Submitted:
06 June 2024
Posted:
10 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The CRISPR-Cas System in Prokaryotes
2.1. Discovery of the CRISPR-Cas System
2.2. Discovery of CRISPR as a Mediator of Adaptive Immunity in Microbial Organisms
2.3. Mechanisms of CRISPR: How These Loci Work to Produce Adaptive Immunity
2.3.1. Mechanisms Involving Cas Proteins and Direct Interaction with DNA
- Adaptation: the invading foreign DNA sequences, or the progenitor spacers (protospacers) are recognized by Cas proteins and those sequences are integrated into the host genome as spacers in the CRISPR loci.
- Expression: the spacers integrated into the host genome are expressed as crRNA, which form a ribonucleoprotein unit with the Cas protein complex described above to process as single guide RNA sequences.
- Interference: the crRNA sequences cause interference with subsequently invading phage or plasmid genetic material to prevent the foreign genetic materials from infecting the host microorganism.
2.3.2. Novel Mechanism: The Discovery of an Alternative Pathway of CRISPR Activation Using Transactivating CRISPR RNA (tracrRNA)
3. Development of CRISPR-Cas9 Single Guide RNA-Mediated Gene Editing
3.1. Further Developments: Additional CRISPR-Cas Systems, Base Editing and Prime Editing
4. Hematopoietic Stem Cell Transplantation with Gene-Edited Hematopoietic Stem Cells
5. Clinical Applications of CRISPR-Cas-Based Gene Editing
5.1. Ethical Considerations: Meeting in Napa, California
5.2. Selected Clinical Research Applications
5.2.1. Chimeric Antigen Receptor (CAR)-T Cell Therapies in Hematologic Malignancies
5.2.2. Ex Vivo Adenine Base Editor Gene Therapy in a Primary Immunodeficiency Disorder
5.2.3. In Vivo CRISPR-Based Gene Editing, Including Editing Hematopoietic Stem Cells
5.2.4. Sickle Cell Disease and Transfusion-Dependent Beta-Thalassemia
5.2.5. First Clinical Trial Using Prime Editing Gene Therapy: Chronic Granulomatous Disease
6. Known Inherited Predispositions to Hematologic Malignancies
6.1. Table 1: Summary of Various Inherited Diseases with Germline Predispositions to Hematologic Malignancies with Selected References
| Disease groups | Diseases | Identified Defective Germline Genes | Defective function or cellular pathways | Selected References |
| Inherited bone marow failure syndromes | Fanconi anemia | At least 22 genes; FANCA most common | DNA repair and DNA damage response | Taylor et al., 2019 [85]; Altintas et al., 2023 [86] |
| Diamond-Blackfan anemia | RPS19 most common | Ribosome biogenesis | Wlodarski et al., 2024 [87]; Da Costa et al., 2020 [88]; Liu and Karlsson, 2024 [89] | |
| Schwachman-Diamond syndrome | SBDS, DNAJC21, SRP54 | Ribosome biogenesis | Warren, 2018 [90]; Reilly and Shimamura, 2023 [91]; Kawashima et al, 2023 [92] | |
| Dyskeratosis congenita and other telomere biology disorders | At least 18 genes; DKC1 most common | Telomere maintenance | Tummala et al., 2022 [93]; Team Telomere, 2022 [94] | |
| Severe congenital neutropenia | ELANE, CLPB, HAX1, and G6PC3 | Myeloid maturation arrest | Warren & Link, 2021 [95]; Donadieu and Bellanné-Chantelot, 2022 [96] | |
| Congenital amegakaryocytic thrombocytopenia1 | MPL, THPO, HOXA11, MECOM, RBM8A | Megakaryocyic maturation | Balduini, 2023 [97]; Germeshausen and Ballmaier, 2021 [98] | |
| ERCC6L2 inherited bone marrow failure | ERCC6L2 | DNA repair | Bluteau et al., 2018 [99]; Baccelli et al, 2023 [100] Hakkarainen et al., 2023 [101]; | |
| Genetic syndromes with predisposition to hematolymphoid cancer | Li-Fraumeni syndrome | TP53 | Loss of tumor suppressor function | Frebourg et al., 2020 [102]; de Andrade et al. 2021 [103]; Rocca et al., 2022 [104] |
| Lynch syndrome | MLH1, MSH2, MSH6, PMS2, EPCAM | DNA repair | Sandner et al., 2019 [105] | |
| Constitutional mismatch repair deficiency (CMMRD) | MLH1, MSH2, MSH6, PMS2, EPCAM | DNA repair | Aronson et al., 2022 [106]; Gallon et al., 2024 [107] | |
| Bloom syndrome | BLM | DNA damage response and repair | Taylor et al., 2019 [85]; Langer et al., 2023 [108] | |
| Werner syndrome | WRN | DNA damage response and repair | Oshima et al. 2017 [109]; Lauper et al., 2013 [110] | |
| Ataxia telangiectasia | ATM | DNA damage response and repair | Taylor et al. 2019 [85]; Petley et al., 2022 [111]; Riboldi et al., 2024 [112] | |
| Nijmegen breakage syndrome | NBN | DNA damage response and repair | Taylor et al., 2019 [85] | |
| DNA ligase 4 deficiency (LIG-4 symdrome) | LIG4 | DNA damage response and repair | Altmann and Gennery, 2016 [113]; Schober et al., 2019 [114] | |
| RASopathies | NFI, CBL, PTPN11, KRAS, NRAS, and other | RAS mitogen-activated protein kinase pathway | Riller and Rieux-Laucat, 2021 [115]; Wintering et al., 2021 [116]; Hecht et al., 2022 [117] | |
| Familial Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasm (MDN)2 | Familial AML with germline mutated CEBPA | CEBPA | Transcription factor | Pabst et al., 2001 [118]; Tawana et al., 2015 [119]; Tarlock et al., 2021 [120]; Pan et al, 2024 [121] |
| Familial platelet disoder with propensity to myeloid malignancies | RUNX1 | Transcription factor | Brown et al. 2020 [122]; Homan et al., 2021 [123]; Pecci and Balduini, 2021 [124]; Homan et al., 2023 [125] | |
| ANKRD26-related inherited thromboicytopenia | ANKRD26 | Thrombopoietin-dependent signaling | Bluteau et al., 2014 [126]; Pecci and Balduini, 2021 [124]; Homan et al., 2023 [125] | |
| ETV6-related thrombocytopenia | ETV6 | Transcription factor | Melazzini et al., 2016 [127]; Pecci and Balduini, 2021 [124]; Homan et al., 2023 [125] | |
| AML or MDN with germline DDX41 mutations | DDX41 | RNA splicing, transcription elongation, and DNA replication | Shinriki et al., 2022 [128]; Makshima et al., 2023 [129]; Huo et al., 2023 [130]; Cheloor-Kovilakam et al., 2023 [131]; Winstone et al., 2024 [132] | |
| Pediatric MDN or AML with de novo germline or inherited GATA2 mutations | GATA2 | Transcription factor | Vincent et al., 2012 [133]; Wlodarski et al., 2016 [134]; Homan et al., 2021 [135]; Santiago et al., 2023 [136] | |
| Pediatric MDN or AML with de novo germline or inherited SAMD9 or SAMD9L mutations | SAMD9; SAMD9L | Bluteau et al., 2018 [99]; Sahoo et al., 2021 [137]; Narumi 2022 [138] | ||
| 1 The disease with affected RBM8A, termed thrombocytopenia absent radius syndrome, does not progress to thrombocytopenia; platelet counts rise over time [97]; 2 The name “myelodysplastic syndromes” was changed in 2022 to “myelodysplastic neoplasms” by the fifth edition of the World Health Organization diagnostic classification of hematolymphoid tumors in 2022 [139]. |
6.2. Gene Therapy Applications in Inherited Bone Marrow Syndromes
7. Why Select CRISPR-Based Gene Editing to Treat Individuals with an Inherited or Germline Predisposition to Hematologic Cancers?
8. When Could Patients Be Considered for CRISPR-Based Gene Editing to Treat Individuals with an Inherited or Germline Predisposition to Hematologic Cancers?
- Patients diagnosed with an aggressive hematologic malignancy such as AML and found to have an underlying germline genetic predisposition to malignancy, are often offered an allogeneic HSCT.
- Other individuals carrying a pathogenic germline mutation and identified clinically as having a high risk of developing a malignancy, in whom a pre-emptive allogeneic HSCT is currently attempted before the development of other complications such as in GATA2 germline abnormalities, may also benefit from CRISPR-based gene-edited autologous HSCT.
- Further, gene-edited hematopoietic stem cells from an HLA-matched familial donor for a patient with a familial germline mutation could be used for a matched donor allogeneic HSCT, to prevent the possibility of transmitting a leukemic predisposition through the donor’s transplanted cells and eliminating the possibility of a donor-derived leukemia.
9. Which Patients with an Inherited or Germline Predisposition to Hematologic Cancers Could Be Selected for CRISPR-Based Gene Editing?
- All patients with inherited bone marrow failure syndromes would benefit since bone marrow failure is a serious condition, and if progressive bone marrow failure could be prevented by a CRISPR-based genetically edited autologous transplant, that would be a huge breakthrough for these patients.
- Most diseases in the group with inherited tumor syndromes shown in Table 1 would also benefit from this treatment when developed. For example, patients with Li-Fraumeni syndrome have a high lifetime risk of developing cancer, which can even be multiple, and these patients and family members undergo a lifetime of surveillance for cancer in various body sites. In Li-Fraumeni syndrome, germline mutations in TP53 are often missense mutations. With so many technological advances in base editing and multiple clinical trials using base editing currently in progress in humans, this is a disease that should surely be prioritized for preclinical studies to bring to clinical studies eventually.
- In the group with familial AML and myelodysplastic neoplasms shown in Table 1, despite much progress in the last decade in our understanding of these genetic predispositions to AML and myelodysplastic neoplasms, it is not yet known throughout this genetic spectrum which individuals are at the highest risk for developing a malignancy. Inherited thrombocytopenias due to RUNX1, ANKRD26, or ETV6 germline mutations have variable disease penetrance, with a maximum of 40-60%, and highly variable inter-familial and intra-familial clinical features that may be mild to severe. The risk of developing a malignancy is often identified only after the individual carrying a pathogenic germline mutation develops a hematologic malignancy. Therefore, as described above, patients who need an allogeneic HSCT could benefit from a CRISPR-based gene editing approach, which requires to be studied.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816-21. Epub 2012 Jun 28. PMID: 22745249. [CrossRef]
- Charpentier E, Doudna JA. Biotechnology: Rewriting a genome. Nature. 2013 Mar 7;495(7439):50-1. [CrossRef] [PubMed]
- Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014 Nov 28;346(6213):1258096. [CrossRef] [PubMed]
- Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018 Aug 31;361(6405):866-869. [CrossRef] [PubMed]
- Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023 Jan 20;379(6629):eadd8643. Epub 2023 Jan 20. PMID: 36656942. [CrossRef]
- Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006 Apr 27;354(17):1813-26. PMID: 16641398. [CrossRef]
- Morgan RA, Gray D, Lomova A, Kohn DB. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell. 2017 Nov 2;21(5):574-590. [CrossRef] [PubMed]
- Kansal, R. Germline predisposition in hematologic malignancies. In Comprehensive Hematology and Stem Cell Research. Editor Nima Rezaei; Elsevier: Amsterdam, The Netherlands, 2024 (pp. 1-38 in proof). In press.
- Faber MG, Griffiths EA, Roy AM, Faisal MS, Patel R. Inherited germline predisposition in hematologic malignancy. In Acute Myeloid Leukemia: Diagnosis, Prognosis, Treatment and Outcomes. Editor Kansal R; Nova Science Publishers, Inc., New York, USA, 2024; pp. 313-375. [CrossRef]
- Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987 Dec;169(12):5429-33. [CrossRef] [PubMed]
- Mojica FJ, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol. 1993 Aug;9(3):613-21. [CrossRef] [PubMed]
- Mojica FJ, Ferrer C, Juez G, Rodríguez-Valera F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol. 1995 Jul;17(1):85-93. [CrossRef] [PubMed]
- Mojica FJ, Rodriguez-Valera F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016 Sep;283(17):3162-9. Epub 2016 Jun 15. PMID: 27234458. [CrossRef]
- Rodriguez-Fernandez, C. Francis Mojica, the Spanish scientist who discovered CRISPR. Labiotech. April 8, 2019, updated June 23, 2022. Available at https://www.labiotech.eu/interview/francis-mojica-crispr-interview/. Accessed May 22, 2024.
- Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002 Mar;43(6):1565-75. [CrossRef] [PubMed]
- Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol. 2018 Mar 12;200(7):e00580-17. Print 2018 Apr 1. PMID: 29358495. [CrossRef]
- Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 2005 Nov;1(6):e60. Epub 2005 Nov 11. PMID: 16292354. [CrossRef]
- Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005 Feb;60(2):174-82. [CrossRef] [PubMed]
- Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005 Mar;151(Pt 3):653-663. [CrossRef] [PubMed]
- Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading). 2005 Aug;151(Pt 8):2551-2561. [CrossRef] [PubMed]
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007 Mar 23;315(5819):1709-12. [CrossRef] [PubMed]
- Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008 Feb;190(4):1401-12. Epub 2007 Dec 7. PMID: 18065539. [CrossRef]
- Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008 Aug 15;321(5891):960-4. [CrossRef] [PubMed]
- Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008 Dec 19;322(5909):1843-5. [CrossRef] [PubMed]
- Furuya EY, Lowy FD. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol. 2006 Jan;4(1):36-45. [CrossRef] [PubMed]
- Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading). 2009 Mar;155(Pt 3):733-740. [CrossRef] [PubMed]
- van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009 Aug;34(8):401-7. Epub 2009 Jul 29. PMID: 19646880. [CrossRef]
- Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010 Nov 4;468(7320):67-71. [CrossRef] [PubMed]
- Sontheimer EJ, Marraffini LA. Microbiology: slicer for DNA. Nature. 2010 Nov 4;468(7320):45-6. [CrossRef] [PubMed]
- Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011 Jun;9(6):467-77. Epub 2011 May 9. PMID: 21552286. [CrossRef]
- Abbott A. The quiet revolutionary: How the co-discovery of CRISPR explosively changed Emmanuelle Charpentier’s life. Nature. 2016 Apr 28;532(7600):432-4. [CrossRef] [PubMed]
- Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011 Mar 31;471(7340):602-7. [CrossRef] [PubMed]
- Ledford H, Callaway E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel. Nature. 2020 Oct;586(7829):346-347. [CrossRef] [PubMed]
- Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011 Nov;39(21):9275-82. Epub 2011 Aug 3. [CrossRef] [PubMed]
- Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014 Mar 6;507(7490):62-7. Epub 2014 Jan 29. PMID: 24476820. [CrossRef]
- Mussolino C, Cathomen T. RNA guides genome engineering. Nat Biotechnol. 2013 Mar;31(3):208-9. [CrossRef] [PubMed]
- Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013 Feb 15;339(6121):819-23. Epub 2013 Jan 3. PMID: 23287718. [CrossRef]
- Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013 Feb 15;339(6121):823-6. Epub 2013 Jan 3. PMID: 23287722. [CrossRef]
- Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013 Jan 29;2:e00471. [CrossRef] [PubMed]
- Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013 Dec 5;13(6):659-62. [CrossRef] [PubMed]
- Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell. 2017 Oct 5;68(1):15-25. [CrossRef] [PubMed]
- Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181-211. [CrossRef] [PubMed]
- Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol. 2019 Dec;21(12):1468-1478. Epub 2019 Dec 2. PMID: 31792376. [CrossRef]
- Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Int J Mol Sci. 2020 Sep 4;21(18):6461. [CrossRef] [PubMed]
- Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):420-4. Epub 2016 Apr 20. PMID: 27096365. [CrossRef]
- Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. Epub 2017 Oct 25. PMID: 29160308. [CrossRef]
- Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Dec;576(7785):149-157. Epub 2019 Oct 21. PMID: 31634902. [CrossRef]
- Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020 Jul;38(7):824-844. Epub 2020 Jun 22. PMID: 32572269. [CrossRef]
- Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, Chen C, Nelson JW, Newby GA, Sahin M, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021 Oct 28;184(22):5635-5652.e29. Epub 2021 Oct 14. PMID: 34653350. [CrossRef]
- Doman JL, Pandey S, Neugebauer ME, An M, Davis JR, Randolph PB, McElroy A, Gao XD, Raguram A, Richter MF, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell. 2023 Aug 31;186(18):3983-4002.e26. [CrossRef] [PubMed]
- Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021 Apr;22(4):216-234. Epub 2020 Dec 10. PMID: 33303992. [CrossRef]
- Rai R, Romito M, Rivers E, Turchiano G, Blattner G, Vetharoy W, Ladon D, Andrieux G, Zhang F, Zinicola M, et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott -Aldrich Syndrome. Nat Commun. 2020 Aug 12;11(1):4034. [CrossRef] [PubMed]
- Cowan MJ, Yu J, Facchino J, Fraser-Browne C, Sanford U, Kawahara M, Dara J, Long-Boyle J, Oh J, Chan W, et al. Lentiviral Gene Therapy for Artemis-Deficient SCID. N Engl J Med. 2022 Dec 22;387(25):2344-2355. [CrossRef] [PubMed]
- Mullard, A. Gene-editing pipeline takes off. Nat Rev Drug Discov. 2020 Jun;19(6):367-372. [CrossRef] [PubMed]
- Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010 Sep;11(9):636-46. [CrossRef] [PubMed]
- No authors listed. Move over ZFNs. Nat Biotechnol. 2011 Aug 5;29(8):681-4. [CrossRef] [PubMed]
- Rusk, N. TALEs for the masses. Nat Methods. 2011 Mar;8(3):197. [CrossRef] [PubMed]
- Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK. Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10564-9. [CrossRef] [PubMed]
- Doudna, J. Genome-editing revolution: My whirlwind year with CRISPR. Nature. 2015 Dec 24;528(7583):469-71. [CrossRef] [PubMed]
- Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science. 2015 Apr 3;348(6230):36-8. Epub 2015 Mar 19. PMID: 25791083. [CrossRef]
- Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S, Handgretinger R, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med. 2021 Jan 21;384(3):252-260. Epub 2020 Dec 5. PMID: 33283989. [CrossRef]
- Kingwell, K. Base editors hit the clinic. Nat Rev Drug Discov. 2022 Aug;21(8):545-547. [CrossRef] [PubMed]
- Gundry M, Sankaran VG. Hacking hematopoiesis - emerging tools for examining variant effects. Dis Model Mech. 2023 Mar 1;16(3):dmm049857. Epub 2023 Feb 24. PMID: 36826849. [CrossRef] [PubMed]
- June CH, Sadelain M. Chimeric Antigen Receptor Therapy. N Engl J Med. 2018 Jul 5;379(1):64-73. [CrossRef] [PubMed]
- Kansal R. Novel immunotherapies in hematologic and non-hematologic cancers. In Precision Medicine: Where Are We And Where Are We Going? Editor Kansal R; Nova Science Publishers, Inc., New York, USA, 2023; pp. 247-282. [CrossRef]
- Chiesa R, Georgiadis C, Syed F, Zhan H, Etuk A, Gkazi SA, Preece R, Ottaviano G, Braybrook T, Chu J, et al.; Base-Edited CAR T Group. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. N Engl J Med. 2023 Sep 7;389(10):899-910. Epub 2023 Jun 14. PMID: 37314354. [CrossRef]
- Casirati G, Cosentino A, Mucci A, Salah Mahmoud M, Ugarte Zabala I, Zeng J, Ficarro SB, Klatt D, Brendel C, Rambaldi A, et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature. 2023 Sep;621(7978):404-414. Epub 2023 Aug 30. PMID: 37648862. [CrossRef]
- Wellhausen N, O’Connell RP, Lesch S, Engel NW, Rennels AK, Gonzales D, Herbst F, Young RM, Garcia KC, Weiner D, et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci Transl Med. 2023 Sep 20;15(714):eadi1145. Epub 2023 Sep 20. PMID: 37651540. [CrossRef]
- Marone R, Landmann E, Devaux A, Lepore R, Seyres D, Zuin J, Burgold T, Engdahl C, Capoferri G, Dell’Aglio A, et al. Epitope-engineered human hematopoietic stem cells are shielded from CD123-targeted immunotherapy. J Exp Med. 2023 Dec 4;220(12):e20231235. Epub 2023 Sep 29. PMID: 37773046. [CrossRef]
- Bras AE, de Haas V, van Stigt A, Jongen-Lavrencic M, Beverloo HB, Te Marvelde JG, Zwaan CM, van Dongen JJM, Leusen JHW, van der Velden VHJ. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytometry B Clin Cytom. 2019 Mar;96(2):134-142. Epub 2018 Nov 18. PMID: 30450744. [CrossRef]
- McAuley GE, Yiu G, Chang PC, Newby GA, Campo-Fernandez B, Fitz-Gibbon ST, Wu X, Kang SL, Garibay A, Butler J, et al. Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell. 2023 Mar 30;186(7):1398-1416.e23. Epub 2023 Mar 20. PMID: 36944331. [CrossRef]
- Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021 Aug 5;385(6):493-502. Epub 2021 Jun 26. PMID: 34215024. [CrossRef]
- Breda L, Papp TE, Triebwasser MP, Yadegari A, Fedorky MT, Tanaka N, Abdulmalik O, Pavani G, Wang Y, Grupp SA, et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science. 2023 Jul 28;381(6656):436-443. Epub 2023 Jul 27. PMID: 37499029. [CrossRef]
- Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. 2017 Apr 20;376(16):1561-1573. [CrossRef] [PubMed]
- Kattamis A, Kwiatkowski JL, Aydinok Y. Thalassaemia. Lancet. 2022 Jun 18;399(10343):2310-2324. Epub 2022 Jun 9. PMID: 35691301. [CrossRef]
- U.S. Food and Drug Administration News Release. FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease. December 8, 2023. Available at https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease. Last accessed May 30, 2024.
- Bauer DE, Orkin SH. Hemoglobin switching’s surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev. 2015 Aug;33:62-70. Epub 2015 Sep 14. PMID: 26375765. [CrossRef]
- Vertex Pharmaceuticals Incorporated website for Casgevy. https://www.casgevy.com/. Accessed May 31, 2024.
- Ye L, Wang J, Tan Y, Beyer AI, Xie F, Muench MO, Kan YW. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10661-5. Epub 2016 Sep 6. PMID: 27601644. [CrossRef]
- Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, Li Y, Sheppard-Tillman H, Porter SN, Yao Y, Mayberry K, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021 Jul;595(7866):295-302. Epub 2021 Jun 2. PMID: 34079130. [CrossRef]
- Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood. 2023 Apr 27;141(17):2085-2099. [CrossRef] [PubMed]
- National Library of Medicine Clinical Trials website. EDIT-301 for Autologous Hematopoietic Stem Cell Transplant (HSCT) in Participants with Transfusion-Dependent Beta Thalassemia (TDT). https://clinicaltrials.gov/study/NCT05444894.
- Sharma A, Boelens JJ, Cancio M, Hankins JS, Bhad P, Azizy M, Lewandowski A, Zhao X, Chitnis S, Peddinti R, et al. CRISPR-Cas9 Editing of the HBG1 and HBG2 Promoters to Treat Sickle Cell Disease. N Engl J Med. 2023 Aug 31;389(9):820-832. [CrossRef] [PubMed]
- No authors listed. FDA clears prime editors for testing in humans. Nat Biotechnol. 2024 May;42(5):691. [CrossRef]
- Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers. 2019 Sep 19;5(1):64. [CrossRef] [PubMed]
- Altintas B, Giri N, McReynolds LJ, Best A, Alter BP. Genotype-phenotype and outcome associations in patients with Fanconi anemia: the National Cancer Institute cohort. Haematologica. 2023 Jan 1;108(1):69-82. [CrossRef] [PubMed]
- Wlodarski MW, Vlachos A, Farrar JE, Da Costa LM, Kattamis A, Dianzani I, Belendez C, Unal S, Tamary H, Pasauliene R, et al.; international Diamond-Blackfan anaemia syndrome guideline panel. Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: international consensus statement. Lancet Haematol. 2024 May;11(5):e368-e382. [CrossRef] [PubMed]
- Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia. Blood 2020;136(11):1262-1273. [CrossRef] [PubMed]
- Liu Y, Karlsson S. Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia 2024 Jan;38(1):1-9. [CrossRef] [PubMed]
- Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018;67:109-127. [CrossRef] [PubMed]
- Reilly CR, Shimamura A. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances. Blood 2023;141(13):1513-1523. [CrossRef] [PubMed]
- Kawashima N, Oyarbide U, Cipolli M, Bezzerri V, Corey SJ. Shwachman-Diamond syndromes: clinical, genetic, and biochemical insights from the rare variants. Haematologica 2023;108(10):2594-2605. [CrossRef] [PubMed]
- Tummala H, Walne A, Dokal I. The biology and management of dyskeratosis congenita and related disorders of telomeres. Expert Rev Hematol. 2022 Aug;15(8):685-696. Epub 2022 Aug 8. PMID: 35929966. [CrossRef]
- Team Telomere - An International Community for Telomere Biology Disorders. Telomere Biology Disorders: Diagnosis and Management Guidelines. 2nd Edition. 2022. Website https://teamtelomere.org/diagnosis-management-guidelines.
- Warren JT, Link DC. Impaired myelopoiesis in congenital neutropenia: insights into clonal and malignant hematopoiesis. Hematology Am Soc Hematol Educ Program. 2021 Dec 10;2021(1):514-520. [CrossRef] [PubMed]
- Donadieu J, Bellanné-Chantelot C. Genetics of severe congenital neutropenia as a gateway to personalized therapy. Hematology Am Soc Hematol Educ Program. 2022 Dec 9;2022(1):658-665. [CrossRef] [PubMed]
- Balduini CL. The name counts: the case of ’congenital amegakaryocytic thrombocytopenia’. Haematologica. 2023 May 1;108(5):1216-1219. [CrossRef] [PubMed]
- Germeshausen M, Ballmaier M. Congenital amegakaryocytic thrombocytopenia - Not a single disease. Best Pract Res Clin Haematol. 2021 Jun;34(2):101286. [CrossRef]
- Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E, Hernandez L, Dalle JH, Sicre de Fontbrune F, Lengline E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018 Feb 15;131(7):717-732. Epub 2017 Nov 16. PMID: 29146883. [CrossRef]
- Baccelli F, Leardini D, Cerasi S, Messelodi D, Bertuccio SN, Masetti R. ERCC6L2-related disease: a novel entity of bone marrow failure disorder with high risk of clonal evolution. Ann Hematol 2023;102(4):699-705. [CrossRef]
- Hakkarainen M, Kaaja I, Douglas SPM, Vulliamy T, Dokal I, Soulier J, Larcher L, Peffault de Latour R, Leblanc T, et al. The clinical picture of ERCC6L2 disease: from bone marrow failure to acute leukemia. Blood 2023;141(23):2853-2866. [CrossRef] [PubMed]
- Frebourg T, Bajalica Lagercrantz S, Oliveira C, Magenheim R, Evans DG; European Reference Network GENTURIS. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet. 2020 Oct;28(10):1379-1386. [CrossRef] [PubMed]
- de Andrade KC, Khincha PP, Hatton JN, Frone MN, Wegman-Ostrosky T, Mai PL, Best AF, Savage SA. Cancer incidence, patterns, and genotype-phenotype associations in individuals with pathogenic or likely pathogenic germline TP53 variants: an observational cohort study. Lancet Oncol. 2021 Dec;22(12):1787-1798. [CrossRef] [PubMed]
- Rocca V, Blandino G, D’Antona L, Iuliano R, Di Agostino S. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers (Basel). 2022 Jul 27;14(15):3664. [CrossRef] [PubMed]
- Sandner AS, Weggel R, Mehraein Y, Schneider S, Hiddemann W, Spiekermann K. Frequency of hematologic and solid malignancies in the family history of 50 patients with acute myeloid leukemia - a single center analysis. PLoS One. 2019 Apr 18;14(4):e0215453. [CrossRef] [PubMed]
- Aronson M, Colas C, Shuen A, Hampel H, Foulkes WD, Baris Feldman H, Goldberg Y, Muleris M, Wolfe Schneider K, McGee RB, et al. Diagnostic criteria for constitutional mismatch repair deficiency (CMMRD): recommendations from the international consensus working group. J Med Genet. 2022 Apr;59(4):318-327. [CrossRef] [PubMed]
- Gallon R, Brekelmans C, Martin M, Bours V, Schamschula E, Amberger A, Muleris M, Colas C, Dekervel J, De Hertogh G, et al. Constitutional mismatch repair deficiency mimicking Lynch syndrome is associated with hypomorphic mismatch repair gene variants. NPJ Precis Oncol. 2024 May 24;8(1):119. [CrossRef] [PubMed]
- Langer K, Cunniff CM, Kucine N. Bloom Syndrome. 2006 Mar 22 [updated 2023 Oct 12]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024. [PubMed]
- Oshima J, Sidorova JM, Monnat RJ Jr. Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev. 2017 Jan;33:105-114. Epub 2016 Mar 15. PMID: 26993153. [CrossRef]
- Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709. [CrossRef] [PubMed]
- Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One. 2022 Mar 15;17(3):e0264177. eCollection 2022. PMID: 35290391. [CrossRef]
- Riboldi GM, Samanta D, Asuncion RMD, Frucht S. Ataxia-Telangiectasia. 2024 Mar 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.PMID: 30137827.
- Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis. 2016 Oct 7;11(1):137. [CrossRef] [PubMed]
- Schober S, Schilbach K, Doering M, Cabanillas Stanchi KM, Holzer U, Kasteleiner P, Schittenhelm J, Schaefer JF, Mueller I, Lang P, et al. Allogeneic hematopoietic stem cell transplantation in two brothers with DNA ligase IV deficiency: a case report and review of the literature. BMC Pediatr. 2019 Oct 11;19(1):346. [CrossRef] [PubMed]
- Riller Q, Rieux-Laucat F. RASopathies: From germline mutations to somatic and multigenic diseases. Biomed J. 2021 Aug;44(4):422-432. [CrossRef] [PubMed]
- Wintering A, Dvorak CC, Stieglitz E, Loh ML. Juvenile myelomonocytic leukemia in the molecular era: a clinician’s guide to diagnosis, risk stratification, and treatment. Blood Adv. 2021 Nov 23;5(22):4783-4793. [CrossRef] [PubMed]
- Hecht A, Meyer JA, Behnert A, Wong E, Chehab F, Olshen A, Hechmer A, Aftandilian C, Bhat R, Choi SW, et al. Molecular and phenotypic diversity of CBL-mutated juvenile myelomonocytic leukemia. Haematologica. 2022 Jan 1;107(1):178-186. [CrossRef] [PubMed]
- Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet. 2001 Mar;27(3):263-70. [CrossRef] [PubMed]
- Tawana K, Wang J, Renneville A, Bödör C, Hills R, Loveday C, Savic A, Van Delft FW, Treleaven J, Georgiades P, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015 Sep 3;126(10):1214-23. Epub 2015 Jul 10. PMID: 26162409. [CrossRef]
- Tarlock K, Lamble AJ, Wang YC, Gerbing RB, Ries RE, Loken MR, Brodersen LE, Pardo L, Leonti A, Smith JL, et al. CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children’s Oncology Group. Blood. 2021 Sep 30;138(13):1137-1147. [CrossRef] [PubMed]
- Pan L, Li Y, Gao H, Lai X, Cai Y, Chen Z, Li X, Wang SY. Clinical features and management of germline CEBPA-mutated carriers. Leuk Res. 2024 Mar;138:107453. [CrossRef] [PubMed]
- Brown AL, Arts P, Carmichael CL, Babic M, Dobbins J, Chong CE, Schreiber AW, Feng J, Phillips K, Wang PPS, et al. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 2020 Mar 24;4(6):1131-1144. [CrossRef] [PubMed]
- Homan CC, King-Smith SL, Lawrence DM, Arts P, Feng J, Andrews J, Armstrong M, Ha T, Dobbins J, Drazer MW, et al. The RUNX1 database (RUNX1db): establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. Haematologica. 2021 Nov 1;106(11):3004-3007. [CrossRef] [PubMed]
- Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev. 2021 Jul;48:100784. Epub 2020 Dec 1. PMID: 33317862. [CrossRef]
- Homan CC, Scott HS, Brown AL. Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26. Blood. 2023 Mar 30;141(13):1533-1543. [CrossRef] [PubMed]
- Bluteau D, Balduini A, Balayn N, Currao M, Nurden P, Deswarte C, Leverger G, Noris P, Perrotta S, Solary E, et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest. 2014 Feb;124(2):580-91. Epub 2014 Jan 16. PMID: 24430186. [CrossRef]
- Melazzini F, Palombo F, Balduini A, De Rocco D, Marconi C, Noris P, Gnan C, Pippucci T, Bozzi V, Faleschini M, et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica. 2016 Nov;101(11):1333-1342. Epub 2016 Jun 30. [CrossRef]
- Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, Kawai H, Iwakiri J, Liu R, Maeshiro M, et al. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia. 2022 Nov;36(11):2605-2620. Epub 2022 Oct 14. PMID: 36229594. [CrossRef]
- Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, Momozawa Y, Best S, Krishnamurthy P, Yoshizato T, et al. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood. 2023 Feb 2;141(5):534-549. [CrossRef] [PubMed]
- Huo L, Zhang Z, Zhou H, Xie J, Jiang A, Wang Q, Ding Z, Dai H, Liu D, Wu N, et al. Causative germline variant p.Y259C of DDX41 recurrently identified in acute lymphoblastic leukaemia. Br J Haematol. 2023 Jul;202(1):199-203. Epub 2023 May 5. PMID: 37144604. [CrossRef]
- Cheloor Kovilakam S, Gu M, Dunn WG, Marando L, Barcena C, Nik-Zainal S, Mohorianu I, Kar SP, Fabre MA, Quiros PM, et al. Prevalence and significance of DDX41 gene variants in the general population. Blood. 2023 Oct 5;142(14):1185-1192. [CrossRef] [PubMed]
- Winstone L, Jung Y, Wu Y. DDX41: exploring the roles of a versatile helicase. Biochem Soc Trans. 2024 Feb 28;52(1):395-405. [CrossRef] [PubMed]
- Vicente C, Conchillo A, García-Sánchez MA, Odero MD. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol. 2012 Apr;82(1):1-17. Epub 2011 May 24. PMID: 21605981. [CrossRef]
- Wlodarski MW, Hirabayashi S, Pastor V, Starý J, Hasle H, Masetti R, Dworzak M, Schmugge M, van den Heuvel-Eibrink M, Ussowicz M, et al.; EWOG-MDS. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016 Mar 17;127(11):1387-97; quiz 1518. Epub 2015 Dec 23. PMID: 26702063. [CrossRef]
- Homan CC, Venugopal P, Arts P, Shahrin NH, Feurstein S, Rawlings L, Lawrence DM, Andrews J, King-Smith SL, Harvey NL, Brown AL, et al. GATA2 deficiency syndrome: A decade of discovery. Hum Mutat. 2021 Nov;42(11):1399-1421. Epub 2021 Aug 31. PMID: 34387894. [CrossRef]
- Santiago M, Liquori A, Such E, Zúñiga Á, Cervera J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers (Basel). 2023 Mar 3;15(5):1590. [CrossRef] [PubMed]
- Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, Noellke P, Dworzak M, Starý J, Locatelli F, et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 2021 Oct;27(10):1806-1817. Epub 2021 Oct 7. PMID: 34621053. [CrossRef]
- Narumi S. Discovery of MIRAGE syndrome. Pediatr Int. 2022 Jan;64(1):e15283. [CrossRef] [PubMed]
- Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. Epub 2022 Jun 22. PMID: 35732831. [CrossRef]
- Kobayashi S, Kobayashi A, Osawa Y, Nagao S, Takano K, Okada Y, Tachi N, Teramoto M, Kawamura T, Horiuchi T, et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogeneic hematopoietic stem cell transplantation. Leukemia. 2017 Apr;31(4):1020-1022. Epub 2017 Feb 14. PMID: 28194039. [CrossRef]
- Dokal I, Tummala H, Vulliamy T. Inherited bone marrow failure in the pediatric patient. Blood. 2022 Aug 11;140(6):556-570. [CrossRef] [PubMed]
- Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med. 2023 Nov 20;12(22):7185. [CrossRef] [PubMed]
- Río P, Navarro S, Wang W, Sánchez-Domínguez R, Pujol RM, Segovia JC, Bogliolo M, Merino E, Wu N, Salgado R, et al. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat Med. 2019 Sep;25(9):1396-1401. Epub 2019 Sep 9. PMID: 31501599. [CrossRef]
- Giménez Y, Palacios M, Sánchez-Domínguez R, Zorbas C, Peral J, Puzik A, Ugalde L, Alberquilla O, Villanueva M, Río P, et al. Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia. JCI Insight. 2024 May 22;9(10):e171650. [CrossRef] [PubMed]
- Siegner SM, Ugalde L, Clemens A, Garcia-Garcia L, Bueren JA, Rio P, Karasu ME, Corn JE. Adenine base editing efficiently restores the function of Fanconi anemia hematopoietic stem and progenitor cells. Nat Commun. 2022 Nov 12;13(1):6900. [CrossRef] [PubMed]
- Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020 Jul;38(7):883-891. Epub 2020 Mar 16. PMID: 32433547. [CrossRef]
- Hofmann I, Avagyan S, Stetson A, Guo D, Al-Sayegh H, London WB, Lehmann L. Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol Blood Marrow Transplant. 2020 Jun;26(6):1124-1130. Epub 2020 Feb 20. PMID: 32088370. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
