Submitted:
13 June 2024
Posted:
14 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Kawasaki Disease
1.2. Liquid Biopsy
2. Current Concepts in the Aetiology and Pathogenesis of Kawasaki Disease
2.1. Proposed Aetiologies of Kawasaki Disease
2.1.1. Genetic Predisposition
2.1.2. Infectious Triggers
2.1.3. Immunological Factors
2.2. Pathogenesis of Kawasaki Disease
2.2.1. Immune Response in Kawasaki Disease
2.2.2. Vasculopathy Associated with Kawasaki Disease
3. Application of Liquid Biopsy in Vasculopathy
3.1. Circulating Endothelial Cells
3.1.1. Circulating Endothelial Cells as Diagnostics for Kawasaki Disease
3.2. Endothelial Microparticles
3.2.1. Endothelial Microparticles as Diagnostics for Kawasaki Disease
3.3. Vascular Endothelial Cell Specific Cell-Free DNA
3.3.1. EC-cfDNA in Kawasaki Disease
4. Future Directions
4.1. Circulating Endothelial Cells
4.2. Endothelial Microparticles
4.3. Vascular Endothelial Cell Specific Cell-Free DNA
5. Conclusions and Perspectives
Author Contributions
Conflicts of Interest
Acknowledgments
Declaration of generative AI and AI-assisted technologies in the writing process
Abbreviations
| AECA, | anti-endothelial autoantibodies |
| BLK, | B-cell lymphoid kinase |
| CASP3, | caspase-3 |
| CAL, | coronary artery lesions |
| CEC, | circulating endothelial cells |
| cfDNA, | cell-free nuclear DNA |
| CA, | coronary artery |
| CAD, | coronary artery disease |
| DAMP, | damage-associated molecular pattern |
| EC, | endothelial cells |
| EndoMT, | endothelial-mesenchymal transition |
| EMP, | endothelial microparticle |
| EC-cfDNA, | endothelial cell-free DNA |
| ELISA, | Enzyme-linked immunosorbent assay |
| FCGR2A, | Fc fragment of IgG receptor IIa |
| GWAS, | Genome-wide association studies |
| IVIg, | intravenous immunoglobulin |
| IL, | interleukin |
| iNOS, | inducible NOS |
| KD, | Kawasaki disease |
| MIS-C, | multisystem inflammatory syndrome in children |
| MRP, | myeloid-related protein |
| NLRP3, | nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 |
| NO, | Nitric oxide |
| NOS, | nitric oxide synthase |
| NFATs, | nuclear factor of activated T-cells |
| ROS, | reactive oxygen species |
| RAGE, | receptor for advanced glycation end-products |
| SNP, | single-nucleotide polymorphisms |
| TGF- β, | transforming growth factor β |
| VE-Cadherin, | vascular endothelial (VE)-cadherin |
| VEGF, | vascular endothelial growth factor |
References
- McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation [Internet]. 2017 Apr 25;135(17):e927–99. [CrossRef]
- Kato H, Koike S, Yamamoto M, Ito Y, Yano E. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J Pediatr. 1975 Jun;86(6):892–8. [CrossRef]
- Kawasaki T. [Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]. Arerugi. 1967 Mar;16(3):178–222.
- Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child. 2015 Nov;100(11):1084–8. [CrossRef]
- Nakamura Y, Oki I, Tanihara S, Ojima T, Yanagawa H. Cardiac Sequelae in Recurrent Cases of Kawasaki Disease: A Comparison Between the Initial Episode of the Disease and a Recurrence in the Same Patients. Pediatrics. 1998 Dec 1;102(6):e66–e66. [CrossRef]
- Agarwal S, Agrawal DK. Kawasaki disease: etiopathogenesis and novel treatment strategies. Expert Rev Clin Immunol. 2017 Mar;13(3):247–58. [CrossRef]
- Nguyen E, Hershey D, Romanowski G, Tremoulet A. Intravenous Immunoglobulin Infusion Reactions in Kawasaki Disease Patients Who Undergo Sedation. The Journal of Pediatric Pharmacology and Therapeutics. 2020 Apr 1;25(3):251–5. [CrossRef]
- Iio K, Fukushima N, Akamine K, Uda K, Hataya H, Miura M. Acute Rheumatic Fever and Kawasaki Disease Occurring in a Single Patient. Front Pediatr. 2020 Sep 3;8. [CrossRef]
- Singh S, Jindal AK, Pilania RK. Diagnosis of Kawasaki disease. Int J Rheum Dis. 2018 Jan;21(1):36–44.
- Luo H, Wei W, Ye Z, Zheng J, Xu R hua. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med. 2021 May;27(5):482–500. [CrossRef]
- Ponti G, Manfredini M, Tomasi A. Non-blood sources of cell-free DNA for cancer molecular profiling in clinical pathology and oncology. Crit Rev Oncol Hematol. 2019 Sep;141:36–42. [CrossRef]
- Fernández-Lázaro D, García Hernández JL, García AC, Córdova Martínez A, Mielgo-Ayuso J, Cruz-Hernández JJ. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics. 2020 Apr 13;10(4):215. [CrossRef]
- Cheung AHK, Chow C, To KF. Latest development of liquid biopsy. J Thorac Dis. 2018 Jun;10(S14):S1645–51. [CrossRef]
- Dietz S, Christopoulos P, Gu L, Volckmar AL, Endris V, Yuan Z, et al. Serial liquid biopsies for detection of treatment failure and profiling of resistance mechanisms in KLC1–ALK -rearranged lung cancer. Molecular Case Studies. 2019 Dec;5(6):a004630. [CrossRef]
- Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011 Jun 12;11(6):426–37. [CrossRef]
- Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017 May 25;545(7655):446–51. [CrossRef]
- Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019 Feb 8;20(2):71–88. [CrossRef]
- Lamb YN, Dhillon S. Epi proColon® 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol Diagn Ther. 2017 Apr 2;21(2):225–32. [CrossRef]
- De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proceedings of the National Academy of Sciences. 2015 Oct 27;112(43):13336–41. [CrossRef]
- De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, et al. Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection. Sci Transl Med. 2014 Jun 18;6(241). [CrossRef]
- Gielis EM, Ledeganck KJ, De Winter BY, Del Favero J, Bosmans JL, Claas FHJ, et al. Cell-Free DNA: An Upcoming Biomarker in Transplantation. American Journal of Transplantation. 2015 Oct;15(10):2541–51. [CrossRef]
- Low T, McCrindle BW, Mueller B, Fan CPS, Somerset E, O’Shea S, et al. Associations between the spatiotemporal distribution of Kawasaki disease and environmental factors: evidence supporting a multifactorial etiologic model. Sci Rep. 2021 Jul 16;11(1):14617. [CrossRef]
- R U, M Y, Y N, H Y. Kawasaki disease in parents and children. Acta Paediatr. 2003 Jan 1;92(6):694–7. [CrossRef]
- Dergun M, Kao A, Hauger SB, Newburger JW, Burns JC. Familial Occurrence of Kawasaki Syndrome in North America. Arch Pediatr Adolesc Med. 2005 Sep 1;159(9):876. [CrossRef]
- Onouchi Y. Genetics of Kawasaki Disease. Circulation Journal. 2012;76(7):1581–6. [CrossRef]
- Uehara R, Yashiro M, Nakamura Y, Yanagawa H. Clinical Features of Patients With Kawasaki Disease Whose Parents Had the Same Disease. Arch Pediatr Adolesc Med. 2004 Dec 1;158(12):1166. [CrossRef]
- Makino N, Nakamura Y, Yashiro M, Ae R, Tsuboi S, Aoyama Y, et al. Descriptive Epidemiology of Kawasaki Disease in Japan, 2011–2012: From the Results of the 22nd Nationwide Survey. J Epidemiol. 2015;25(3):239–45. [CrossRef]
- Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet. 2020 Jul 8;52(7):669–79. [CrossRef]
- Onouchi Y. Identification of Novel Kawasaki Disease Susceptibility Genes by Genome-Wide Association Studies. In: Kawasaki Disease. Tokyo: Springer Japan; 2017. p. 23–9.
- Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, Wright VJ, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet. 2011 Dec 13;43(12):1241–6. [CrossRef]
- Kuo HC, Chang JC, Kuo HC, Yu HR, Wang CL, Lee CP, et al. Identification of an Association Between Genomic Hypomethylation of FCGR2A and Susceptibility to Kawasaki Disease and Intravenous Immunoglobulin Resistance by DNA Methylation Array. Arthritis & Rheumatology. 2015 Mar;67(3):828–36. [CrossRef]
- Chang CJ, Kuo HC, Chang JS, Lee JK, Tsai FJ, Khor CC, et al. Replication and Meta-Analysis of GWAS Identified Susceptibility Loci in Kawasaki Disease Confirm the Importance of B Lymphoid Tyrosine Kinase (BLK) in Disease Susceptibility. PLoS One. 2013 Aug 30;8(8):e72037. [CrossRef]
- Kato H, Koike S, Yamamoto M, Ito Y, Yano E. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J Pediatr. 1975 Jun;86(6):892–8. [CrossRef]
- Nagata S, Yamashiro Y, Ohtsuka Y, Shimizu T, Sakurai Y, Misawa S, et al. Heat shock proteins and superantigenic properties of bacteria from the gastrointestinal tract of patients with Kawasaki disease. Immunology. 2009 Dec;128(4):511–20. [CrossRef]
- Nagata S. Causes of Kawasaki Disease—From Past to Present. Front Pediatr. 2019 Feb 5;7. [CrossRef]
- Turnier JL, Anderson MS, Heizer HR, Jone PN, Glodé MP, Dominguez SR. Concurrent Respiratory Viruses and Kawasaki Disease. Pediatrics. 2015 Sep 1;136(3):e609–14. [CrossRef]
- https://www.cdc.gov/flu/about/keyfacts.htm [Internet]. 2022. Influenza (Flu).
- Jackson H, Menikou S, Hamilton S, McArdle A, Shimizu C, Galassini R, et al. Kawasaki Disease Patient Stratification and Pathway Analysis Based on Host Transcriptomic and Proteomic Profiles. Int J Mol Sci. 2021 May 26;22(11):5655. [CrossRef]
- Wang Z, Xie L, Ding G, Song S, Chen L, Li G, et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat Commun. 2021 Dec 14;12(1):5444. [CrossRef]
- Sharma D, Singh S. Kawasaki disease – A common childhood vasculitis. Indian J Rheumatol. 2015 Dec;10:S78–83. [CrossRef]
- Institute for Quality and Efficiency in Health Care (IQWiG). 2006. 2006. The innate and adaptive immune systems.
- Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008 Sep;4(9):491–8. [CrossRef]
- Sakurai Y. Autoimmune Aspects of Kawasaki Disease. J Investig Allergol Clin Immunol. 2019 Apr 2;29(4):251–61. [CrossRef]
- Hicar MD. Antibodies and Immunity During Kawasaki Disease. Front Cardiovasc Med. 2020 May 28;7. [CrossRef]
- Baker MA, Baer B, Kulldorff M, Zichittella L, Reindel R, DeLuccia S, et al. Kawasaki disease and 13-valent pneumococcal conjugate vaccination among young children: A self-controlled risk interval and cohort study with null results. PLoS Med. 2019 Jul 2;16(7):e1002844. [CrossRef]
- L’Huillier AG, Brito F, Wagner N, Cordey S, Zdobnov E, Posfay-Barbe KM, et al. Identification of Viral Signatures Using High-Throughput Sequencing on Blood of Patients With Kawasaki Disease. Front Pediatr. 2019 Dec 19;7. [CrossRef]
- Wang WT, He M, Shimizu C, Croker BA, Hoffman HM, Tremoulet AH, et al. Inflammasome Activation in Children With Kawasaki Disease and Multisystem Inflammatory Syndrome. Arterioscler Thromb Vasc Biol. 2021;41(9):2509–11. [CrossRef]
- Hara T, Nakashima Y, Sakai Y, Nishio H, Motomura Y, Yamasaki S. Kawasaki disease: a matter of innate immunity. Clin Exp Immunol. 2016 Oct 7;186(2):134–43. [CrossRef]
- Takahashi K, Oharaseki T, Naoe S, Wakayama M, Yokouchi Y. Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatrics International. 2005 Jun 18;47(3):305–10. [CrossRef]
- Yang Q, Liao M, Wang W, Zhang M, Chen Q, Guo J, et al. CD157 Confers Host Resistance to Mycobacterium tuberculosis via TLR2-CD157-PKCzeta-Induced Reactive Oxygen Species Production. mBio. 2019 Aug 27;10(4). [CrossRef]
- Circulating Interleukin-1β in Patients with Kawasaki Disease. New England Journal of Medicine. 1988 Dec 22;319(25):1670–1. [CrossRef]
- Hoang LT, Shimizu C, Ling L, Naim ANM, Khor CC, Tremoulet AH, et al. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med. 2014 Nov 20;6(11):541. [CrossRef]
- Alphonse MP, Duong TT, Shumitzu C, Hoang TL, McCrindle BW, Franco A, et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. The Journal of Immunology. 2016 Nov 1;197(9):3481–9. [CrossRef]
- Kuijpers TW, Wiegman A, van Lier RAW, Roos MTL, Wertheim-van Dillen PME, Pinedo S, et al. Kawasaki Disease: A Maturational Defect in Immune Responsiveness. J Infect Dis. 1999 Dec;180(6):1869–77. [CrossRef]
- Ikeda K, Yamaguchi K, Tanaka T, Mizuno Y, Hijikata A, Ohara O, et al. Unique activation status of peripheral blood mononuclear cells at acute phase of Kawasaki disease. Clin Exp Immunol. 2010 Apr 8;160(2):246–55. [CrossRef]
- Ling XB, Lau K, Kanegaye JT, Pan Z, Peng S, Ji J, et al. A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses. BMC Med. 2011 Dec 6;9(1):130. [CrossRef]
- Popper SJ, Shimizu C, Shike H, Kanegaye JT, Newburger JW, Sundel RP, et al. Gene-expression patterns reveal underlying biological processes in Kawasaki disease. Genome Biol. 2007 Dec 11;8(12):R261. [CrossRef]
- Furuno K, Yuge T, Kusuhara K, Takada H, Nishio H, Khajoee V, et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr. 2004 Sep;145(3):385–90. [CrossRef]
- Wang G, Wen P, Wang Q, Qi Z, Yang J, Li C. Changes of regulatory B cells in patients with acute Kawasaki disease and its significance. Chinese Journal of Microbiology and Immunology. 2013;750–5.
- Jia S, Li C, Wang G, Yang J, Zu Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin Exp Immunol. 2010 Sep 9;162(1):131–7. [CrossRef]
- Franco A, Touma R, Song Y, Shimizu C, Tremoulet AH, Kanegaye JT, et al. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity. 2014 Mar 4;47(2):95–104. [CrossRef]
- Kawsara A, Núñez Gil IJ, Alqahtani F, Moreland J, Rihal CS, Alkhouli M. Management of Coronary Artery Aneurysms. JACC Cardiovasc Interv. 2018 Jul;11(13):1211–23. [CrossRef]
- Shulman ST, Rowley AH. Kawasaki disease: insights into pathogenesis and approaches to treatment. Nat Rev Rheumatol. 2015 Aug 28;11(8):475–82. [CrossRef]
- Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M, Bhatti TR, et al. Three Linked Vasculopathic Processes Characterize Kawasaki Disease: A Light and Transmission Electron Microscopic Study. PLoS One. 2012 Jun 18;7(6):e38998. [CrossRef]
- Rowley AH, Eckerley CA, Jäck HM, Shulman ST, Baker SC. IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J Immunol. 1997 Dec 15;159(12):5946–55. [CrossRef]
- Takahashi K, Oharaseki T, Yokouchi Y, Hiruta N, Naoe S. Kawasaki disease as a systemic vasculitis in childhood. Ann Vasc Dis. 2010;3(3):173–81. [CrossRef]
- Erdbruegger U, Haubitz M, Woywodt A. Circulating endothelial cells: A novel marker of endothelial damage. Clinica Chimica Acta. 2006 Nov;373(1–2):17–26. [CrossRef]
- Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, et al. Vascular Endothelial Cells and Innate Immunity. Arterioscler Thromb Vasc Biol. 2020 Jun;40(6):e138–52. [CrossRef]
- Booth AD, Wallace S, McEniery CM, Yasmin, Brown J, Jayne DRW, et al. Inflammation and arterial stiffness in systemic vasculitis: a model of vascular inflammation. Arthritis Rheum. 2004 Feb;50(2):581–8. [CrossRef]
- Eberhard BA, Andersson U, Laxer RM, Rose V, Silverman ED. Evaluation of the cytokine response in Kawasaki disease. Pediatr Infect Dis J. 1995 Mar;14(3):199–203. [CrossRef]
- Naoe S, Takahashi K, Masuda H, Tanaka N. Kawasaki disease. With particular emphasis on arterial lesions. Acta Pathol Jpn. 1991 Nov;41(11):785–97. [CrossRef]
- Shulman ST, Rowley AH. Advances in Kawasaki disease. Eur J Pediatr. 2004 Jun;163(6):285–91. [CrossRef]
- Rowley AH, Shulman ST, Garcia FL, Guzman-Cottrill JA, Miura M, Lee HL, et al. Cloning the arterial IgA antibody response during acute Kawasaki disease. J Immunol. 2005 Dec 15;175(12):8386–91. [CrossRef]
- Jennette JC, Sciarrotta J, Takahashi K, Naoe S. Predominance of Monocytes and Macrophages in the Inflammatory Infiltrates of Acute Kawasaki Disease Arteritis. In: Pediatric Research. 2003. p. 173–173. [CrossRef]
- Ohnishi Y, Yasudo H, Suzuki Y, Furuta T, Matsuguma C, Azuma Y, et al. Circulating endothelial glycocalyx components as a predictive marker of coronary artery lesions in Kawasaki disease. Int J Cardiol. 2019 Oct;292:236–40. [CrossRef]
- Luo L, Feng S, Wu Y, Su Y, Jing F, Yi Q. Serum Levels of Syndecan-1 in Patients With Kawasaki Disease. Pediatric Infectious Disease Journal. 2019 Jan;38(1):89–94. [CrossRef]
- Barnett KC, Kagan JC. Lipids that directly regulate innate immune signal transduction. Innate Immun. 2020 Jan;26(1):4–14. [CrossRef]
- Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev. 2019 Jan 1;99(1):311–79. [CrossRef]
- Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res. 2018 Mar 16;122(6):877–902. [CrossRef]
- Chen Y, Li X, Boini KM, Pitzer AL, Gulbins E, Zhang Y, et al. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim Biophys Acta. 2015 Feb;1853(2):396–408. [CrossRef]
- Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The Vascular Endothelium and Human Diseases. Int J Biol Sci. 2013;9(10):1057–69. [CrossRef]
- Brown TJ, Crawford SE, Cornwall ML, Garcia F, Shulman ST, Rowley AH. CD8 T Lymphocytes and Macrophages Infiltrate Coronary Artery Aneurysms in Acute Kawasaki Disease. J Infect Dis. 2001 Oct;184(7):940–3. [CrossRef]
- Gavin PJ, Crawford SE, Shulman ST, Garcia FL, Rowley AH. Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute Kawasaki disease. Arterioscler Thromb Vasc Biol. 2003 Apr 1;23(4):576–81. [CrossRef]
- Qiu Y, Zhang Y, Li Y, Hua Y, Zhang Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front Cardiovasc Med. 2022 Aug 8;9. [CrossRef]
- Xiong Y, Xu J, Zhang D, Wu S, Li Z, Zhang J, et al. MicroRNAs in Kawasaki disease: An update on diagnosis, therapy and monitoring. Front Immunol. 2022;13:1016575. [CrossRef]
- Motomura Y, Kanno S, Asano K, Tanaka M, Hasegawa Y, Katagiri H, et al. Identification of Pathogenic Cardiac CD11c + Macrophages in Nod1-Mediated Acute Coronary Arteritis. Arterioscler Thromb Vasc Biol. 2015 Jun;35(6):1423–33. [CrossRef]
- Biezeveld MH, van Mierlo G, Lutter R, Kuipers IM, Dekker T, Hack CE, et al. Sustained activation of neutrophils in the course of Kawasaki disease: an association with matrix metalloproteinases. Clin Exp Immunol. 2005 Jul;141(1):183–8. [CrossRef]
- Yoshida Y, Takeshita S, Kawamura Y, Kanai T, Tsujita Y, Nonoyama S. Enhanced formation of neutrophil extracellular traps in Kawasaki disease. Pediatr Res. 2020 May 14;87(6):998–1004. [CrossRef]
- Li Y, Lui KO, Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 2018 Aug 10;15(8):445–56. [CrossRef]
- Shimizu C, Oharaseki T, Takahashi K, Kottek A, Franco A, Burns JC. The role of TGF-β and myofibroblasts in the arteritis of Kawasaki disease. Hum Pathol. 2013 Feb;44(2):189–98. [CrossRef]
- Jakob A, Schachinger E, Klau S, Lehner A, Ulrich S, Stiller B, et al. Von Willebrand factor parameters as potential biomarkers for disease activity and coronary artery lesion in patients with Kawasaki disease. Eur J Pediatr. 2020 Mar 23;179(3):377–84. [CrossRef]
- Chaudhary H, Nameirakpam J, Kumrah R, Pandiarajan V, Suri D, Rawat A, et al. Biomarkers for Kawasaki Disease: Clinical Utility and the Challenges Ahead. Front Pediatr. 2019 Jun 18;7. [CrossRef]
- Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022 Mar 18;21(1):79. [CrossRef]
- Qu J, Cheng Y, Wu W, Yuan L, Liu X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front Cell Dev Biol. 2021 Sep 13;9. [CrossRef]
- Schenck H, Netti E, Teernstra O, de Ridder I, Dings J, Niemelä M, et al. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front Cell Dev Biol. 2021 Sep 3;9. [CrossRef]
- McClung JA, Abraham NG. Endothelial Biology. In: Translational Research in Coronary Artery Disease. Elsevier; 2016. p. 1–14.
- Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med. 2009 Mar;13(3):454–71. [CrossRef]
- Schmidt DE, Manca M, Hoefer IE. Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends Cardiovasc Med. 2015 Oct;25(7):578–87. [CrossRef]
- Fabi M, Petrovic B, Andreozzi L, Corinaldesi E, Filice E, Biagi C, et al. Circulating Endothelial Cells: A New Possible Marker of Endothelial Damage in Kawasaki Disease, Multisystem Inflammatory Syndrome in Children and Acute SARS-CoV-2 Infection. Int J Mol Sci. 2022 Sep 3;23(17):10106. [CrossRef]
- Quilici J, Banzet N, Paule P, Meynard JB, Mutin M, Bonnet JL, et al. Circulating Endothelial Cell Count as a Diagnostic Marker for Non–ST-Elevation Acute Coronary Syndromes. Circulation. 2004 Sep 21;110(12):1586–91. [CrossRef]
- Lee K, Blann A, Lip G. Plasma markers of endothelial damage/dysfunction, inflammation and thrombogenesis in relation to TIMI risk stratification in acute coronary syndromes. Thromb Haemost. 2005 Dec 14;94(11):1077–83. [CrossRef]
- Chong AY, Blann AD, Patel J, Freestone B, Hughes E, Lip GYH. Endothelial Dysfunction and Damage in Congestive Heart Failure. Circulation. 2004 Sep 28;110(13):1794–8. [CrossRef]
- Shah V, Christov G, Mukasa T, Brogan KS, Wade A, Eleftheriou D, et al. Cardiovascular status after Kawasaki disease in the UK. Heart. 2015 Oct 15;101(20):1646–55. [CrossRef]
- Zhou S, Gao L, Gong F, Chen X. Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein. Iran J Basic Med Sci. 2015 Jun;18(6):610–5.
- Haghjooy-Javanmard S, Presidend N, Manssori N, Kelishadi R, Mostafavi N. Persistence of endothelial cell damage late after Kawasaki disease in patients without coronary artery complications. Adv Biomed Res. 2015;4(1):25. [CrossRef]
- Wang CJ, Chen M, Lei ZJ. [Expression of myeloid-related protein complex in association with circulating endothelial cells in children with acute Kawasaki disease]. Zhongguo Dang Dai Er Ke Za Zhi. 2014 Jan;16(1):48–52.
- Gong F, Zhang Y, Xie C, Zhu W, Wang W, Fu S, et al. Expression of receptor for advanced glycation end products (RAGE) on the surface of circulating endothelial cells is upregulated in Kawasaki disease. Pediatr Res. 2012 Jun 15;71(6):720–4. [CrossRef]
- Fu S, Gong F, Xie C, Zhu W, Wang W, Shen H, et al. S100A12 on Circulating Endothelial Cells Surface in Children With Kawasaki Disease. Pediatr Res. 2010 Aug;68(2):165–8. [CrossRef]
- Hirono K, Foell D, Xing Y, Miyagawa-Tomita S, Ye F, Ahlmann M, et al. Expression of Myeloid-Related Protein-8 and -14 in Patients With Acute Kawasaki Disease. J Am Coll Cardiol. 2006 Sep;48(6):1257–64. [CrossRef]
- Yu X, Hirono KI, Ichida F, Uese KI, Rui C, Watanabe S, et al. Enhanced iNOS Expression in Leukocytes and Circulating Endothelial Cells Is Associated with the Progression of Coronary Artery Lesions in Acute Kawasaki Disease. Pediatr Res. 2004 Apr;55(4):688–94. [CrossRef]
- NAKATANI K, TAKESHITA S, TSUJIMOTO H, KAWAMURA Y, TOKUTOMI T, SEKINE I. Circulating endothelial cells in Kawasaki disease. Clin Exp Immunol. 2003 Feb 28;131(3):536–40. [CrossRef]
- Tantivitayakul P, Benjachat T, Somparn P, Leelahavanichkul A, Kittikovit V, Hirankarn N, et al. Elevated expressions of myeloid-related proteins-8 and -14 are danger biomarkers for lupus nephritis. Lupus. 2016 Jan 29;25(1):38–45. [CrossRef]
- Foell D. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology. 2003 Jul 16;42(11):1383–9. [CrossRef]
- Devaraj S, Kumaresan PR, Jialal I. C-Reactive Protein Induces Release of Both Endothelial Microparticles and Circulating Endothelial Cells In Vitro and In Vivo: Further Evidence of Endothelial Dysfunction. Clin Chem. 2011 Dec 1;57(12):1757–61. [CrossRef]
- Levine AB, Punihaole D, Levine TB. Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology. 2012;122(1):55–68. [CrossRef]
- Tian J, Lv HT, An XJ, Ling N, Xu F. Endothelial microparticles induce vascular endothelial cell injury in children with Kawasaki disease. Eur Rev Med Pharmacol Sci. 2016 May;20(9):1814–8.
- Leopold JA. The Endothelium. In: Vascular Medicine: A Companion to Braunwald’s Heart Disease. Elsevier; 2013. p. 14–24.
- Dignat-George F, Boulanger CM. The Many Faces of Endothelial Microparticles. Arterioscler Thromb Vasc Biol. 2011 Jan;31(1):27–33. [CrossRef]
- Yong PJ, Koh CH, Shim WS. Endothelial microparticles: missing link in endothelial dysfunction? Eur J Prev Cardiol. 2013 Jun 10;20(3):496–512. [CrossRef]
- Pisetsky DS, Gauley J, Ullal AJ. Microparticles as a source of extracellular DNA. Immunol Res. 2011 Apr 4;49(1–3):227–34. [CrossRef]
- Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004 Jun;34(6):392–401. [CrossRef]
- Lugo-Gavidia LM, Burger D, Matthews VB, Nolde JM, Galindo Kiuchi M, Carnagarin R, et al. Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. Hypertension. 2021 Jun;77(6):1825–44. [CrossRef]
- Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003 Jun;145(6):962–70. [CrossRef]
- Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/Annexin V+ Apoptotic Microparticles Correlate With Coronary Endothelial Function in Patients With Coronary Artery Disease. Arterioscler Thromb Vasc Biol. 2006 Jan;26(1):112–6. [CrossRef]
- Augustine D, Ayers L V., Lima E, Newton L, Lewandowski AJ, Davis EF, et al. Dynamic Release and Clearance of Circulating Microparticles During Cardiac Stress. Circ Res. 2014 Jan 3;114(1):109–13. [CrossRef]
- Guiducci S, Ricci L, Romano E, Ceccarelli C, Distler JHW, Miniati I, et al. Microparticles and Kawasaki disease: a marker of vascular damage? Clin Exp Rheumatol. 2011;29(1 Suppl 64):S121-5.
- Nakaoka H, Hirono K, Yamamoto S, Takasaki I, Takahashi K, Kinoshita K, et al. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci Rep. 2018 Jan 17;8(1):1016. [CrossRef]
- Dou J, Li H, Sun L, Yan W, Lv H, Ding Y. Histopathological and Ultrastructural Examinations of Rabbit Coronary Artery Vasculitis Caused by Bovine Serum Albumin: An Animal Model of Kawasaki Disease. Ultrastruct Pathol. 2013 Apr 10;37(2):139–45. [CrossRef]
- Ding YY, Ren Y, Feng X, Xu QQ, Sun L, Zhang JM, et al. Correlation between brachial artery flow-mediated dilation and endothelial microparticle levels for identifying endothelial dysfunction in children with Kawasaki disease. Pediatr Res. 2014 Mar 18;75(3):453–8. [CrossRef]
- Guo M, Fan S, Chen Q, Jia C, Qiu M, Bu Y, et al. Platelet-derived microRNA-223 attenuates TNF-α induced monocytes adhesion to arterial endothelium by targeting ICAM-1 in Kawasaki disease. Front Immunol. 2022 Aug 2;13. [CrossRef]
- Tan Z, Yuan Y, Chen S, Chen Y, Chen TX. Plasma endothelial microparticles, TNF-α and IL-6 in Kawasaki disease. Indian Pediatr. 2013 May 6;50(5):501–3. [CrossRef]
- Chen T, Xu T, Cheng M, Fang H, Shen X, Tang Z, et al. Human umbilical cord mesenchymal stem cells regulate CD54 and CD105 in vascular endothelial cells and suppress inflammation in Kawasaki disease. Exp Cell Res. 2021 Dec;409(2):112941. [CrossRef]
- Brogan PA, Shah V, Klein N, Dillon MJ. Vbeta-restricted T cell adherence to endothelial cells: A mechanism for superantigen-dependent vascular injury. Arthritis Rheum. 2004 Feb;50(2):589–97. [CrossRef]
- Fu S, Gong F, Xie C, Zhu W, Wang W, Shen H, et al. S100A12 on Circulating Endothelial Cells Surface in Children With Kawasaki Disease. Pediatr Res. 2010 Aug;68(2):165–8. [CrossRef]
- Rossi E, Bernabeu C, Smadja DM. Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-β. Front Med (Lausanne). 2019 Jan 30;6. [CrossRef]
- Yan Y yan, Guo Q ru, Wang F hua, Adhikari R, Zhu Z yan, Zhang H yan, et al. Cell-Free DNA: Hope and Potential Application in Cancer. Front Cell Dev Biol. 2021 Feb 22;9. [CrossRef]
- Ranucci R. Cell-Free DNA: Applications in Different Diseases. Methods Mol Biol. 2019;1909:3–12. [CrossRef]
- Basu A, Budhraja A, Juwayria, Abhilash D, Gupta I. Novel omics technology driving translational research in precision oncology. In 2021. p. 81–145.
- Zemmour H, Planer D, Magenheim J, Moss J, Neiman D, Gilon D, et al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun. 2018 Apr 24;9(1):1443. [CrossRef]
- Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017 Apr 24;17(4):223–38. [CrossRef]
- Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019 Mar;17:100087. [CrossRef]
- Seeto RK, Fleming JN, Dholakia S, Dale BL. Understanding and using AlloSure donor derived cell-free DNA. Biophys Rev. 2020 Aug 18;12(4):917–24. [CrossRef]
- Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018 Nov 29;9(1):5068. [CrossRef]
- Peretz A, Loyfer N, Piyanzin S, Ochana BL, Neiman D, Magenheim J, et al. The DNA methylome of human vascular endothelium and its use in liquid biopsies. Med. 2023 Apr;4(4):263-281.e4. [CrossRef]
- Zhang K, Yin F, Lin L. Circulating Endothelial Cells and Chronic Kidney Disease. Biomed Res Int. 2014;2014:1–7. [CrossRef]
- Lanuti P, Simeone P, Rotta G, Almici C, Avvisati G, Azzaro R, et al. A standardized flow cytometry network study for the assessment of circulating endothelial cell physiological ranges. Sci Rep. 2018 Apr 11;8(1):5823. [CrossRef]
- Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, et al. Prediction of Intravenous Immunoglobulin Unresponsiveness in Patients With Kawasaki Disease. Circulation. 2006 Jun 6;113(22):2606–12. [CrossRef]
- Zu L, Niu C, Li J, Shan L, Li L, Zhang D, et al. Proteomic research of high-glucose-activated endothelial microparticles and related proteins to Alzheimer’s disease. Diab Vasc Dis Res. 2015 Nov 5;12(6):467–70. [CrossRef]
- Burger D, Turner M, Xiao F, Munkonda MN, Akbari S, Burns KD. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia. 2017 Sep 10;60(9):1791–800. [CrossRef]
- Northrop EF, Milbauer LC, Rudser KD, Fox CK, Solovey AN, Kaizer AM, et al. Reproducibility of endothelial microparticles in children and adolescents. Biomark Med. 2020 Jan;14(1):43–51. [CrossRef]
| Susceptibility gene | Associated SNP | Type of study | Association with KD | Association of SNP with other pathologies | Association of gene with other pathologies | Predisposed Ethnicity | Ref | |
|---|---|---|---|---|---|---|---|---|
| Family-based studies | Inositol1,4,5-trisphosphate 3-kinase C (ITPKC) | rs28493229 | Case-control association studies | ITPKC negatively regulates signalling cascade triggered by inositol 1,4,5-trisphosphate (IP3) and nuclear factor of activated T-cells (NFATs) which activates of inflammatory and vascular ECs. However, its SNPs reduces expression of ITPKC mRNA. | None. | ● Hydrops Of Gallbladder ● Bacterial Conjunctivitis |
Japanese, Taiwanese, Koreans, Chinese, Euro-American |
[29] |
| Caspase-3 (CASP3) | rs113420705 (formerly rs72689236) | Case-control association studies | CASP3 also inhibits the activity of IP3 and NFATs and mediates cellular apoptosis. However, its SNP reduces CASP3 expression limiting cellular apoptosis and sustaining potency of immune cells. | None. | ● Oropharynx Cancer ● Retinal Ischemia ● Monocytic Leukemia |
Japanese, Taiwanese, Koreans, Chinese, Euro-American |
[29] | |
| Population-based studies | Fc gamma receptor IIa (FCGR2A) | rs1801274 | Genome-wide association studies (GWAS) | FCGR2A activates and triggers a signal when conjugated with immune cells. SNP increases affinity to IgG receptors enhancing phagocytic cell activation. This provides a basis, although not established, for IVIG treatment against KD. | Lupus nephritis Malaria Pseudomonas aeruginosa (cystic fibrosis) |
● Cystic Fibrosis ● Systemic Lupus Erythematosus |
European descent, Taiwanese, Koreans, Han Chinese | [29,30,31] |
| B lymphoid tyrosine kinase (BLK) | rs2736340 | GWAS | The SNP reduces BLK mRNA expression in B-cells which may alter its activity to trigger the pathogenesis of KD. | None. | ● Rheumatoid arthritis ● Systemic lupus Erythematosus |
Japanese, Taiwanese, Koreans |
[29,32] | |
| CD40 | rs1883832 | GWAS | SNP increases CD40 expression on B-cells leading to enhanced B cell activity, which is suggested to be commonly involved in the pathogenesis of KD and other adult autoimmune diseases. It is known to enhance activation of inflammatory and vascular ECs. | -Hyper-IgM syndrome type 3 | ● Rheumatoid arthritis ● Systemic lupus Erythematosus ● Autosomal recessive hyper-IgM immunodeficiency type 3. |
Japanese, Taiwanese, Koreans |
[29] |
| Potential Diagnostics | Advantages | Disadvantages |
|---|---|---|
| Circulating endothelial cells |
|
|
| Endothelial microparticle |
|
|
| Endothelial-specific cell-free DNA |
|
|
| Literature | Type of participants | Age (in years, median/range) | Female, n, % | Acute phase | No. of CECs (acute) | Sub-acute phase | No. of CECs (sub-acute) | Convalescent phase | No. of CECs (convalescent) | Long term outcomes | Healthy controls | CEC detection method | Biomarkers for detection |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fabi et al. (2022[99] | Active | 1.8 (0.6-2.4 (IQR)) | 6 (66.7%) | 1st - 10th day of fever | 16.3 (13.6-48.8) /mL of blood | 11th-20th day after fever | 45.8 (18.5-131.0)/mL of blood | - | - | - | - | Immunomagnetic capture | CD146 |
| Shah et al. (2015) [103] | Survivors | 11.9 (4.3–32.2) Age at diagnosis: 4.9 (0.18 -11.3) |
45 (49%) | - | - | - | - | - | - | 8.3 years post-KD CECs: 24 cells/mL |
n=51 CECs: 49 cell/mL |
Immunomagnetic capture | CD146 |
| Zhou et al. (2015) [104] | In vitro model | - | - | - | - | - | - | - | - | - | Flow cytometry | CD146+,CD105+,CD45-,CD34+ | |
| Mostafavi et al. (2014) [105] | Survivors | 6.6 (4.8-9.6) | 8 (61.5%) | - | - | - | - | - | - | 4-19 years post-KDCECs: 12 cells | n=13 CECs: 2.38 cells |
Flow cytometry | CD45-,CD34+,CD146+ |
| Wang et al. (2014) [106] | Active | 0.1-5 | 17 (41.4%) | During hospitalisation | 392 / mL of blood (unique formula was used) | - | - | - | - | - | - | Flow cytometry | CD45-,CD146+ |
| Gong et al. (2012) [107] | Active | 0.25-12.7 | 37 (41.6%) | 4-10 day of disease | absolute count of CEC not reported | 11-21 day of disease | absolute count of CEC not reported | 22-60 days of disease | absolute count of CEC not reported | - | n=38 absolute count of CEC not reported |
Flow cytometry | CD45-,CD146+ |
| Fu et al. (2010) [108] | Active | 0.25-11 | 16 (38.1%) | 4-10 day of disease | absolute count of CEC not reported | 11-21 day of disease | absolute count of CEC not reported | 22-60 days of disease | absolute count of CEC not reported | - | n=60 absolute count of CEC not reported |
Flow cytometry | CD45-,CD146+ |
| Hirono et al. (2006) [109] | Active | 0.16-7.3 | 21 (34.4%) | At diagnosis | 2.5 cells/mL | 2 weeks from onset | 20.7 cells/mL | - | - | - | n=33 1.0 cells/mL |
Buffy-coat smears | P1H12 antibody |
| Yu et al. (2004) [110] | Active | 0.3-7.25 | 29 (52.7%) | Before IVIg After IVIg |
0.7 cells/mL 4.9 cells/mL |
2 weeks from onset | 24.4 cells/mL | 4 weeks from onset | 3.7 cells/mL | - | n=15 | Buffy-coat smears | P1H12 antibody |
| Nakatani et al. (2003) [111] | Active | 0.67-6 | 5 (25%) | Before IVIg therapy on days 3–7 | 16.4 cells/mL | After IVIg therapy on days 9–16 | 21 cells/mL | days 22–37 | 9 cells/mL | - | n=10 <6 cells/mL |
Immunomagnetic capture | P1H12 antibody |
| Literature | Type of participants | Age (median years (range)) | Female (%) | Acute phase | No. of EMPs (acute) | Sub-acute phase | No. of EMPs (sub-acute) | Convalescent phase | No. of EMPs (convalescent) | Long term outcomes | Healthy controls | EMP detection method | Biomarkers for detection |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Chen et al. (2021)[132] | Active | ~2-3 | 15 (42%) | Disease onset (before IVIg) |
CD31+,CD54+: Significantly higher comared to healthy control. CD31+,CD105+: Significantly lower when compared to sub-acute timepoint. Quantitative values not reported. (EMPs were normalised to 10000 events) |
2 weeks from disease onset | CD31+,CD54+: Significantly higher comared to healthy control. CD31+,CD105+: Significantly higher when compared to acute timepoint. Quantitative values not reported. (EMPs were normalised to 10000 events) |
- | - | - | n=18 CD31+,CD105+: Significantly higher in sub-acute group compared to healthy controls. CD31+,CD54+: Higher in acute and sub-acute phase compared to healthy controls. |
Flow cytometry | CD31+, CD54+ and CD31+, CD105+ |
| Nakaoka et al. (2018)[127] | Active | 0.3-14 | 20 (40%) | Time of diagnosis | 1.31% (Normalised to total number of particles) | - | - | 2-4 weeks after onset of disease | Below acute levels | - | Healthy: 25 EMP: 0.08% Febrile: 25 EMP:0.09% |
Flow cytometry | CD144+/CD42b- |
| Tian et al. (2016) [116] | In vitro | - | - | - | - | - | - | - | - | - | - | ELISA | CD31, CD62 |
| Shah et al. (2015) [103] | Survivor | Age at study: 11.9 (4.3-32.2) Age at disgnosis: 4.9 (0.18-11.3) |
45 (49%) | - | - | - | - | - | - | In KD survivors, AnnexinV : 970x10^3/mL of plasma CD105: 1.60x10^3/mL of plasma (*p=0.04) CD62E: 2.87x10^3/mL of plasma CD54: 0.87x10^3/mL of plasma CD106: 0/mL of plasma CD144: 0.32x10^3/mL of plasma CD31: 14.18x10^3/mL of plasma CD42a: 14.04x10^3/mL of plasma |
n=51 AnnexinV : 990x10^3/mL of plasma CD105: 0/mL of plasma CD62E: 3.92x10^3/mL of plasma CD54: 0.97x10^3/mL of plasma CD106: 0/mL of plasma CD144: 0.2x10^3/mL of plasma CD31: 20.59x10^3/mL of plasma CD42a: 24.93x10^3/mL of plasma |
Flow cytometry | Annexin V+ and CD105+/CD62E+/CD54+/CD106+/CD144+/CD31+/CD42a- |
| Ding et al. (2014) [129] | Active | 1.9 (0.3-7.5) | 12 (42.9%) | unspecified | Absolute values are not reported. All 3 EMPs are significantly elevated at acute phase when compared to healthy controls but not with febrile control. | unspecified | Absolute values are not reported. All 3 EMPs are significantly elevated at sub-acute phase when compared to healthy controls but not with febrile control. | unspecified | Absolute values are not reported. All 3 EMPs are significantly elevated at convalescent phase when compared to healthy controls but not with febrile control. | - | Healthy: 28Febrile: 28 | Flow cytometry | CD144+/CD42b-, CD62E+ and CD105+ |
| Tan et al. (2013) [131] | Active | <3 years | Not reported | Within 10 days | n=20 28.07% (Normalised to 10000 particles) |
- | - | - | - | - | Healthy: 18 EMP: 11.7% Disease: 18 EMP: 17.2% |
Flow cytometry | CD31, CD146 |
| Dou et al. (2013) [128] | KD rabbit model | - | - | - | - | - | - | - | - | - | - | Scanning electron microscope | - |
| Guiducci et al. (2011) [126] | Active | 1.4 (median age) | 11 (37%) | Before IVIg | 76x10^5/mL plasma | - | - | 1-month follow-up | 9x10^5/mL plasma | - | n=20 45x10^5/mL plasma |
Flow cytometry | CD144 |
| Brogan et al. (2004) [133] | In vitro | - | - | - | - | - | - | - | - | - | - | Flow cytometry | CD54, CD106, CD62E, CD62P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
