Submitted:
04 June 2024
Posted:
06 June 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Results
Discussion
Limitations
Conclusions
Materials and Methods
Patients
Controls
Whole Genome Sequencing
Gene Panel Selection Strategy
Literature Curation
COVID-19 Human Genetics Initiative
Genomics England PanelApp
Genes and Interpretation
Statistical Data Analysis
Supplementary Materials
Ethics statement
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020, 395, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, A.; Ebrahimzadeh, M.H.; Baradaran, A.; Kachooei, A.R. Prevalence of Comorbidities in COVID-19 Patients: A Systematic Review and Meta-Analysis. ABJS 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.D.; Lone, N.I.; Baillie, J.K. Comorbidities, multimorbidity and COVID-19. Nat Med. 2023, 29, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Šelb, J.; Bitežnik, B.; Bidovec Stojković, U.; Rituper, B.; Osolnik, K.; Kopač, P.; et al. Immunophenotypes of anti-SARS-CoV-2 responses associated with fatal COVID-19. ERJ Open Res. 2022, 8, 00216–02022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y.; Zhang, Q.; Casanova, J.-L.; Su, H.C.; COVID Team. Severe COVID-19 in the young and healthy: monogenic inborn errors of immunity? Nat Rev Immunol. 2020, 20, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Golinelli, D.; Boetto, E.; Maietti, E.; Fantini, M.P. The association between ABO blood group and SARS-CoV-2 infection: A meta-analysis. PLoS One 2020, 15, e0239508. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, T.; Ma, L.; Zhang, H.; Wang, H.; Wei, W.; et al. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis. Blood Rev. 2020, 100785. [Google Scholar] [CrossRef]
- Di Maria, E.; Latini, A.; Borgiani, P.; Novelli, G. Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): rapid systematic review and field synopsis. Hum Genomics. 2020, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Elhabyan, A.; Elyaacoub, S.; Sanad, E.; Abukhadra, A.; Elhabyan, A.; Dinu, V. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Daimiel, L.; Ramírez de Molina, A.; Martínez-Urbistondo, D.; Vargas, J.A.; Martínez, J.A. Exploring Host Genetic Polymorphisms Involved in SARS-CoV Infection Outcomes: Implications for Personalized Medicine in COVID-19. Int J Genomics. 2020, 2020, 6901217. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Rawlik, K.; Bretherick, A.D.; Qi, T.; Wu, Y.; Nassiri, I.; et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19. Nature. 2023, 617, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; et al.; Severe Covid-19 GWAS Group Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Fang, M.; Luo, Y.; Zheng, F.; Jin, Y.; Cheng, F.; et al. Rare Variants in Inborn Errors of Immunity Genes Associated With Covid-19 Severity. Front Cell Infect Microbiol. 2022, 12, 888582. [Google Scholar] [CrossRef] [PubMed]
- Khadzhieva, M.B.; Gracheva, A.S.; Belopolskaya, O.B.; Kolobkov, D.S.; Kashatnikova, D.A.; Redkin, I.V.; et al. COVID-19 severity: does the genetic landscape of rare variants matter? Front Genet. 2023, 14, 1152768. [Google Scholar] [CrossRef] [PubMed]
- The ACMG Laboratory Quality Assurance Committee; Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Chitipiralla, S.; Brown, G.R.; Chen, C.; Gu, B.; Hart, J.; et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020, 48, D835–D844. [Google Scholar] [CrossRef]
- Wang, Y.; Wrennall, J.A.; Cai, Z.; Li, H.; Sheppard, D.N. Understanding how cystic fibrosis mutations disrupt CFTR function: From single molecules to animal models. The International Journal of Biochemistry & Cell Biology. 2014, 52, 47–57. [Google Scholar] [CrossRef]
- Nykamp, K.; Truty, R.; Riethmaier, D.; Wilkinson, J.; Bristow, S.L.; Aguilar, S.; et al. Elucidating clinical phenotypic variability associated with the polyT tract TG repeats in, C.F.T.R. Hum Mutat. 2021, 42, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Baldassarri, M.; Fava, F.; Fallerini, C.; Daga, S.; Benetti, E.; Zguro, K.; et al. Severe COVID-19 in Hospitalized Carriers of Single CFTR Pathogenic Variants. J Pers Med. 2021, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumari, B.; Ali, A.; Patel, P.K.; Sharma, A.K.; Nair, R.; et al. Mannose-binding lectin gene 2 variant DD (rs 5030737) is associated with susceptibility to COVID-19 infection in the urban population of Patna City (India). Mol Genet Genomics. 2023, 298, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Thiel, S.; Vorup-Jensen, T.; Stover, C.M.; Schwaeble, W.; Laursen, S.B.; Poulsen, K.; et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997, 386, 506–510. [Google Scholar] [CrossRef]
- Masters, S.L.; Lagou, V.; Jéru, I.; Baker, P.J.; Van Eyck, L.; Parry, D.A.; et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016, 8, 332ra45. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, F.; Caporilli, C.; Titolo, A.; Rigante, D.; Esposito, S. Clinical impact and disease evolution of SARS-CoV-2 infection in familial Mediterranean fever. Pharmacol Res. 2022, 182, 106293. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.A.; Mukherjee, S.; Manivannan, P.; Malathi, K. RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1. Int J Mol Sci. 2015, 16, 17611–17636. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-J.; Yu, H.-P.; Chang, B.-L.; Tang, W.-C.; Liao, C.-L.; Lin, Y.-L. Distinct antiviral roles for human 2’,5’-oligoadenylate synthetase family members against dengue virus infection. J Immunol. 2009, 183, 8035–8043. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Bressette, D.; Carrell, J.A.; Kaufman, T.; Feng, P.; Taylor, K.; et al. Tumor Necrosis Factor (TNF) Receptor Superfamily Member TACIIs a High Affinity Receptor for TNFFamily Members, A. P.R.I.L.; BLyS Journal of Biological Chemistry 2000, 275, 35478–35485. [Google Scholar] [CrossRef]
- Schmidt, A.; Peters, S.; Knaus, A.; Sabir, H.; Hamsen, F.; Maj, C.; et al. TBK1 and TNFRSF13B mutations and an autoinflammatory disease in a child with lethal COVID-19. NPJ Genom Med. 2021, 6, 55. [Google Scholar] [CrossRef]
- Kinoshita, H.; Durkee-Shock, J.; Jensen-Wachspress, M.; Kankate, V.V.; Lang, H.; Lazarski, C.A.; et al. Robust Antibody and T Cell Responses to SARS-CoV-2 in Patients with Antibody Deficiency. J Clin Immunol. 2021, 41, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Polgreen, P.M.; Comellas, A.P. Clinical Phenotypes of Cystic Fibrosis Carriers. Annu Rev Med. 2022, 73, 563–574. [Google Scholar] [CrossRef]
- Tangye SG, COVID Human Genetic Effort consortium. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol. 2023, 151, 818–831. [Google Scholar] [CrossRef]
- Al-Jaf, S.M.A.; Niranji, S.S.; Ali, H.N.; Mohammed, O.A. Association of Apolipoprotein e polymorphism with SARS-CoV-2 infection. Infect Genet Evol. 2021, 95, 105043. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; et al. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020, 75, 2231–2232. [Google Scholar] [CrossRef]
- del Ser, T.; Fernández-Blázquez, M.A.; Valentí, M.; Zea-Sevilla, M.A.; Frades, B.; Alfayate, E.; et al. Residence, Clinical Features, and Genetic Risk Factors Associated with Symptoms of COVID-19 in a Cohort of Older People in Madrid. Gerontology 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Medetalibeyoglu, A.; Bahat, G.; Senkal, N.; Kose, M.; Avci, K.; Sayin, G.Y.; et al. Mannose binding lectin gene 2 (rs1800450) missense variant may contribute to development and severity of COVID-19 infection. Infect Genet Evol. 2021, 89, 104717. [Google Scholar] [CrossRef]
- Speletas, M.; Dadouli, K.; Syrakouli, A.; Gatselis, N.; Germanidis, G.; Mouchtouri, V.A.; et al. MBL deficiency-causing B allele (rs1800450) as a risk factor for severe COVID-19. Immunobiology. 2021, 226, 152136. [Google Scholar] [CrossRef]
- Yilmaz, D.; Soyoz, M.; Sahin, A.; Cerci-Alkac, B.; Karahan-Coven, H.I.; Ekemen-Keles, Y.; et al. Association between mannose binding lectin gene polymorphisms and clinical severity of COVID-19 in children. Mol Biol Rep. 2023, 50, 5871–5877. [Google Scholar] [CrossRef]
- Podack, E.R.; Lowrey, D.M.; Lichtenheld, M.; Olsen, K.J.; Aebischer, T.; Binder, D.; et al. Structure, function and expression of murine and human perforin 1 (P1). Immunol Rev. 1988, 103, 203–211. [Google Scholar] [CrossRef]
- Cabrera-Marante, O.; de Frías, E.R.; Pleguezuelo, D.E.; Allende, L.M.; Serrano, A.; Laguna-Goya, R.; et al. Perforin gene variant A91V in young patients with severe COVID-19. Haematologica 2020, 105, 2844–2846. [Google Scholar] [CrossRef] [PubMed]
- Zanchettin, A.C.; Barbosa, L.V.; Dutra, A.A.; Prá, D.M.M.; Pereira, M.R.C.; Stocco, R.B.; et al. Role of Genetic Polymorphism Present in Macrophage Activation Syndrome Pathway in Post Mortem Biopsies of Patients with COVID-19. Viruses 2022, 14, 1699. [Google Scholar] [CrossRef] [PubMed]
- Gelzo, M.; Castaldo, A.; Giannattasio, A.; Scalia, G.; Raia, M.; Esposito, M.V.; et al. MIS-C: A COVID-19-as sociated condition between hypoimmunity and hyperimmunity. Front Immunol. 2022, 13, 985433. [Google Scholar] [CrossRef] [PubMed]
- Downes, D.J.; Cross, A.R.; Hua, P.; Roberts, N.; Schwessinger, R.; Cutler, A.J.; et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet. 2021, 53, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Zeberg, H.; Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020, 587, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Bergant, G.; Maver, A.; Peterlin, B. Whole-Genome Sequencing in Diagnostics of Selected Slovenian Undiagnosed Patients with Rare Disorders. Life (Basel) 2021, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Van Der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. CP in Bioinformatics. 2013, 43. [Google Scholar] [CrossRef] [PubMed]
- Ales, M.; Luca, L.; Marija, V.; Gorazd, R.; Karin, W.; Ana, B.; et al. Phenotype-driven gene target definition in clinical genome-wide sequencing data interpretation. Genet Med. 2016, 18, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Boerwinkle, E.; Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Research 2014, 42, 13534–13544. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019, 176, 535–548. [Google Scholar] [CrossRef]
- The COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet. 2020, 28, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.R.; Williams, E.; Foulger, R.E.; Leigh, S.; Daugherty, L.C.; Niblock, O.; et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019, 51, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- CH Topic E15 Definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. EMEA/CHMP/ICH/437986/2006. Available: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-15-definitions-genomic-biomarkers-pharmacogenomics-pharmacogenetics-genomic-data-sample-coding_en.
- Rathbone, J.; Albarqouni, L.; Bakhit, M.; Beller, E.; Byambasuren, O.; Hoffmann, T.; et al. Expediting citation screening using PICo-based title-only screening for identifying studies in scoping searches and rapid reviews. Syst Rev. 2017, 6, 233. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.H.L.; Park, D.S.; Coignet, M.V.; McCurdy, S.R.; Knight, S.C.; Partha, R.; et al. AncestryDNA COVID-19 Host Genetic Study Identifies Three Novel Loci. Epidemiology 2020. [Google Scholar] [CrossRef]
- Roberts, G.H.L.; Partha, R.; Rhead, B.; Knight, S.C.; Park, D.S.; Coignet, M.V.; et al. Expanded COVID-19 phenotype definitions reveal distinct patterns of genetic association and protective effects. Nat Genet. 2022, 54, 374–381. [Google Scholar] [CrossRef] [PubMed]
- The GenOMICC Investigators; The ISARIC4C Investigators; The COVID-19 Human Genetics Initiative; 23andMe Investigators; BRACOVID Investigators; Gen-COVID Investigators; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.E.; Kosmicki, J.A.; Damask, A.; Sharma, D.; Roberts, G.H.L.; Justice, A.E.; et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022, 54, 382–392. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Host Genetics Initiative; COVID-19 Host Genetics InitiativeLeadership; Niemi MEK; Karjalainen, J.; Liao, R.G.; Neale, B.M.; et al. Mapping the human genetic architecture of COVID-19. Nature 2021, 600, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.F.; Shastri, A.J.; Ye, C.; Weldon, C.H.; Filshtein-Sonmez, T.; Coker, D.; et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet. 2021, 53, 801–808. [Google Scholar] [CrossRef]
- Kousathanas, A.; Pairo-Castineira, E.; Rawlik, K.; Stuckey, A.; Odhams, C.A.; Walker, S.; et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 2022, 607, 97–103. [Google Scholar] [CrossRef]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. Genetics 2022. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. 2022. Available from: https://www.R-project.org/.
- Dudbridge, F.; Gusnanto, A.; Koeleman, B.P. Detecting multiple associations in genome-wide studies. Hum Genomics. 2006, 2, 310–317. [Google Scholar] [CrossRef] [PubMed]


| Gene | Transcript | Variant | Protein change | No. of patients a | Patients allelic freq. | SGDB allelic freq. | P-value (allelic freq) b | P-value adjusted (allelic freq) d | ACMG Classification |
|---|---|---|---|---|---|---|---|---|---|
| ADAR | NM_001365045.1 | c.604C>G | p.Pro202Ala | 1 | 0.0083 | 0.0019 | 0.211 | 0.329 | P |
| AIRE | NM_000383.4 | c.769C>T | p.Arg257* | 2 | 0.0169 | 0.0033 | 0.062 | 0.152 | P |
| APOE | NM_001302688.2 | c.466T>C | p.Cys156Arg | 7 | 0.0667 | 0.1059 | 0.164 c | 0.280 | R |
| ATM | NM_000051.3 | c.6095G>A | p.Arg2032Lys | 1 | 0.0083 | 0.0003 | 0.039 | 0.120 | LP |
| BRCA2 | NM_000059.3 | c.7806-2A>G | splice variant | 1 | 0.0083 | 0.0007 | 0.091 | 0.196 | P |
| C2 | NM_001282459.2.7 | c.841_868del | p.Val281fs | 1 | 0.0085 | 0.0114 | 1 | 1 | P |
| C6 | NM_000065.4 | c.2381+2T>C | splice variant | 1 | 0.0083 | 0.0054 | 0.480 | 0.590 | P |
| C7 | NM_000587.4 | c.1561C>A | p.Arg521Ser | 1 | 0.0083 | 0.0082 | 0.627 | 0.731 | P |
| C7 | NM_000587.4 | c.1924_1925del | p.His643fs | 1 | 0.0083 | 0.0003 | 0.046 | 0.134 | P |
| C8B | NM_000066.4 | c.1282C>T | p.Arg428* | 1 | 0.0083 | 0.0072 | 0.579 | 0.679 | P |
| C9 | NM_001737.5 | c.162C>A | p.Cys54* | 1 | 0.0083 | 0.0061 | 0.522 | 0.630 | P |
| CFD | NM_001317335.2 | c.286delG | p.Glu96fs | 1 | 0.0083 | 0.0006 | 0.076 | 0.177 | LP |
| CFI | NM_001318057.2 | c.111dupA | p.Tyr38fs | 1 | 0.0083 | 0.0011 | 0.133 | 0.246 | LP |
| CFTR | NM_000492.4 | c.1210-11T>G | intronic | 1 | 0.0089 | 0.0107 | 1 | 1 | P |
| CFTR | NM_000492.4 | c.1727G>C | p.Gly576Ala | 1 (CH) | 0.0083 | 0.0038 | 0.370 | 0.482 | LP |
| CFTR | NM_000492.4 | c.2002C>T | p.Arg668Cys | 1 (CH) | 0.0083 | 0.0058 | 0.503 | 0.613 | LP |
| CFTR | NM_000492.4 | c.2991G>C | p.Leu997Phe | 1 | 0.0088 | 0.0026 | 0.262 | 0.380 | LP |
| CFTR | NM_000492.4 | c.3154T>G | p.Phe1052Val | 1 | 0.0083 | 0.0008 | 0.098 | 0.205 | P |
| CFTR | NM_000492.4 | c.3485G>T | p.Arg1162Leu | 2 | 0.0167 | 0.0070 | 0.211 | 0.329 | LP |
| CYBA | NM_000101.4 | c.222delC | p.Ala75fs | 1 | 0.0083 | 0 | 0.142 | 0.255 | LP |
| FANCC | NM_000136.3 | c.487_490del | p.Glu163fs | 1 | 0.0083 | 0 | 0.142 | 0.255 | LP |
| HAVCR2 | NM_032782.5 | c.291A>G | p.Ile97Met | 4 | 0.0333 | 0.0179 | 0.171 | 0.287 | LP |
| HPS4 | NM_001349900.2 | c.649C>T | p.Arg217* | 1 | 0.0083 | 0.0011 | 0.133 | 0.246 | P |
| IL36RN | NM_012275.3 | c.338C>T | p.Ser113Leu | 1 | 0.0083 | 0.0039 | 0.379 | 0.488 | P |
| MASP2 | NM_006610.4 | c.359A>G | p.Asp120Gly | 8 (1 hom) | 0.0750 | 0.0490 | 0.189 c | 0.308 | LP |
| MBL2 | NM_000242.2 | c.154C>T | p.Arg52Cys | 13 | 0.1083 | 0.0724 | 0.131 c | 0.246 | R |
| MBL2 | NM_000242.2 | c.161G>A | p.Gly54Asp | 21 | 0.1917 | 0.1422 | 0.123 c | 0.233 | R |
| MEFV | NM_000243.2 | c.2084A>G | p.Lys695Arg | 5 | 0.0417 | 0.0266 | 0.256 | 0.377 | LP |
| MEFV | NM_000243.2 | c.2230G>T | p.Ala744Ser | 1 | 0.0083 | 0.0036 | 0.353 | 0.468 | LP |
| PGM3 | NM_001199917.2 | c.463delA | p.Arg155fs | 1 | 0.0083 | 0.0002 | 0.041 | 0.124 | LP |
| POLR3A | NM_007055.4 | c.1771-7C>G | intronic | 1 | 0.0083 | 0.0001 | 0.023 | 0.090 | P |
| PRF1 | NM_001083116.3 | c.272C>T | p.Ala91Val | 7 | 0.0583 | 0.0564 | 0.928 | 1 | R |
| RNASEL | NM_021133.4 | c.1567-11_1574del | p.Asp523fs | 1 | 0.0083 | 0.0005 | 0.061 | 0.152 | LP |
| RNU4ATAC | NR_023343.1 | n.8C>T | ncRNA | 1 | 0.0083 | 0.0015 | 0.180 | 0.299 | LP |
| RNU4ATAC | NR_023343.1 | n.40C>T | ncRNA | 1 | 0.0083 | 0.0005 | 0.082 | 0.187 | P |
| TNFRSF13B | NM_012452.3 | c.310T>C | p.Cys104Arg | 1 | 0.0083 | 0.0029 | 0.300 | 0.412 | P |
| rs17713054 | NA | rs17713054-A | intergenic | 14 | 0.1250 | 0.1055 | 0.522 c | NA | RL |
| rs35482426 | NM_001276378.2 | c.-137-18021_-137-18020del | intronic | 15 | 0.1333 | 0.1441 | 0.753 c | NA | RL |
| Patients | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variant | Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | SUM |
| ADAR c.604C>G | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| AIRE c.769C>T | P | 1 | 1 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| APOE c.466T>C | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| ATM c.6095G>A | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| BRCA2 c.7806-2A>G | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| C2 c.841_868del | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| C6 c.2381+2T>C | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| C7 c.1561C>A | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| C7 c.1924_1925del | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| C8B c.1282C>T | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| C9 c.162C>A | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFD c.286del | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFI c.111dup | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFTR c.1210-11T>G | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFTR c.1727G>C | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFTR c.2002C>T | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFTR c.2991G>C | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFTR c.3154T>G | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CFTR c.3485G>T | LP | 1 | 1 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| CYBA c.222del | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| FANCC c.487_490del | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| HAVCR2 c.291A>G | LP | 1 | 1 | 1 | 1 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| HPS4 c.649C>T | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| IL36RN c.338C>T | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| MASP2 c.359A>G hom | LP | 1 | 7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| MASP2 c.359A>G het | LP | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| MBL2 c.154C>T | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | |||||||||||||||||||||||||||||||||||||||||||||||
| MBL2 c.161G>A | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21 | |||||||||||||||||||||||||||||||||||||||
| MEFV c.2084A>G | LP | 1 | 1 | 1 | 1 | 1 | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| MEFV c.2230G>T | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| PGM3 c.463del | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| POLR3A c.1771-7C>G | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| PRF1 c.272C>T | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| RNASEL c.1567-11_1574del | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| RNU4ATAC n.40C>T | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| RNU4ATAC n.8C>T | LP | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| TNFRSF13B c.310T>C | P | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| LZTFL1 rs17713054 | RL | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 14 | ||||||||||||||||||||||||||||||||||||||||||||||
| LZTFL1 rs35482426 | RL | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | |||||||||||||||||||||||||||||||||||||||||||||
| SUM | 4 | 1 | 2 | 1 | 3 | 2 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 0 | 1 | 0 | 4 | 3 | 2 | 4 | 2 | 1 | 1 | 4 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | 4 | 1 | 0 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 0 | 4 | 1 | 3 | 1 | 0 | 96 | |
| TOTAL | |
|---|---|
| Subjects n or n (%) | 60 |
| Age mean±sd years | 77 ± 9.9 |
| Male sex n (%) | 31 (52) |
| Previous coexisting disease n (%) | |
| Type 2 diabetes | 17 (28) |
| Heart disease* | 28 (47)) |
| Hypertension | 38 (63 |
| Chronic lung disease | 16 (27) |
| Rheumatic diseases | 5 (8) |
| Cancer | 10 (17) |
| Chronic kidney disease | 7 (12) |
| Number of coexisting diseases n (%) | |
| None | 4 (7) |
| One | 18 (30) |
| Two or more | 38 (63) |
| Died (%) | 7 (12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
