1 + | z z | 2 2 | z | 2 ) k + ( 1 + | w w | 2 2 | w | 2 ) k 2 | ( 1 + z z w w ¯ 2 z w ¯ ) k | .
This completes the proof of the Lemma. □
Lemma 4.6. 
If z IV ( N ) , then 0 < 1 + | z z | 2 2 | z | 2 1 .
Proof. 
Since z IV ( N ) , there exists a real orthogonal square matrix Γ such that
z = e i θ ( λ 1 , i λ 2 , 0 , , 0 ) Γ ( λ 1 λ 2 > 0 , 1 > λ 1 + λ 2 ) ,
where e i θ = cos θ + i sin θ . Therefore,
z z = e i θ ( λ 1 , i λ 2 , 0 , , 0 ) Γ Γ ( λ 1 , i λ 2 , 0 , , 0 ) e i θ = e 2 i θ ( λ 1 2 λ 2 2 ) ,
which implies that
0 < | z z | = | e 2 i θ ( λ 1 2 λ 2 2 ) | = λ 1 2 λ 2 2 < 1 .
At the same time,
2 | z | 2 = 2 z z ¯ = 2 e i θ ( λ 1 , i λ 2 , 0 , , 0 ) Γ Γ ¯ ( λ 1 , i λ 2 , 0 , , 0 ) e i θ ¯ = 2 | e i θ | 2 ( λ 1 2 + λ 2 2 ) = 2 ( λ 1 2 + λ 2 2 ) λ 1 2 λ 2 2 ( λ 1 2 λ 2 2 ) 2 = | z z | 2 ,
that is | z z | 2 2 | z | 2 0 , then 1 + | z z | 2 2 | z | 2 1 . Furthermore, when z IV ( N ) , we have 1 + | z z | 2 2 | z | 2 > 0 . Hence, 0 < 1 + | z z | 2 2 | z | 2 1 . This completes the proof of the Lemma.
By the definition of the Cartan domains of the first kind and second kind, det ( I Z Z ¯ ) k , Z I , II clearly meet (1.1). From Lemma 4.6, ( 1 + | z z | 2 2 | z | 2 ) k , z IV meets (1.1). Meanwhile, upon using Lemmas 4.1 and 4.5, we have that when k meets certain conditions, det ( I Z W ¯ ) k , Z , W I , II and ( 1 + z z w w ¯ 2 z w ¯ ) k , z , w IV meet conditions (1.2). Therefore, those generalized Hua domains are special cases of generalized Hua-Cartan-Hartogs domains. Using Theorems 3.1 and 3.2, we obtain the conditions for the boundedness and compactness of weighted composition operators between Bers-type spaces on generalized Hua domains.
Let us now consider a holomorphic self-map ϕ of GHE { GHE I , GHE II , GHE IV } . Let us write ( W , η ) = ϕ ( Z , ξ ) for ( Z , ξ ) GHE I , GHE II and ( w , η ) = ϕ ( z , ξ ) for ( z , ξ ) GHE IV .
Corollary 4.1. 
If α , β > 0 are positive numbers, ϕ is a holomorphic self-map of GHE and ψ H ( GHE ) , then the following statements hold.
( i ) If 0 < k m 1 , then the weighted composition operator ψ C ϕ : A α ( GHE I ) A β ( GHE I ) is bounded iff
M ˜ I = sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ 2 ] β [ det ( I W W ¯ ) k η 2 ] α < + .
( ii ) If 0 < k p 1 , then the weighted composition operator ψ C ϕ : A α ( GHE II ) A β ( GHE II ) is bounded iff
M ˜ I I = sup ( Z , ξ ) GHE II | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ 2 ] β [ det ( I W W ¯ ) k η 2 ] α < + .
( iii ) If 0 < k 1 2 , then the weighted composition operator ψ C ϕ : A α ( GHE IV ) A β ( GHE IV ) is bounded iff
M ˜ I V = sup ( z , ξ ) GHE IV | ψ ( z , ξ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ξ 2 ] β [ ( 1 + | w w | 2 2 | w | 2 ) k η 2 ] α < + .
Corollary 4.2. 
If α , β > 0 are positive numbers, ϕ is a holomorphic self-map of GHE and ψ H ( GHE ) , then the following statements hold.
( i ) If 0 < k m 1 , then the weighted composition operator ψ C ϕ : A α ( GHE I ) A β ( GHE I ) is compact iff ψ A β ( GHE I ) and
lim ϕ ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ 2 ] β [ det ( I W W ¯ ) k η 2 ] α = 0 .
( ii ) If 0 < k p 1 , then the weighted composition operator ψ C ϕ : A α ( GHE II ) A β ( GHE II ) is compact iff ψ A β ( GHE II ) and
lim ϕ ( Z , ξ ) GHE II | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ 2 ] β [ det ( I W W ¯ ) k η 2 ] α = 0 .
( iii ) If 0 < k 1 2 , then the weighted composition operator ψ C ϕ : A α ( GHE IV ) A β ( GHE IV ) is compact iff ψ A β ( GHE IV ) and
lim ϕ ( z , ξ ) GHE IV | ψ ( z , ξ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ξ 2 ] β [ ( 1 + | w w | 2 2 | w | 2 ) k η 2 ] α = 0 .
Remark 4.1. 
Corollaries 4 . 1 and 4 . 2 express the sufficient and necessary conditions for boundedness and compactness of weighted composition operators between Bers-type spaces on generalized Hua domains of the first, second, and the fourth kind. This is new result, not obtained before. In order to prove analogue results for the generalized Hua domains of the third type, we should prove that “ if Z , W III ( q ) , then 2 | det ( I Z W ¯ ) k | det ( I Z Z ¯ ) k + det ( I W W ¯ ) k ". We have tried to prove this inequality by the polar decomposition of I I I , without successs so far. This will be the subject of future analysis.

4.2. The Cartan-Hartogs domains

For t = 1 and p 1 = p 2 = = p r = 1 , N 1 ( Z 1 , Z 1 ¯ ) is equivalent to (4.1). In this case, the generalized Hua-Cartan-Hartogs domains are the following Cartan-Hartogs domains:
Y I : = ξ C r , Z I ( m , n ) : | ξ | 2 l < det ( I Z Z ¯ ) = ξ C r , Z I ( m , n ) : | ξ | 2 < det ( I Z Z ¯ ) k , Y II : = ξ C r , Z II ( p ) : | ξ | 2 l < det ( I Z Z ¯ ) = ξ C r , Z II ( P ) : | ξ | 2 < det ( I Z Z ¯ ) k , Y IV : = ξ C r , z IV ( N ) : | ξ | 2 l < 1 + | z z | 2 2 | z | 2 = ξ C r , z IV ( N ) : | ξ | 2 < ( 1 + | z z | 2 2 | z | 2 ) k ,
where l = 1 k > 0 . Y I , Y II , Y IV denote the Cartan-Hartogs domains of the first, second, and the fourth kind, respectively. The Bers-type spaces on Y I , Y II , Y IV are defined by:
Definition 4.2. 
Let α > 0 .
( i ) The Bers-type space A α ( Y I ) consists of all f H ( Y I ) satisfying
f A α ( Y I ) = sup ( Z , ξ ) Y I [ det ( I Z Z ¯ ) k | ξ | 2 ] α | f ( Z , ξ ) | < + .
( ii ) The Bers-type space A α ( Y II ) consists of all f H ( Y II ) satisfying
f A α ( Y II ) = sup ( Z , ξ ) Y II [ det ( I Z Z ¯ ) k | ξ | 2 ] α | f ( Z , ξ ) | < + .
( iii ) The Bers-type space A α ( Y IV ) consists of all f H ( Y IV ) satisfying
f A α ( Y IV ) = sup ( z , ξ ) Y IV [ ( 1 + | z z | 2 2 | z | 2 ) k | ξ | 2 ] α | f ( z , ξ ) | < + .
By the definition of the Cartan domains of the first kind and second kind, det ( I Z Z ¯ ) k , Z I , II clearly meet (1.1). From Lemma 4.6, ( 1 + | z z | 2 2 | z | 2 ) k , z IV meets (1.1). Meanwhile, using Lemmas 4.1 and 4.5, we have that when k meets certain conditions, det ( I Z W ¯ ) k , Z , W I , II and ( 1 + z z w w ¯ 2 z w ¯ ) k , z , w IV meet conditions (1.2). Therefore, those Cartan-Hartogs domains are special cases of generalized Hua-Cartan-Hartogs domains. According to Theorems 3.1 and 3.2, we obtain the conditions for boundedness and compactness of weighted composition operators between Bers-type spaces on the Cartan-Hartogs domains .
Assume that ϕ is a holomorphic self-map of Y { Y I , Y II , Y IV } , and let us write ( W , η ) = ϕ ( Z , ξ ) for ( Z , ξ ) Y I , Y II and ( w , η ) = ϕ ( z , ξ ) for ( z , ξ ) Y IV . We have
Corollary 4.3. 
If α , β > 0 are positive numbers, ϕ is a holomorphic self-map of Y , and ψ H ( Y ) , then the following statements hold.
( i ) If 0 < k m 1 , then the weighted composition operator ψ C ϕ : A α ( Y I ) A β ( Y I ) is bounded iff
N ˜ I = sup ( Z , ξ ) Y I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k | ξ | 2 ] β [ det ( I W W ¯ ) k | η | 2 ] α < + .
( ii ) If 0 < k p 1 , then the weighted composition operator ψ C ϕ : A α ( Y II ) A β ( Y II ) is bounded iff
N ˜ I I = sup ( Z , ξ ) Y II | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k | ξ | 2 ] β [ det ( I W W ¯ ) k | η | 2 ] α < + .
( iii ) If 0 < k 1 2 , then the weighted composition operator ψ C ϕ : A α ( Y IV ) A β ( Y IV ) is bounded iff
N ˜ I V = sup ( Z , ξ ) Y IV | ψ ( Z , ξ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k | ξ | 2 ] β [ ( 1 + | w w | 2 2 | w | 2 ) k | η | 2 ] α < + .
Corollary 4.4. 
If α , β > 0 are positive numbers, ϕ is a holomorphic self-map of Y and ψ H ( Y ) , then the following statements hold.
( i ) If 0 < k m 1 , then the weighted composition operator ψ C ϕ : A α ( Y I ) A β ( Y I ) is compact iff ψ A β ( Y I ) and
lim ϕ ( Z , ξ ) Y I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k | ξ | 2 ] β [ det ( I W W ¯ ) k | η | 2 ] α = 0 .
( ii ) If 0 < k p 1 , then the weighted composition operator ψ C ϕ : A α ( Y II ) A β ( Y II ) is compact iff ψ A β ( Y II ) and
lim ϕ ( Z , ξ ) Y II | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k | ξ | 2 ] β [ det ( I W W ¯ ) k | η | 2 ] α = 0 .
( iii ) If 0 < k 1 2 , then the weighted composition operator ψ C ϕ : A α ( Y IV ) A β ( Y IV ) is compact iff ψ A β ( Y IV ) and
lim ϕ ( z , ξ ) Y IV | ψ ( z , ξ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k | ξ | 2 ] β [ ( 1 + | w w | 2 2 | w | 2 ) k | η | 2 ] α = 0 .
For m = 1 , k = 1 , the Cartan-Hartogs domain of the first kind Y I is the simple unit ball B n . The sufficient and necessary conditions for the weighted composition operator ψ C ϕ : A α ( B n ) A β ( B n ) to be bounded and compact are summarized as follows
Corollary 4.5. 
Given α , β > 0 , a holomorphic self-map ϕ of B n , and ψ H ( B n ) , then the weighted composition operator ψ C ϕ : A α ( B n ) A β ( B n )
( i ) is bounded if and only if
sup z B n | ψ ( z ) | ( 1 | z | 2 ) β ( 1 | ϕ ( z ) | 2 ) α < + .
( ii ) is compact if and only if ψ A β ( B n ) and
lim ϕ ( z ) 1 | ψ ( z ) | ( 1 | z | 2 ) β ( 1 | ϕ ( z ) | 2 ) α = 0 .
This result is consistent with the conclusion of Jin and Tang in [11].
From Corollary 4.5, by setting n = 1 , we may obtain the boundedness and compactness conditions for weighted composition operators between Bers-type space on the unit disk, which are consistent with the results of [9, 10].
Corollary 4.6. 
Given α , β > 0 , a holomorphic self-map ϕ of D and ψ H ( D ) , then the weighted composition ψ C ϕ : A α ( D ) A β ( D )
( i ) is bounded if and only if
sup z D | ψ ( z ) | ( 1 | z | 2 ) β ( 1 | ϕ ( z ) | 2 ) α < + .
( ii ) is compact if and only if ψ A β ( D ) and
lim ϕ ( z ) 1 | ψ ( z ) | ( 1 | z | 2 ) β ( 1 | ϕ ( z ) | 2 ) α = 0 .

4.3. The generalized Cartan-Hartogs domains

For t = 2 , let us introduce
N k ( Z k , Z k ¯ ) = det ( I Z k Z k ¯ ) s k , Z k I ( m , n ) det ( I Z k Z k ¯ ) s k , Z k II ( p ) ( 1 + | z k z k | 2 2 | z k | 2 ) s k , z k IV ( N )
where s k are positive real numbers, k = 1 , 2 . In this case, those generalized Hua-Cartan-Hartogs domains are generalized Cartan-Hartogs domains. We consider the case in which Z 1 , Z 2 simultaneously belong to I , II , IV , and assume Z 1 I ( m , n ) , Z 2 I ( g , l ) , then let N 1 ( Z 1 , Z 1 ¯ ) N 2 ( Z 2 , Z 2 ¯ ) = det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 . We refer to this domain as GW I , I , with formal definition
GW I , I : = { ξ j C n j , Z 1 I ( m , n ) , Z 2 I ( g , l ) : j = 1 r | ξ j | 2 p j < det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 , j = 1 , , r } .
Definition 4.3. 
Let α > 0 , the Bers-type space A α ( GW I , I ) consists of all f H ( GW I , I ) satisfying
f A α ( GW I , I ) = sup ( Z , ξ ) GW I , I [ det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 j = 1 r | ξ j | 2 p j ] α | f ( Z , ξ ) | < + .
For Z 1 I ( m , n ) , Z 2 I ( g , l ) , by the definition of the Cartan domain of the first kind, det ( I Z k Z k ¯ ) s k , k = 1 , 2 clearly meet (1.1), if s k ( k = 1 , 2 . ) satisfy 0 < s 1 m 1 , 0 < s 2 g 1 , then Lemma 4.1 implies that det ( I Z k W k ¯ ) s k , k = 1 , 2 satisfy conditions (1.2). Therefore, the generalized Cartan-Hartogs domain GW I , I is a generalized Hua-Cartan-Hartogs domain, and we may easily obtain conditions for the boundedness and compactness of weighted composition operator between Bers-type spaces on GW I , I .
Assume that ϕ is a holomorphic self-map of GW I , I , and consider ( W , η ) = ϕ ( Z , ξ ) for ( Z , ξ ) GW I , I .
Corollary 4.7. 
For α , β > 0 , 0 < s 1 m 1 , 0 < s 2 g 1 , a holomorphic self-map ϕ of GW I , I and ψ H ( GW I , I ) , the following statements hold.
( i ) The weighted composition operator ψ C ϕ : A α ( GW I , I ) A β ( GW I , I ) is bounded iff
N ˜ I , I = sup ( Z , ξ ) GW I , I | ψ ( Z , ξ ) | [ det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 ξ 2 ] β [ det ( I W 1 W 1 ¯ ) s 1 det ( I W 2 W 2 ¯ ) s 2 η 2 ] α < + .
( ii ) The weighted composition operator ψ C ϕ : A α ( GW I , I ) A β ( GW I , I ) is compact iff ψ A β ( GW I , I ) and
lim ϕ ( Z , ξ ) GW I , I | ψ ( Z , ξ ) | [ det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 ξ 2 ] β [ det ( I W 1 W 1 ¯ ) s 1 det ( I W 2 W 2 ¯ ) s 2 η 2 ] α = 0 .
In particular, for r = 1 GW I , I is the ordinary generalized Cartan-Hartogs domain W I , I .
W I , I : = ( Z 1 , Z 2 , ξ ) I ( m , n ) × I ( g , l ) × C n : | ξ | 2 < det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 .
If we set r = 1 in Corollary 4.7, we obtain sufficient and necessary conditions for the boundedness and compactness of weighted composition operators between Bers-type spaces on the generalized Cartan-Hartogs domains W I , I .

4.4. The generalized Cartan-Hartogs domains over different Cartan domains

For t = 2 , we introduce N k ( Z k , Z k ¯ ) as in (4.10), k = 1 , 2 . In this case, those generalized Hua-Cartan-Hartogs domains are generalized Cartan-Hartogs domains. Here, we consider the case in which Z 1 , Z 2 belong to different Cartan domains. Taking Z 1 I ( m , n ) , Z 2 II ( p ) as an example, let N 1 ( Z 1 , Z 1 ¯ ) N 2 ( Z 2 , Z 2 ¯ ) = det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 and refer to this domain as GW I , II by setting
GW I , II : = { ξ j C n j , Z 1 I ( m , n ) , Z 2 II ( p ) : j = 1 r | ξ j | 2 p j < det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 , j = 1 , 2 , , r } .
Definition 4.4. 
For α > 0 , the Bers-type space A α ( GW I , II ) consists of all f H ( GW I , II ) satisfying
f A α ( GW I , II ) = sup ( Z , ξ ) GW I , II [ det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 j = 1 r | ξ j | 2 p j ] α | f ( Z , ξ ) | < +
For Z 1 I ( m , n ) , Z 2 II ( p ) , by the definition of the Cartan domains of the first kind and second kind, det ( I Z k Z k ¯ ) s k , k = 1 , 2 clearly meet (1.1), if s k ( k = 1 , 2 . ) satisfy 0 < s 1 m 1 , 0 < s 2 p 1 , then by Lemma 4.1 we know that det ( I Z k W k ¯ ) s k , k = 1 , 2 satisfy conditions (1.2). Therefore, the generalized Cartan-Hartogs domain GW I , II is a special case of generalized Hua-Cartan-Hartogs domains. Taking Theorems 3.1 and 3.2 into account, we obtain the conditions for the boundedness and compactness of weighted composition operators between Bers-type spaces on GW I , II .
Assume that ϕ is a holomorphic self-map of GW I , II and write ( W , η ) = ϕ ( Z , ξ ) for ( Z , ξ ) GW I , II . We have
Corollary 4.8. 
Given α , β > 0 , 0 < s 1 m 1 , 0 < s 2 p 1 , a holomorphic self-map ϕ of GW I , II and ψ H ( GW I , II ) , then the following statements hold.
( i ) The weighted composition operator ψ C ϕ : A α ( GW I , II ) A β ( GW I , II ) is bounded iff
N ˜ I , I I = sup ( Z , ξ ) GW I , II | ψ ( Z , ξ ) | [ det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 ξ 2 ] β [ det ( I W 1 W 1 ¯ ) s 1 det ( I W 2 W 2 ¯ ) s 2 η 2 ] α < + .
( ii ) The weighted composition operator ψ C ϕ : A α ( GW I , II ) A β ( GW I , II ) is compact iff ψ A β ( GW I , II ) and
lim ϕ ( Z , ξ ) GW I , II | ψ ( Z , ξ ) | [ det ( I Z 1 Z 1 ¯ ) s 1 det ( I Z 2 Z 2 ¯ ) s 2 ξ 2 ] β [ det ( I W 1 W 1 ¯ ) s 1 det ( I W 2 W 2 ¯ ) s 2 η 2 ] α = 0 .

4.5. The generalized ellipsoidal-type domains

For t = 1 , let us introduce
N 1 ( Z 1 , Z 1 ¯ ) = N ( Z , Z ¯ ) = 1 | Z | 2 m , Z I ( m , n ) 1 | Z | 2 p , Z II ( p ) 1 | Z | 2 [ q 2 ] , Z III ( q ) 1 | z | 2 , z IV ( N )
where [ q 2 ] denotes the integer part of q 2 . In this case, we refer to those generalized Hua-Cartan-Hartogs domains as the generalized ellipsoidal-type domains.
L I : = ξ j C n j , Z I ( m , n ) : j = 1 r | ξ j | 2 p j < 1 | Z | 2 m , j = 1 , 2 , , r , L II : = ξ j C n j , Z II ( p ) : j = 1 r | ξ j | 2 p j < 1 | Z | 2 p , j = 1 , 2 , , r , L III : = ξ j C n j , Z III ( q ) : j = 1 r | ξ j | 2 p j < 1 | Z | 2 [ q 2 ] , j = 1 , 2 , , r , L IV : = ξ j C n j , z IV ( N ) : j = 1 r | ξ j | 2 p j < 1 | z | 2 , j = 1 , 2 , , r .
L I , L II , L III and L IV denote generalized ellipsoidal-type domains of the first, second, third, and fourth kind, respectively. The Bers-type spaces on L I , L II , L III and L IV may be defined as follows
Definition 4.5. 
Let α > 0 .
( i ) The Bers-type space A α ( L I ) consists of all f H ( L I ) satisfying
f A α ( L I ) = sup ( Z , ξ ) L I 1 | Z | 2 m j = 1 r | ξ j | 2 p j α | f ( Z , ξ ) | < + .
( ii ) The Bers-type space A α ( L II ) consists of all f H ( L II ) satisfying
f A α ( L II ) = sup ( Z , ξ ) L II 1 | Z | 2 p j = 1 r | ξ j | 2 p j α | f ( Z , ξ ) | < + .
( iii ) The Bers-type space f A α ( L III ) consists of all f H ( L III ) satisfying
f A α ( L III ) = sup ( Z , ξ ) L III 1 | Z | 2 [ q 2 ] j = 1 r | ξ j | 2 p j α | f ( Z , ξ ) | < + .
( iv ) The Bers-type space A α ( L IV ) consists of all f H ( L IV ) satisfying
f A α ( L IV ) = sup ( z , ξ ) L IV 1 | z | 2 j = 1 r | ξ j | 2 p j α | f ( z , ξ ) | < + .
In order to prove that the above generalized ellipsoidal-type domains are special cases of generalized Hua-Cartan-Hartogs domains, we need to prove the following Lemma first.
Lemma 4.7. 
The following statements hold.
( i ) If Z I ( m , n ) , then 0 < 1 | Z | 2 m 1 and for all Z , W I ( m , n ) we have
1 tr ( Z Z ¯ ) m + 1 tr ( W W ¯ ) m 2 | 1 tr ( Z W ¯ ) m | .
( ii ) If Z II ( p ) , then 0 < 1 | Z | 2 p 1 , and for all Z , W II ( p ) we have
1 tr ( Z Z ¯ ) p + 1 tr ( W W ¯ ) p 2 | 1 tr ( Z W ¯ ) p | .
( iii ) If Z III ( q ) , then 0 < 1 | Z | 2 [ q 2 ] 1 , and for all Z , W III ( q ) we have
1 tr ( Z Z ¯ ) 2 [ q 2 ] + 1 tr ( W W ¯ ) 2 [ q 2 ] 2 | 1 tr ( Z W ¯ ) 2 [ q 2 ] | .
( iv ) If z IV ( N ) , then 0 < 1 | z | 2 1 , and for all z , w IV ( N ) we have
( 1 | z | 2 ) + ( 1 | w | 2 ) 2 | 1 z w ¯ | .
Proof. ( i ) For Z I ( m , n ) , we have 0 | Z | 2 = tr ( Z Z ¯ ) < m , that is 0 < 1 | Z | 2 m 1 . According to the two inequalities | tr ( Z W ¯ ) | 2 tr ( Z Z ¯ ) tr ( W W ¯ ) and a 2 + b 2 2 a b , we obtain
2 | 1 tr ( Z W ¯ ) m | 2 2 | tr ( Z W ¯ ) | m 2 2 tr ( Z Z ¯ ) tr ( W W ¯ ) m = 2 2 tr ( Z Z ¯ ) m tr ( W W ¯ ) m 2 tr ( Z Z ¯ ) m + tr ( W W ¯ ) m = 1 tr ( Z Z ¯ ) m + 1 tr ( W W ¯ ) m .
( ii ) For Z II ( p ) , we may write
Z = z 11 1 2 z 12 1 2 z 1 p 1 2 z 21 z 22 1 2 z 2 p 1 2 z p 1 1 2 z p 2 z p p ,
then 0 | Z | 2 = tr ( Z Z ¯ ) < p , and easily obtain the proof.
( iii ) For Z III ( q ) , we have 0 | Z | 2 = 1 2 tr ( Z Z ¯ ) < [ q 2 ] , that is 0 < 1 | Z | 2 [ q 2 ] 1 . According to the two inequalities | tr ( Z W ¯ ) | 2 tr ( Z Z ¯ ) tr ( W W ¯ ) and a 2 + b 2 2 a b , we obtain
2 | 1 tr ( Z W ¯ ) 2 [ q 2 ] | 2 2 | tr ( Z W ¯ ) | 2 [ q 2 ] 2 2 tr ( Z Z ¯ ) tr ( W W ¯ ) 2 [ q 2 ] = 2 2 tr ( Z Z ¯ ) 2 [ q 2 ] tr ( W W ¯ ) 2 [ q 2 ] 2 tr ( Z Z ¯ ) 2 [ q 2 ] + tr ( W W ¯ ) 2 [ q 2 ] = 1 tr ( Z Z ¯ ) 2 [ q 2 ] + 1 tr ( W W ¯ ) 2 [ q 2 ] .
( iv ) For z IV ( N ) , we have 0 | z | 2 < 1 , that is 0 < 1 | z | 2 1 . According to the two inequalities | z w ¯ | | z | | w | and a 2 + b 2 2 a b , we obtain
2 | 1 z w ¯ | 2 2 | z w ¯ | 2 2 | z | | w | 2 ( | z | 2 + | w | 2 ) = 1 | z | 2 + 1 | w | 2 .
This completes the proof of the Lemma. □
The above Lemma shows that 1 tr ( Z W ¯ ) m , Z , W I ( m , n ) ; 1 tr ( Z W ¯ ) p , Z , W II ( p ) ; 1 tr ( Z W ¯ ) 2 [ q 2 ] , Z , W III ( q ) and ( 1 z w ¯ ) , z , w IV ( N ) satisfy conditions (1.1) and (1.2). Therefore, the generalized ellipsoidal-type domains are special case of the generalized Hua-Cartan-Hartogs domains, and we may obtain the boundedness and compactness conditions for weighted composition operators between Bers-type spaces on these domains.
Assume that ϕ is a holomorphic self-map of L { L I , L II , L III , L IV } . Let us write ( W , η ) = ϕ ( Z , ξ ) for ( Z , ξ ) L I , L II , L III , and write ( w , η ) = ϕ ( z , ξ ) for ( z , ξ ) L IV .
Corollary 4.9. 
Given α , β > 0 , a holomorphic self-map ϕ of L , and ψ H ( L ) , then the following statements hold.
( i ) The weighted composition operator ψ C ϕ : A α ( L I ) A β ( L I ) is bounded iff
Q ˜ I = sup ( Z , ξ ) L I | ψ ( Z , ξ ) | ( 1 | Z | 2 m ξ 2 ) β ( 1 | W | 2 m η 2 ) α < + .
( ii ) The weighted composition operator ψ C ϕ : A α ( L II ) A β ( L II ) is bounded iff
Q ˜ I I = sup ( Z , ξ ) L II | ψ ( Z , ξ ) | ( 1 | Z | 2 p ξ 2 ) β ( 1 | W | 2 p η 2 ) α < + .
( iii ) The weighted composition operator ψ C ϕ : A α ( L III ) A β ( L III ) is bounded iff
Q ˜ I I I = sup ( Z , ξ ) L III | ψ ( Z , ξ ) | ( 1 | Z | 2 [ q 2 ] ξ 2 ) β ( 1 | W | 2 [ q 2 ] η 2 ) α < + .
( iv ) The weighted composition operator ψ C ϕ : A α ( L IV ) A β ( L IV ) is bounded iff
Q ˜ I V = sup ( z , ξ ) L IV | ψ ( z , ξ ) | ( 1 | z | 2 ξ 2 ) β ( 1 | w | 2 η 2 ) α < + .
Corollary 4.10. 
Given α , β > 0 , a holomorphic self-map ϕ of L , and ψ H ( L ) , then the following statements hold.
( i ) The weighted composition operator ψ C ϕ : A α ( L I ) A β ( L I ) is compact iff ψ A β ( L I ) and
lim ϕ ( Z , ξ ) L I | ψ ( Z , ξ ) | ( 1 | Z | 2 m ξ 2 ) β ( 1 | W | 2 m η 2 ) α = 0 .
( ii ) The weighted composition operator ψ C ϕ : A α ( L II ) A β ( L II ) is compact iff ψ A β ( L II ) and
lim ϕ ( Z , ξ ) L II | ψ ( Z , ξ ) | ( 1 | Z | 2 p ξ 2 ) β ( 1 | W | 2 p η 2 ) α = 0 .
( iii ) The weighted composition operator ψ C ϕ : A α ( L III ) A β ( L III ) is compact iff ψ A β ( L III ) and
lim ϕ ( Z , ξ ) L III | ψ ( Z , ξ ) | ( 1 | Z | 2 [ q 2 ] ξ 2 ) β ( 1 | W | 2 [ q 2 ] η 2 ) α = 0 .
( iv ) The weighted composition operator ψ C ϕ : A α ( L IV ) A β ( L IV ) is compact iff ψ A β ( L IV ) and
lim ϕ ( z , ξ ) L IV | ψ ( z , ξ ) | ( 1 | z | 2 ξ 2 ) β ( 1 | w | 2 η 2 ) α = 0 .

References

  1. Allen, Robert F., Colonna, F., Weighted composition operators from H to the Bloch space of a bounded homogeneous domain[J], Integr. Equ. Oper. Theory, 2010, 66: 21-40.
  2. Allen, Robert F., Weighted composition operators from the Bloch space to weighted Banach spaces on bounded homogeneous domains[J],(English summary) Anal. Theory Appl, 2014, 30(2): 236-248.
  3. Pu, Z. N., Composition operators from Bloch-type spaces into Bers-type spaces(in Chinese)[J], Journal of Shenyang Normal University, 2012, 30(02): 145-148.
  4. Zhong, Q. H., Weighted composition operators between different Bers-type spaces[J], J. Guangzhou Univ. Nat. Sci., 2006, 5(3): 15-17.
  5. Wang, M. F., Liu, Y., Weighted composition operators between Bers-type spaces[J], Acta Math. Sci. Ser. A (Chinese Ed), 2007, 27(4): 665-671.
  6. Jin, L. N., Tang, X. M., Weighted composition operators between Bers-type spaces on the unit ball(in Chinese)[J], Journal of Huzhou Normal University, 2009, 31(02): 22-25.
  7. Du, J. T., Li, S. X., Weighted composition operators from H to the Bloch space in the unit ball of Cn[J], Complex Var. Elliptic Equ., 2019, 64: 1200-1213.
  8. Dai, J. N., The Lipschitz space on the unit and weighted composition operators on the Lipschitz space[J], J. Wuhan Univ. Natur. Sci. Ed., 2012, 58(2): 95-99.
  9. Liang, Y. X., Zhou, Z. H., Dong, X. T., Weighted composition operator from Bers-type space to Bloch-type space on the unit ball[J], Bull. Malays. Math. Sci. Soc.(2)., 2013, 36(3): 833-844.
  10. Li, J. F., Zhang, X. J., A discussion on compactness conditions of composition operator between Bloch-type spaces in the polydisc[J], Applied Mathematics A Joumal of Chinese Universities, Ser. A., 2009, 24(03): 335-340.
  11. Hu, Z. J., Composition operators between Bloch-type spaces in the polydisc[J], Sci. China Ser. A., 2005, 48: 268-282.
  12. Stević, S. Composition operators between H and α-Bloch spaces on the polydisc[J], Z. Anal. Anwend., 2006, 25(4): 457-466.
  13. Li, S. X., Stević, S., Weighted composition operators from α-Bloch space to H on the polydisc[J], Numer. Funct. Anal. Optim., 2007, 28: 911-925.
  14. Li, S. X., Stević, S., Weighted composition operators from H to the Bloch space on the polydisc[J], Abstr. Appl. Anal., 2007, Art. ID 48478, 13 pp.
  15. E. Cartan., Sur les domaines bornés homogènes de l’espace de n variables complexes[J], Abh. Math. Semin. Univ. Hambg., 1935, 11: 116-162.
  16. Su, J. B., A Note on Extremal Problems on Cartan Domains[J], Journal of Henan University (Natural Science), 2006, (04): 1-5.
  17. Wang, J. F., Liu, T. S., Bloch Constant on classical domain of the first type[J], Acta mathematica sinica, Chinese Series, 2012, 55(01): 27-40.
  18. Bai, H. B., Weighted composition operators on Bers type spaces of the first kind Cartan-Hartogs domains[J], Journal of Sichuan University (Natural Science Edition), 2022, 59(04): 36-41.
  19. Su, J. B., Zhang, Z. Y., Weighted composition operators from H to (α,m)-Bloch space on Cartan-Hartogs domain of the first type[J], J. Funct. Spaces, 2022, Art. ID 4732049, 13 pp.
  20. Su, J. B., Zhang, C., Composition operators from p-Bloch space to q-Bloch space on the fourth Cartan-Hartogs domains[J], J. Oper, 2015, 10 pp.
  21. Yin, W. P., Wang, N., Zhao, L., Guan, B.X., The Berqman Kernel Function on Four Types of Cartan-Egg Domains[J], Journal of Capital Nommal University (Natural Science Edition), 2001, 22(02): 1-13.
  22. Yin, W. P., Wang, A., Zhao, Z. G., et al., The Bergman kernel functionson Hua domains[J], Science in China, Ser. A, 2001, 44(6): 727-741.
  23. Li, H. T., Su, J. B., Wang, Y. Y., Extremal problem on the Hua domain of the second type[J], Journal of Sichuan Normal University (Natural Science), 2017, 40(02): 193-198.
  24. Zhong, X. L., Gao, M., Liu, D. L., Convexity of Hua domain of the first type and Kobayashi metri[J], Journal of Xuzhou Normal University (Natural Science Edition), 2009, 27(03): 19-23.
  25. Liu, D. L., Convexity of Hua domain of the second type and Kobayashi metri[J], Journal of Jiangsu Normal University (Natural Science Edition), 2016, 34(02): 29-32.
  26. Gao, M., Zhong, X. L., Liu, D. L., Convexity on the Hua domain of the third type and application[J], Journal of Yangzhou University (Natural Science Edition), 2009, 12(03): 9-12.
  27. Su, J. B., Li, H., Wang, H., Boundedness and compactness of the composition operators from u-Bloch space to v-Bloch space on the first Hua domains (in Chinese)[J], Sci Sin Math, 2015, 45: 1909-1918.
  28. Jiang, Z. J., Li, Z. A., Weighted composition operators on Bers-type spaces of Loo-Keng Hua domains[J], Bull. Korean Math. Soc., 2020, 57(3): 583-595.
  29. Su, J. B., Ding, L., Yin, W. P., Computations of the Berqman Kernel Functions on Generalized Hua Domains[J], Journal of Capital Nommal University (Natural Science Edition), 2003, 24(03): 1-8+12.
  30. Wang, J. Q., Su, J. B., Boundedness and compactness of weighted composition operators from α-Bloch spaces to Bers-type spaces on generalized Hua domains of the first kind[J], Mathematics, 2023, 11(20): 4403.
  31. Zhang, L. Y., Bergman kernel function on Hua construction of the second type[J], Science in China, Ser. A, 2005, 48: 400-412.
  32. Lu, Q. K., The Classical manifolds and Classical domains(in Chinese)[M], Science Press, Beijing, 2011.
  33. Yin, W. P., From Cartan domains to Hua domains(in Chinese)[M], Capital Normal University Press, Beijing, 2003.
  34. Kuang, J. C., Applied inequalities(in Chinese)[M], Shandong Science and Technology Press, Shandong, 2004.
  35. H. Ahn., J. D. Park, The explicit forms and zeros of the Bergman kernel function for Hartogs type domains[J], J. Funct. Anal., 2012, 262(8): 3518-3547.
  36. Wang, A., Zhao, X., L2-cohomology vanishing theorem on a type of generalized Cartan-Hartogs domain[J], Nonlinear Anal., 2021, 209, Paper No. 112332, 14 pp.
  37. Wang, A., Zhong, C. C., Lin, Bo., A vanishing theorem on generalized Cartan-Hartogs domain of the second type[J], J. Math. Anal. Appl., 2020, 491(1), 124264, 11 pp.
  38. Su, J. B., Wu, X., Boundedness and compactness of the composition operators between weighted Bloch spaces on a class of generalized Cartan-Hartogs domain[J], Chinese Ann. Math. Ser. A, 2023, 44(4): 435-448.
  39. Bi, E. C., Feng, Z. M., Su, G. C., Tu, Z. H., Rawnsley’s ε-function on some Hartogs type domains over bounded symmetric domains and its applications[J], J. Geom. Phys. 2019, 135: 187-203.
  40. Ye, W. W., Wang, A., Comparison theorem for the Einstein-Kähler metric and Kobayashi metric on a class of Hartogs domains[J], Chinese Ann. Math. Ser. A. 2012, 33(6): 687-704.
  41. He, L., Tang, Y. Y., Tu, Z. H., Bergman type operators on some generalized Cartan-Hartogs domains[J], J. Korean Math. Soc. 2021, 58(6): 1347-1365.
  42. Feng, Z. M., Tu, Z. H., Balanced metrics on some Hartogs type domains over bounded symmetric domains[J], Ann. Global Anal. Geom. 2015, 47(4); 305-333.
  43. Feng, Z. M., Hilbert spaces of holomorphic functions on generalized Cartan-Hartogs domains[J], Complex Var. Elliptic Equ. 2013, 58(3): 431-450.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated