Submitted:
08 June 2024
Posted:
11 June 2024
You are already at the latest version
Abstract
Keywords:
MSC: 26A24; 26A33; 26A51; 26B15; 33E12
1. Introduction
2. Estimations of operators with unified ML Kernels
3. Some deduced results
4. Conclusion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- G. Mittag-Leffler, Sur la nouvelle fonction Eα(ζ), Comptes Randus l’Academie des Sciences Paris, 137 (1903), 554-558.
- R. Gorenflo, A. A. R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Berlin, Heidelberg, 2014.
- H. J. Haubold, A. M. H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011(2011), Art.ID 298628, 51 pages.
- F. Mainardi, R. F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (1-2) (2000), 283-299.
- Y. Zhang, G. Y. Zhang, G. Farid, Z. Salleh and A. Ahmad, On a unified Mittag-Leffler function and associated fractional integral operator, Math. Probl. Eng., 2021, Article ID 6043769.
- D. Bhatnagar and R. M. Pandey, A study of some integral transforms on Q function, South East Asian J. Math. Math. Sci., 16(1) (2020), 99-110.
- S. S. Zhou, G. S. S. Zhou, G. Farid and A. Ahmad, Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function, Adv. Difference Equ., 2022 (2022), 2022:9.
- T. Gao, G. T. Gao, G. Farid, A. Ahmad, W. Luangboon and K. Nonlaopon, Fractional Minkowski-Type integral inequalities via the unified generalized fractional integral operator, J. Funct. Spaces, 2022, Article ID 2890981, 11 pages.
- N. Eftekhari, Some remarks on (s,m)-convexity in the second sense, J. Math. Inequal., 8(3) (2014), 489-495.
- Z. B. Fang, R. Z. B. Fang, R. Shi, On the (p,h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), 2014:16.
- C. Y. He, Y. C. Y. He, Y. Wang, B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for (α,m)-HA and strongly (α,m)-HA convex functions, J. Nonlinear Sci. Appl., 10 (2017), 205-214. [CrossRef]
- V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex, Cluj-Napoca, Romania, 1993.
- D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
- Y. C. Kwun, M. S. Y. C. Kwun, M. S. Saleem, M. Ghafoor, W. Nazeer, and S. M. Kang, Hermite Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 2019:44. [CrossRef]
- P. O. Mohammed, M. Z. P. O. Mohammed, M. Z. Sarikaya and D. Baleanu, On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals, Symmetry, 12(4) (2020), 595. [CrossRef]
- T. U. Khan and M. A. Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, AIMS Math., 6 (2020), 23-38.
- M. B. Khan, P. O. M. B. Khan, P. O. Mohammed, M. A. Noor and Y. S. Hamed, New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13(4) (2021), 673. [CrossRef]
- M. E. Özdemir, A. O. M. E. Özdemir, A. O. Akdemri and E. Set, On (h-m)-convexity and Hadamard-type inequalities, Transylv. J. Math. Mech., 8(1) (2016), 51-58. [CrossRef]
- P. Xu, S. I. P. Xu, S. I. Butt, Q. U. Ain and H. Budak, New estimates for Hermite-Hadamard inequality in quantum calculus via (α,m)-convexity, Symmetry, 14(7) (2022), 1394. [CrossRef]
- C. Y. Jung, G. C. Y. Jung, G. Farid, H. Yasmeen, Y-P. Lv, J. Pečarić, Refinements of some fractional integral inequalities for refined (α,h-m)-convex function, Adv. Diff. Equ., 2021 (2021), 2021:391. [CrossRef]
- M. Zahra, M. M. Zahra, M. Ashraf, G. Farid and K. Nonlaopon, Inequalities for unified integral operators of generalized refined convex functions, Aims Math., 7(4) (2022), 6218–6233.
- G. Farid and H. Yasmeen, Some bounds for integral operators involving unified Mittag-Leffler function, submitted.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
