Submitted:
28 May 2024
Posted:
29 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Evolution in Multispectral Cloud Detection Methods
2.1. Cloud Detection Based on Threshold Tests
2.2. Cloud Detection Based on Spatial and Texture Characteristics
2.3. Cloud Detection Based on Artificial Intelligence
2.4. Microwave Cloud Detection
3. Truth Data Sources for Cloud Detection Algorithms
3.1. Cloud Amount Truth Data
- Offers temporal and spatial congruency between automated cloud products and cloud truth. Truth is made directly from satellite imagery used to generate automated product.
- Supports algorithm and model updates. Truth can be used to quantitatively assess updates to algorithm logic by assessing improvement from granule reprocessing.
- Provides better assessment on algorithm performance. Truth can include full granules of 3200 pixels cross-track by 768 pixels long-track for VIIRS. CALIOP collects data only along sensor sub-track.
3.2. Other Cloud Truth Data
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Fye, F.K. The AFGWC Automated Real-Time Cloud Analysis Model; Air Force Global Weather Central: Omaha, NE, 1978. [Google Scholar]
- Keiss, R.B.; Cox, W.M. The AFGWC Automated Real-Time Cloud Analysis Model, US Air Force; Air Force Global Weather Central: Omaha, NE, 1985; 82 pp. [Google Scholar]
- Hamill, T.M.; D’Entremont, R.P.; Buntin, J.T. A Description of the Air Force Real-Time Nephanalysis Model. Weather and Forecasting 1992, 7, 288–306. [Google Scholar] [CrossRef]
- Crum, T.D. AFGWC Cloud Forecast Models; Air Force Global Weather Central: Omaha NE, 1987; 73 pp. [Google Scholar]
- Henderson-Sellers, A.; McGuffie, K. Cloud Climatologies from Space and Applications to Climate Modelling. In Remote Sensing Applications in Meteorology and Climatology; Vaughan, R.A., Ed.; Springer Netherlands: Dordrecht, 1987; pp. 359–373. ISBN 978-94-009-3881-6. [Google Scholar]
- Warnecke, G.; Allison, L.J.; McMillin, L.M.; Szekielda, K.-H. Remote Sensing of Ocean Currents and Sea Surface Temperature Changes Derived from the Nimbus II Satellite. Journal of Physical Oceanography 1971, 1, 45–60. [Google Scholar] [CrossRef]
- McMillin, L. A Method of Determining Surface Temperatures from Measurements of Spectral Radiance at Two Wavelengths. Theses and Dissertations, 4563, 1971. [Google Scholar]
- AVHRR Factsheet. https://www-cdn.eumetsat.int/files/2020-04/pdf_avhrr_factsheet.pdf. 2015.
- Hutchison, K.D.; Marusa, S.; Henderson, J.R.; Kenley, R.C.; Topping, P.C.; Uplinger, W.G.; Twomey, J.A. System Design Considerations for the Retrieval of Sea Surface Temperatures in the NPOESS Era. Journal of Atmospheric and Oceanic Technology 1999, 16, 107–116. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Cracknell, A.P. VIIRS Imagery Design Analysis. In Visible Infrared Imager Radiometer Suite; CRC Press, 2005; ISBN 978-0-429-11856-2. [Google Scholar]
- Bell, G.J.; Wong, M.C. The Near-Infrared Radiation Received by Satellites from Clouds. Monthly Weather Review 1981, 109, 2158–2163. [Google Scholar] [CrossRef]
- Inoue, T. On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region. Journal of the Meteorological Society of Japan. Ser. II 1985, 63, 88–99. [Google Scholar] [CrossRef]
- Saunders, R.; Kriebel, K.T. An Improved Method for Detecting Clear Sky and Cloudy Radiances from AVHRR Data. International Journal of Remote Sensing 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Arking, A. Latitudinal Distribution of Cloud Cover from Tiros III Photographs. Science 1964, 143, 569–572. [Google Scholar] [CrossRef]
- Rossow, W.B. Clouds in Climate: Modeling and Satellite Observational Studies. Report of workshop held at Goddard Institute for Space Studies, October, New York, p. 222.; NASA, 1981. [Google Scholar]
- Rossow, W.B.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.; Minnis, P.; Ruprecht, E.; Seze, G.; Simmer, C.; et al. ISCCP Cloud Algorithm Intercomparison. Journal of Applied Meteorology and Climatology 1985, 24, 877–903. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C.; Lu, P.J.; Walker, A. International Satellite Cloud Climatology Project (ISCCP) Documentation of Cloud Data. 1988. [Google Scholar]
- Rossow, W.B.; Garder, L.C.; Lacis, A.A. Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part I: Sensitivity of Analysis. Journal of Climate 1989, 2, 419–458. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Validation of ISCCP Cloud Detections. Journal of Climate 1993, 6, 2370–2393. [Google Scholar] [CrossRef]
- Sèze, G.; Rossow, W.B. Effects of Satellite Data Resolution on Measuring the Space/Time Variations of Surfaces and Clouds. International Journal of Remote Sensing 1991, 12, 921–952. [Google Scholar] [CrossRef]
- Olesen, F.-S.; Grassl, H. Cloud Detection and Classification over Oceans at Night with NOAA-7. International Journal of Remote Sensing 1985, 6, 1435–1444. [Google Scholar] [CrossRef]
- Lo, R.C.; Johnson, D.R. An Investigation of Cloud Distribution from Satellite Infrared Radiation Data. Monthly Weather Review 1971, 99, 599–605. [Google Scholar] [CrossRef]
- Allen, R.C.; Durkee, P.A.; Wash, C.H. Snow/Cloud Discrimination with Multispectral Satellite Measurements. Journal of Applied Meteorology (1988-2005) 1990, 29, 994–1004. [Google Scholar] [CrossRef]
- Crane, R.G.; Anderson, M.R. Satellite Discrimination of Snow/Cloud Surfaces. International Journal of Remote Sensing 1984, 5, 213–223. [Google Scholar] [CrossRef]
- Saunders, R.W. An Automated Scheme for the Removal of Cloud Contamination from AVHRR Radiances over Western Europe. International Journal of Remote Sensing 1986. [Google Scholar] [CrossRef]
- Stowe, L.L.; McClain, E.P.; Carey, R.; Pellegrino, P.; Gutman, G.G.; Davis, P.; Long, C.; Hart, S. Global Distribution of Cloud Cover Derived from NOAA/AVHRR Operational Satellite Data. Advances in Space Research 1991, 11, 51–54. [Google Scholar] [CrossRef]
- Stowe, L.L.; Davis, P.; McClain, E.P. Evaluating the CLAVR (Clouds from AVHRR) Phase I-Cloud Cover Experimental Product. Advances in Space Research 1995, 16, 21–24. [Google Scholar] [CrossRef]
- Stowe, L.L.; Davis, P.A.; McClain, E.P. Scientific Basis and Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for the Advanced Very High Resolution Radiometer. Journal of Atmospheric and Oceanic Technology 1999, 16, 656–681. [Google Scholar] [CrossRef]
- Derrien, M.; Farki, B.; Harang, L.; LeGléau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic Cloud Detection Applied to NOAA-11 /AVHRR Imagery. Remote Sensing of Environment 1993, 46, 246–267. [Google Scholar] [CrossRef]
- Khlopenkov, K.; Trishchenko, A. SPARC: New Cloud, Snow, and Cloud Shadow Detection Scheme for Historical 1-Km AVHHR Data over Canada in: Journal of Atmospheric and Oceanic Technology Volume 24 Issue 3 (2007). J. Atmos.Ocean. Technol 2007, 24, 322–343. [Google Scholar] [CrossRef]
- Karlsson, K.-G. Cloud Classifications with the SCANDIA Model, Swedish Meteorological and Hydrological Institute Rep. of Meteorology and Climatology; SMHI, 1996; p. 36. [Google Scholar]
- Hocking, J.; Francis, P.N.; Saunders, R. Cloud Detection in Meteosat Second Generation Imagery at the Met Office. Meteorological Applications 2011, 18, 307–323. [Google Scholar] [CrossRef]
- Derrien, M.; Gléau, H.L. MSG/SEVIRI Cloud Mask and Type from SAFNWC. International Journal of Remote Sensing 2005. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. Improvement of Cloud Detection near Sunrise and Sunset by Temporal-Differencing and Region-Growing Techniques with Real-Time SEVIRI. International Journal of Remote Sensing 2010, 31, 1765–1780. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating Clear Sky from Clouds with MODIS. Journal of Geophysical Research: Atmospheres 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud Detection with MODIS. Part II: Validation. Journal of Atmospheric and Oceanic Technology 2008, 25, 1073–1086. [Google Scholar] [CrossRef]
- Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud Properties Inferred from 8-12-Μm Data. Journal of Applied Meteorology and Climatology 1994, 33, 212–229. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R.; Frey, R.A.; Ackerman, S.A.; Menzel, W.P. Nighttime Polar Cloud Detection with MODIS. Remote Sensing of Environment 2004, 92, 181–194. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5. Journal of Atmospheric and Oceanic Technology 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Ishida, H.; Nakajima, T.Y. Development of an Unbiased Cloud Detection Algorithm for a Spaceborne Multispectral Imager. Journal of Geophysical Research: Atmospheres 2009, 114. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Zhu, Y.; Zhao, B. Improved Cloud Mask Algorithm for FY-3A/VIRR Data over the Northwest Region of China. Atmospheric Measurement Techniques 2013, 6, 549–563. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Romano, F.; Cuomo, V. A Technique for Classifying Uncertain MOD35/MYD35 Pixels Through Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Observations. IEEE Transactions on Geoscience and Remote Sensing 2010, 48, 2137–2149. [Google Scholar] [CrossRef]
- Wang, T.; Fetzer, E.J.; Wong, S.; Kahn, B.H.; Yue, Q. Validation of MODIS Cloud Mask and Multilayer Flag Using CloudSat-CALIPSO Cloud Profiles and a Cross-Reference of Their Cloud Classifications. Journal of Geophysical Research: Atmospheres 2016, 121, 11,620–11,635. [Google Scholar] [CrossRef]
- Feijt, A.; de Valk, P.; van der Veen, S. Cloud Detection Using Meteosat Imagery and Numerical Weather Prediction Model Data. Journal of Applied Meteorology (1988-2005) 2000, 39, 1017–1030. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of Terrestrial Materials in the 8–14 Μm Atmospheric Window. Remote Sensing of Environment 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Gao, B.-C.; Wiscombe, W.J. Surface-Induced Brightness Temperature Variations and Their Effects on Detecting Thin Cirrus Clouds Using IR Emission Channels in the 812-Μm Region. Journal of Applied Meteorology and Climatology 1994, 33, 568–570. [Google Scholar] [CrossRef]
- Coakley Jr., J. A. A Dynamic Threshold Method for Obtaining Cloud Cover from Satellite Imagery Data. Journal of Geophysical Research: Atmospheres 1987, 92, 3985–3990. [Google Scholar] [CrossRef]
- ENGLAND, C.F.; HUNT, G.E. A Bispectral Method for the Automatic Determination of Parameters for Use in Imaging Satellite Cloud Retrievals. International Journal of Remote Sensing 1985. [Google Scholar] [CrossRef]
- Di Vittorio, A.V.; Emery, W.J. An Automated, Dynamic Threshold Cloud-Masking Algorithm for Daytime AVHRR Images over Land. IEEE Transactions on Geoscience and Remote Sensing 2002, 40, 1682–1694. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.-G.; Thoss, A. NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part I: Algorithm Description. Journal of Applied Meteorology and Climatology 2005, 44, 39–54. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.-G.; Thoss, A. NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part II: Tuning and Validation. Journal of Applied Meteorology and Climatology 2005, 44, 55–71. [Google Scholar] [CrossRef]
- Coakley Jr., J. A.; Bretherton, F.P. Cloud Cover from High-Resolution Scanner Data: Detecting and Allowing for Partially Filled Fields of View. Journal of Geophysical Research: Oceans 1982, 87, 4917–4932. [Google Scholar] [CrossRef]
- Gutman, G. The Derivation of Vegetation Indices from AVHRR Data. International Journal of Remote Sensing 1987, 8, 1235–1243. [Google Scholar] [CrossRef]
- Joiner, J.; Poli, P.; Frank, D.; Liu, H.C. Detection of Cloud-Affected AIRS Channels Using an Adjacent-Pixel Approach. Quarterly Journal of the Royal Meteorological Society 2004, 130, 1469–1487. [Google Scholar] [CrossRef]
- Coakley, J.A.; Baldwin, D.G. Towards the Objective Analysis of Clouds from Satellite Imagery Data. Journal of Applied Meteorology and Climatology 1984, 23, 1065–1099. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP. Journal of Climate 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Gutman, G.G. Vegetation Indices from AVHRR: An Update and Future Prospects. Remote Sensing of Environment 1991, 35, 121–136. [Google Scholar] [CrossRef]
- Gutman, G.G. Satellite Daytime Image Classification for Global Studies of Earth’s Surface Parameters from Polar Orbiters. International Journal of Remote Sensing 1992. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Frey, R. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements. Journal of Geophysical Research: Atmospheres 2008, 113. [Google Scholar] [CrossRef]
- Serio, C.; Lubrano, A.M.; Romano, F.; Shimoda, H. Cloud Detection over Sea Surface by Use of Autocorrelation Functions of Upwelling Infrared Spectra in the 800–900-Cm-1 Window Region. Appl. Opt., AO 2000, 39, 3565–3572. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Yu, K.; Hagolle, O.; Jiang, K.; Geng, X.; Zhao, Y. A Cloud Detection Method Based on a Time Series of MODIS Surface Reflectance Images. International Journal of Digital Earth 2013, 6, 157–171. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P. Two Years of Cloud Cover Statistics Using VAS. Journal of Climate 1989, 2, 380–392. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P.; Woolf, H.M.; Strabala, K.I. Four Years of Global Cirrus Cloud Statistics Using HIRS. Journal of Climate 1994, 7, 1972–1986. [Google Scholar] [CrossRef]
- Turner, J.; Marshall, G.J.; Ladkin, R.S. An Operational, Real-Time Cloud Detection Scheme for Use in the Antarctic Based on AVHRR Data. International Journal of Remote Sensing 2001, 22, 3027–3046. [Google Scholar] [CrossRef]
- Gao, B.-C.; Yang, P.; Li, R.-R. Detection of High Clouds in Polar Regions during the Daytime Using the MODIS 1.375-/Spl Mu/m Channel. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 474–481. [Google Scholar] [CrossRef]
- Kolat, U.; Menzel, W.P.; Olson, E.; Frey, R. Very High Cloud Detection in More than Two Decades of HIRS Data. Journal of Geophysical Research: Atmospheres 2013, 118, 3278–3284. [Google Scholar] [CrossRef]
- Baum, B.A.; Trepte, Q. A Grouped Threshold Approach for Scene Identification in AVHRR Imagery. Journal of Atmospheric and Oceanic Technology 1999, 16, 793–800. [Google Scholar] [CrossRef]
- Baum, B.A.; et al. Imager Clear-Sky Determination and Cloud Detection (Subsystem 4.1). Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document, Vol. III: Cloud Analyses and Radiance Inversions (Subsystem 4); 1995.
- Cayula, J.-F.; Cornillon, P.; Holyer, R.; Peckinpaugh, S. Comparative Study of Two Recent Edge-Detection Algorithms Designed to Process Sea-Surface Temperature Fields. IEEE Transactions on Geoscience and Remote Sensing 1991, 29, 175–177. [Google Scholar] [CrossRef]
- Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery. IEEE Transactions on Geoscience and Remote Sensing 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Shang, H.; Chen, L.; Letu, H.; Zhao, M.; Li, S.; Bao, S. Development of a Daytime Cloud and Haze Detection Algorithm for Himawari-8 Satellite Measurements over Central and Eastern China. Journal of Geophysical Research: Atmospheres 2017, 122, 3528–3543. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y. Generation of New Cloud Masks from MODIS Land Surface Reflectance Products. Remote Sensing of Environment 2013, 133, 21–37. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Wang, J.; Mi, X.; Guo, Y.; Lv, Y.; Yang, Y.; Gan, P.; Zhou, X.; Jia, C.; et al. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) Supported by a Prior Surface Reflectance Database. Journal of Geophysical Research: Atmospheres 2016, 121, 7172–7196. [Google Scholar] [CrossRef]
- Li, E.; Zhang, Z.; Tan, Y.; Wang, Q. A Novel Cloud Detection Algorithm Based on Simplified Radiative Transfer Model for Aerosol Retrievals: Preliminary Result on Himawari-8 Over Eastern China. IEEE Transactions on Geoscience and Remote Sensing 2021, 59, 2550–2561. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Ban, H.-J.; Han, H.-J.; Hong, S. A Maritime Cloud-Detection Method Using Visible and Near-Infrared Bands over the Yellow Sea and Bohai Sea. Remote Sensing 2022, 14, 793. [Google Scholar] [CrossRef]
- An, N.; Shang, H.; Lesi, W.; Ri, X.; Shi, C.; Tana, G.; Bao, Y.; Zheng, Z.; Xu, N.; Chen, L.; et al. A Cloud Detection Algorithm for Early Morning Observations From the FY-3E Satellite. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Bley, S.; Deneke, H. A Threshold-Based Cloud Mask for the High-Resolution Visible Channel of Meteosat Second Generation SEVIRI. Atmospheric Measurement Techniques 2013, 6, 2713–2723. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime Cloud Detection Algorithm Based on a Multitemporal Dataset for GK-2A Imagery. Remote Sensing 2021, 13, 3215. [Google Scholar] [CrossRef]
- Li, X.; Zou, X.; Zhuge, X.; Zeng, M.; Wang, N.; Tang, F. Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme. Journal of Geophysical Research: Atmospheres 2020, 125, e2020JD032631. [Google Scholar] [CrossRef]
- Eyre, J.R.; Menzel, W.P. Retrieval of Cloud Parameters from Satellite Sounder Data: A Simulation Study. Journal of Applied Meteorology (1988-2005) 1989, 28, 267–275. [Google Scholar] [CrossRef]
- Li, J.; Menzel, W.P.; Schreiner, A.J. Variational Retrieval of Cloud Parameters from GOES Sounder Longwave Cloudy Radiance Measurements. Journal of Applied Meteorology (1988-2005) 2001, 40, 312–330. [Google Scholar] [CrossRef]
- Auligné, T. Multivariate Minimum Residual Method for Cloud Retrieval. Part II: Real Observations Experiments. Monthly Weather Review 2014, 142, 4399–4415. [Google Scholar] [CrossRef]
- Xu, D.; Auligné, T.; Descombes, G.; Snyder, C. A Method for Retrieving Clouds with Satellite Infrared Radiances Using the Particle Filter. Geoscientific Model Development 2016, 9, 3919–3932. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X. Test of a Modified Infrared-Only ABI Cloud Mask Algorithm for AHI Radiance Observations. Journal of Applied Meteorology and Climatology 2016, 55, 2529–2546. [Google Scholar] [CrossRef]
- Shenk, W.E.; Holub, R.J.; Neff, R.A. A Multispectral Cloud Type Identification Method Developed for Tropical Ocean Areas with Nimbus-3 MRIR Measurements. Monthly Weather Review 1976, 104, 284–291. [Google Scholar] [CrossRef]
- Simpson, J.J.; Gobat, J.I. Improved Cloud Detection in GOES Scenes over Land. Remote Sensing of Environment 1995, 52, 36–54. [Google Scholar] [CrossRef]
- Simpson, J.J.; Gobat, J.I. Improved Cloud Detection in GOES Scenes over the Oceans. Remote Sensing of Environment 1995, 52, 79–94. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Jackson, J.M. Cloud Detection over Desert Regions Using the 412 Nanometer MODIS Channel. Geophysical Research Letters 2003, 30. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Roskovensky, J.K.; Jackson, J.M.; Heidinger, A.K.; Kopp, T.J.; Pavolonis, M.J.; Frey, R. Automated Cloud Detection and Classification of Data Collected by the Visible Infrared Imager Radiometer Suite (VIIRS). International Journal of Remote Sensing 2005, 26, 4681–4706. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Iisager, B.D.; Kopp, T.J.; Jackson, J.M. Distinguishing Aerosols from Clouds in Global, Multispectral Satellite Data with Automated Cloud Classification Algorithms. Journal of Atmospheric and Oceanic Technology 2008, 25, 501–518. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Mahoney, R.L.; Vermote, E.F.; Kopp, T.J.; Jackson, J.M.; Sei, A.; Iisager, B.D. A Geometry-Based Approach to Identifying Cloud Shadows in the VIIRS Cloud Mask Algorithm for NPOESS. Journal of Atmospheric and Oceanic Technology 2009, 26, 1388–1397. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Iisager, B.D.; Mahoney, R.L. Enhanced Snow and Ice Identification with the VIIRS Cloud Mask Algorithm. Remote Sensing Letters 2013, 4, 929–936. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Holz, R.E.; Dutcher, S.; Griffith, Z. The Continuity MODIS-VIIRS Cloud Mask. Remote Sensing 2020, 12, 3334. [Google Scholar] [CrossRef]
- Chen, P.; Srinivasan, R.; Fedosejevs, G. An Automated Cloud Detection Method for Daily NOAA 16 Advanced Very High Resolution Radiometer Data over Texas and Mexico. Journal of Geophysical Research: Atmospheres 2003, 108. [Google Scholar] [CrossRef]
- McNally, A.P. A Note on the Occurrence of Cloud in Meteorologically Sensitive Areas and the Implications for Advanced Infrared Sounders. Quarterly Journal of the Royal Meteorological Society 2002, 128, 2551–2556. [Google Scholar] [CrossRef]
- McNally, A.P.; Watts, P.D. A Cloud Detection Algorithm for High-Spectral-Resolution Infrared Sounders. Quarterly Journal of the Royal Meteorological Society 2003, 129, 3411–3423. [Google Scholar] [CrossRef]
- Smith, W.L.; Woolf, H.M.; Jacob, W.J. A Regression Method for Obtaining Real-Time Temperature and Geopotential Height Profiles from Satellite Spectrometer Measurements and Its Application to NIMBUS 3 “SIRS” Observations. Monthly Weather Review 1970, 98, 582–603. [Google Scholar] [CrossRef]
- Baum, B.A.; Uttal, T.; Poellot, M.; Ackerman, T.P.; Alvarez, J.M.; Intrieri, J.; Starr, D.O.; Titlow, J.; Tovinkere, V.; Clothiaux, E. Satellite Remote Sensing of Multiple Cloud Layers. Journal of the Atmospheric Sciences 1995, 52, 4210–4230. [Google Scholar] [CrossRef]
- Wind, G.; Platnick, S.; King, M.D.; Hubanks, P.A.; Pavolonis, M.J.; Heidinger, A.K.; Yang, P.; Baum, B.A. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band. Journal of Applied Meteorology and Climatology 2010, 49, 2315–2333. [Google Scholar] [CrossRef]
- Nasiri, S.L.; Baum, B.A. Daytime Multilayered Cloud Detection Using Multispectral Imager Data. Journal of Atmospheric and Oceanic Technology 2004, 21, 1145–1155. [Google Scholar] [CrossRef]
- Chang, F.-L.; Li, Z. A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties. Journal of the Atmospheric Sciences 2005, 62, 3993–4009. [Google Scholar] [CrossRef]
- Romano, F.; Cimini, D.; Rizzi, R.; Cuomo, V. Multilayered Cloud Parameters Retrievals from Combined Infrared and Microwave Satellite Observations. Journal of Geophysical Research: Atmospheres 2007, 112. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Yao, B.; Min, M.; Letu, H.; Yin, Y.; Yung, Y.L. A Multilayer Cloud Detection Algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sensing of Environment 2019, 227, 1–11. [Google Scholar] [CrossRef]
- Minnis, P.; Sun-Mack, S.; Chen, Y.; Yi, H.; Huang, J.; Nguyen, L.; Khaiyer, M.M. Detection and Retrieval of Multi-Layered Cloud Properties Using Satellite Data; Schäfer, K., Comerón, A., Slusser, J.R., Picard, R.H., Carleer, M.R., Sifakis, N.I., Eds.; Bruges, Belgium, 6 October 2005; p. 597909. [Google Scholar]
- McMillin, L.M.; Dean, C. Evaluation of a New Operational Technique for Producing Clear Radiances. Journal of Applied Meteorology and Climatology 1982, 21, 1005–1014. [Google Scholar] [CrossRef]
- Lavanant, L.; Dahoui, M.; Rabier, F.; Auligné, T. Cloud Detection for IASI/AIRS Using Imagery. Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, 28 June-1 July 2004. 2004. Available online: Https://Www.Ecmwf.Int/Sites/Default/Files/Elibrary/2004/10663-Cloud-Detection-Iasiairs-Using-Imagery.Pdf (Accessed on 10 April 2024).
- Heidinger, A.K.; Bearson, N.; Foster, M.J.; Li, Y.; Wanzong, S.; Ackerman, S.; Holz, R.E.; Platnick, S.; Meyer, K. Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers. Journal of Atmospheric and Oceanic Technology 2019, 36, 1331–1342. [Google Scholar] [CrossRef]
- Weisz, E.; Baum, B.A.; Menzel, W.P. Fusion of Satellite-Based Imager and Sounder Data to Construct Supplementary High Spatial Resolution Narrowband IR Radiances. JARS 2017, 11, 036022. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Qu, Y.; McMillin, L.M.; Wolf, W.; Zhou, L.; Divakarla, M. AIRS Near-Real-Time Products and Algorithms in Support of Operational Numerical Weather Prediction. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 379–389. [Google Scholar] [CrossRef]
- Li, J.; Menzel, W.P.; Sun, F.; Schmit, T.J.; Gurka, J. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products. Journal of Applied Meteorology and Climatology 2004, 43, 1083–1094. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Li, J.; Li, Z.; Schmit, T.J.; Bai, W. Advanced Infrared Sounder Subpixel Cloud Detection with Imagers and Its Impact on Radiance Assimilation in NWP. Geophysical Research Letters 2014, 41, 1773–1780. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Li, Y.; Baum, B.A.; Holz, R.E.; Platnick, S.; Yang, P. Retrieval of Cirrus Cloud Optical Depth under Day and Night Conditions from MODIS Collection 6 Cloud Property Data. Remote Sensing 2015, 7, 7257–7271. [Google Scholar] [CrossRef]
- Liu, Y.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in Cloud Detection over the Arctic Using a Satellite Imager and Implications for Observing Feedback Mechanisms. Journal of Climate 2010, 23, 1894–1907. [Google Scholar] [CrossRef]
- Kay, J.E.; L’Ecuyer, T.; Chepfer, H.; Loeb, N.; Morrison, A.; Cesana, G. Recent Advances in Arctic Cloud and Climate Research. Curr Clim Change Rep 2016, 2, 159–169. [Google Scholar] [CrossRef]
- Schweiger, A.J.; Lindsay, R.W.; Key, J.R.; Francis, J.A. Arctic Clouds in Multiyear Satellite Data Sets. Geophysical Research Letters 1999, 26, 1845–1848. [Google Scholar] [CrossRef]
- Gallegos, S.C.; Hawkins, J.D.; Cheng, C.F. Cloud Screening in AVHRR Digital Data over Arctic Regions. Annals of Glaciology 1993, 17, 386–390. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Rossow, W.B.; Randall, D. Overview of Arctic Cloud and Radiation Characteristics. Journal of Climate 1996, 9, 1731–1764. [Google Scholar] [CrossRef]
- Holz, R.E. Arctic Winter High Spectral Resolution Cloud Height Retrievals (2006 - Annual2006_14satmet). In Proceedings of the Conference on Satellite Meteorology and Oceanography, Atlanta, GA, USA, 29 January–2 February 2006. [Google Scholar]
- Karlsson, K.-G.; Dybbroe, A. Evaluation of Arctic Cloud Products from the EUMETSAT Climate Monitoring Satellite Application Facility Based on CALIPSO-CALIOP Observations. Atmospheric Chemistry and Physics 2010, 10, 1789–1807. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS Cloud-Top Property Refinements for Collection 6. Journal of Applied Meteorology and Climatology 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Platnick, S. MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets; 2014.
- Ackerman, S.A. Global Satellite Observations of Negative Brightness Temperature Differences between 11 and 6.7 Μm. Journal of the Atmospheric Sciences 1996, 53, 2803–2812. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J.; Han, W.; Wiscombe, W.J. Correction of Thin Cirrus Path Radiances in the 0.4–1.0 Μm Spectral Region Using the Sensitive 1.375 Μm Cirrus Detecting Channel. Journal of Geophysical Research: Atmospheres 1998, 103, 32169–32176. [Google Scholar] [CrossRef]
- Valovcin, F.R. Spectral Radiance of Snow and Clouds in the Near Infrared Spectral Region; 1978.
- Vane, G.; Green, R.O.; Chrien, T.G.; Enmark, H.T.; Hansen, E.G.; Porter, W.M. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment 1993, 44, 127–143. [Google Scholar] [CrossRef]
- Gao, B.-C.; Goetz, A.F.H.; Wiscombe, W.J. Cirrus Cloud Detection from Airborne Imaging Spectrometer Data Using the 1.38 Μm Water Vapor Band. Geophysical Research Letters 1993, 20, 301–304. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Choe, N.J. Application of 1-38 Μm Imagery for Thin Cirrus Detection in Daytime Imagery Collected over Land Surfaces. International Journal of Remote Sensing 1996, 17, 3325–3342. [Google Scholar] [CrossRef]
- Yamanouchi, T.; Suzuki, K.; Kawaguchi, S. Detection of Clouds in Antarctica from Infrared Multispectral Data of AVHRR. Journal of the Meteorological Society of Japan. Ser. II 1987, 65, 949–962. [Google Scholar] [CrossRef]
- Romano, F.; Cimini, D.; Nilo, S.T.; Di Paola, F.; Ricciardelli, E.; Ripepi, E.; Viggiano, M. The Role of Emissivity in the Detection of Arctic Night Clouds. Remote Sensing 2017, 9, 406. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Aoki, T.; Stamnes, K. Cloud Mask over Snow-/Ice-Covered Areas for the GCOM-C1/SGLI Cryosphere Mission: Validations over Greenland. Journal of Geophysical Research: Atmospheres 2014, 119, 12,287–12,300. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; DeFeis, I.; Borbas, E.E. Diurnal Variation in Sahara Desert Sand Emissivity during the Dry Season from IASI Observations. Journal of Geophysical Research: Atmospheres 2014, 119, 1626–1638. [Google Scholar] [CrossRef]
- Szejwach, G. Determination of Semi-Transparent Cirrus Cloud Temperature from Infrared Radiances: Application to METEOSAT. Journal of Applied Meteorology (1962-1982) 1982, 21, 384–393. [Google Scholar] [CrossRef]
- Ben-Dor, E. A Precaution Regarding Cirrus Cloud Detection from Airborne Imaging Spectrometer Data Using the 1.38 Μm Water Vapor Band. Remote Sensing of Environment 1994, 50, 346–350. [Google Scholar] [CrossRef]
- Minnis, P.; Liou, K.-N.; Takano, Y. Inference of Cirrus Cloud Properties Using Satellite-Observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields. Journal of the Atmospheric Sciences 1993, 50, 1279–1304. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J.; Tanre, D.; Li, R.-R. Distinguishing Tropospheric Aerosols from Thin Cirrus Clouds for Improved Aerosol Retrievals Using the Ratio of 1.38-Μm and 1.24-Μm Channels. Geophysical Research Letters 2002, 29, 36-1–36-4. [Google Scholar] [CrossRef]
- Prabhakara, C.; Fraser, R.S.; Dalu, G.; Wu, M.-L.C.; Curran, R.J.; Styles, T. Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRIS. Journal of Applied Meteorology and Climatology 1988, 27, 379–399. [Google Scholar] [CrossRef]
- Parol, F.; Buriez, J.C.; Brogniez, G.; Fouquart, Y. Information Content of AVHRR Channels 4 and 5 with Respect to the Effective Radius of Cirrus Cloud Particles. Journal of Applied Meteorology and Climatology 1991, 30, 973–984. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Hardy, K.R.; Gao, B.-C. Improved Detection of Optically Thin Cirrus Clouds in Nighttime Multispectral Meteorological Satellite Imagery Using Total Integrated Water Vapor Information. Journal of Applied Meteorology and Climatology 1995, 34, 1161–1168. [Google Scholar] [CrossRef]
- Wang, C.; Yang, P.; Baum, B.A.; Platnick, S.; Heidinger, A.K.; Hu, Y.; Holz, R.E. Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model. Journal of Applied Meteorology and Climatology 2011, 50, 2283–2297. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Yamada, S.; Katagiri, S.; Yang, P.; Okamoto, H. Radiative and Microphysical Properties of Cirrus Cloud Inferred from Infrared Measurements Made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval Method. Journal of Applied Meteorology and Climatology 2014, 53, 1297–1316. [Google Scholar] [CrossRef]
- Meyer, K.; Yang, P.; Gao, B.-C. Optical Thickness of Tropical Cirrus Clouds Derived from the MODIS 0.66and 1.375-/Spl Mu/m Channels. IEEE Trans. Geosci. Remote Sensing 2004, 42, 833–841. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, F.; Chen, L.; Zhang, R.; Mao, K.; Kylling, A.; Ma, Y. Performance Comparison of the MODIS and the VIIRS 1.38 Μm Cirrus Cloud Channels Using libRadtran and CALIOP Data. Remote Sensing of Environment 2018, 206, 363–374. [Google Scholar] [CrossRef]
- Krebs, W.; Mannstein, H.; Bugliaro, L.; Mayer, B. Technical Note: A New Day- and Night-Time Meteosat Second Generation Cirrus Detection Algorithm MeCiDA. Atmospheric Chemistry and Physics 2007, 7, 6145–6159. [Google Scholar] [CrossRef]
- Ewald, F.; Bugliaro, L.; Mannstein, H.; Mayer, B. An Improved Cirrus Detection Algorithm MeCiDA2 for SEVIRI and Its Evaluation with MODIS. Atmospheric Measurement Techniques 2013, 6, 309–322. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Hardy, K.R. Threshold Functions for Automated Cloud Analyses of Global Meteorological Satellite Imagery. International Journal of Remote Sensing 1995, 16, 3665–3680. [Google Scholar] [CrossRef]
- Menzel, W.P.; Wylie, D.P.; Strabala, K.I. Seasonal and Diurnal Changes in Cirrus Clouds as Seen in Four Years of Observations with the VAS. Journal of Applied Meteorology and Climatology 1992, 31, 370–385. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Feofilov, A.G.; Protopapadaki, S.E.; Armante, R. Cloud Climatologies from the Infrared Sounders AIRS and IASI: Strengths and Applications. Atmospheric Chemistry and Physics 2017, 17, 13625–13644. [Google Scholar] [CrossRef]
- Yue, Q.; Liou, K.N.; Ou, S.C.; Kahn, B.H.; Yang, P.; Mace, G.G. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model. Journal of the Atmospheric Sciences 2007, 64, 3827–3842. [Google Scholar] [CrossRef]
- Yue, Q.; Liou, K.N. Cirrus Cloud Optical and Microphysical Properties Determined from AIRS Infrared Spectra. Geophysical Research Letters 2009, 36. [Google Scholar] [CrossRef]
- Wei, H.; Yang, P.; Li, J.; Baum, B.A.; Huang, H.-L.; Platnick, S.; Hu, Y.; Strow, L. Retrieval of Semitransparent Ice Cloud Optical Thickness from Atmospheric Infrared Sounder (AIRS) Measurements. IEEE Transactions on Geoscience and Remote Sensing 2004, 42, 2254–2267. [Google Scholar] [CrossRef]
- Kahn, B.H.; Takahashi, H.; Stephens, G.L.; Yue, Q.; Delanoë, J.; Manipon, G.; Manning, E.M.; Heymsfield, A.J. Ice Cloud Microphysical Trends Observed by the Atmospheric Infrared Sounder. Atmospheric Chemistry and Physics 2018, 18, 10715–10739. [Google Scholar] [CrossRef]
- Someya, Y.; Imasu, R.; Saitoh, N.; Ota, Y.; Shiomi, K. A Development of Cloud Top Height Retrieval Using Thermal Infrared Spectra Observed with GOSAT and Comparison with CALIPSO Data. Atmospheric Measurement Techniques 2016, 9, 1981–1992. [Google Scholar] [CrossRef]
- Eyre, J.R.; Brownscombe, J.L.; Allam, R.J. Detection of Fog at Night Using Advanced Very High Resolution Radiometer (AVHRR) Imagery. Meteorol. Mag 1984, 113, 266–271. [Google Scholar]
- Bendix, J.; Thies, B.; Cermak, J.; Nauß, T. Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study. Weather and Forecasting 2005, 20, 989–1005. [Google Scholar] [CrossRef]
- Bendix, J.; Thies, B.; Nauß, T.; Cermak, J. A Feasibility Study of Daytime Fog and Low Stratus Detection with TERRA/AQUA-MODIS over Land. Meteorological Applications 2006, 13, 111–125. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A Novel Approach to Fog/Low Stratus Detection Using Meteosat 8 Data. Atmospheric Research 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Nilo, S.T.; Romano, F.; Cermak, J.; Cimini, D.; Ricciardelli, E.; Cersosimo, A.; Di Paola, F.; Gallucci, D.; Gentile, S.; Geraldi, E.; et al. Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel. Remote Sensing 2018, 10, 541. [Google Scholar] [CrossRef]
- Xiao, Y.-F.; Zhang, J.; Qin, P. An Algorithm for Daytime Sea Fog Detection over the Greenland Sea Based on MODIS and CALIOP Data. coas 2019, 90, 95–103. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Hong, S. Sea Fog Detection Based on Normalized Difference Snow Index Using Advanced Himawari Imager Observations. Remote Sensing 2020, 12, 1521. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Bullock, T.; Beale, S. Automatic Nighttime Sea Fog Detection Using GOES-16 Imagery. Atmospheric Research 2020, 238, 104712. [Google Scholar] [CrossRef]
- Maul, G.A. Application of GOES Visible-Infrared Data to Quantifying Mesoscale Ocean Surface Temperatures. Journal of Geophysical Research: Oceans 1981, 86, 8007–8021. [Google Scholar] [CrossRef]
- Ebert, E. A Pattern Recognition Technique for Distinguishing Surface and Cloud Types in the Polar Regions. Journal of Applied Meteorology and Climatology 1987, 26, 1412–1427. [Google Scholar] [CrossRef]
- English, S.J.; Eyre, J.R.; Smith, J.A. A Cloud-Detection Scheme for Use with Satellite Sounding Radiances in the Context of Data Assimilation for Numerical Weather Prediction. Quarterly Journal of the Royal Meteorological Society 1999, 125, 2359–2378. [Google Scholar] [CrossRef]
- Smith, J.A.; Taylor, J.P. Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data. Journal of Applied Meteorology and Climatology 2004, 43, 196–210. [Google Scholar] [CrossRef]
- Shi, T.; Clothiaux, E.E.; Yu, B.; Braverman, A.J.; Groff, D.N. Detection of Daytime Arctic Clouds Using MISR and MODIS Data. Remote Sensing of Environment 2007, 107, 172–184. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; Cuomo, V.; Cutillo, L.; Franzese, M.; Murino, L.; Serio, C. Statistical Cloud Detection from SEVIRI Multispectral Images. Remote Sensing of Environment 2008, 112, 750–766. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Romano, F.; Cuomo, V. Physical and Statistical Approaches for Cloud Identification Using Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Data. Remote Sensing of Environment 2008, 112, 2741–2760. [Google Scholar] [CrossRef]
- Mackie, S.; Embury, O.; Old, C.; Merchant, C.J.; Francis, P. Generalized Bayesian Cloud Detection for Satellite Imagery. Part 1: Technique and Validation for Night-Time Imagery over Land and Sea. International Journal of Remote Sensing 2010. [Google Scholar] [CrossRef]
- Murino, L.; Amato, U.; Carfora, M.F.; Antoniadis, A.; Huang, B.; Menzel, W.P.; Serio, C. Cloud Detection of MODIS Multispectral Images. Journal of Atmospheric and Oceanic Technology 2014, 31, 347–365. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; Gregoire, G. Independent Component Discriminant Analysis. Int. J. Math. 2003, 3, 735–753. [Google Scholar]
- Mitchell, T.M. Machine Learning; McGraw-Hill series in Computer Science; Nachdr; McGraw-Hill: New York, 2013; ISBN 978-0-07-042807-2. [Google Scholar]
- Ghosh, A.; Pal, N.R.; Das, J. A Fuzzy Rule Based Approach to Cloud Cover Estimation. Remote Sensing of Environment 2006, 100, 531–549. [Google Scholar] [CrossRef]
- Musial, J.P.; Hüsler, F.; Sütterlin, M.; Neuhaus, C.; Wunderle, S. Probabilistic Approach to Cloud and Snow Detection on Advanced Very High Resolution Radiometer (AVHRR) Imagery. Atmospheric Measurement Techniques 2014, 7, 799–822. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Mittaz, J.P.D.; Embury, O.; Eastwood, S.; Merchant, C.J. Bayesian Cloud Detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Data. Remote Sensing 2018, 10, 97. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Embury, O.; Maidment, R.I.; Merchant, C.J. Bayesian Cloud Detection over Land for Climate Data Records. Remote Sensing 2022, 14, 2231. [Google Scholar] [CrossRef]
- Lamei, N.; Hutchison, K.D.; Crawford, M.M.; Khazenie, N. Cloud-Type Discrimination via Multispectral Textural Analysis. Optical Engineering 1994, 33, 1303–1313. [Google Scholar] [CrossRef]
- Miller, S.W.; Emery, W.J. An Automated Neural Network Cloud Classifier for Use over Land and Ocean Surfaces. Journal of Applied Meteorology and Climatology 1997, 36, 1346–1362. [Google Scholar] [CrossRef]
- Logar, A.; Corwin, E.; Alexander, J.; Lloyd, D.; Berendes, T.; Welch, R. A Hybrid Histogram/Neural Network Classifier for Creating Global Cloud Masks. International Journal of Remote Sensing 1997, 18, 847–869. [Google Scholar] [CrossRef]
- Bankert, R.L. Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network. Journal of Applied Meteorology and Climatology 1994, 33, 909–918. [Google Scholar] [CrossRef]
- Lewis, H.G.; Cote, S.; Tatnall, A.R.L. A Neural Network Approach to Cloud Classification from Multi-Temporal Satellite Imagery. In Proceedings of the 1995 Fourth International Conference on Artificial Neural Networks, June 1995; pp. 116–121. [Google Scholar]
- Lee, Y.; Wahba, G.; Ackerman, S.A. Cloud Classification of Satellite Radiance Data by Multicategory Support Vector Machines. Journal of Atmospheric and Oceanic Technology 2004, 21, 159–169. [Google Scholar] [CrossRef]
- Bankert, R.L.; Wade, R.H. Optimization of an Instance-Based GOES Cloud Classification Algorithm. Journal of Applied Meteorology and Climatology 2007, 46, 36–49. [Google Scholar] [CrossRef]
- Sun, L.; Yang, X.; Jia, S.; Jia, C.; Wang, Q.; Liu, X.; Wei, J.; Zhou, X. Satellite Data Cloud Detection Using Deep Learning Supported by Hyperspectral Data. International Journal of Remote Sensing 2020, 41, 1349–1371. [Google Scholar] [CrossRef]
- Berendes, T.A.; Kuo, K.S.; Logar, A.M.; Corwin, E.M.; Welch, R.M.; Baum, B.A.; Pretre, A.; Weger, R.C. A Comparison of Paired Histogram, Maximum Likelihood, Class Elimination, and Neural Network Approaches for Daylight Global Cloud Classification Using AVHRR Imagery. Journal of Geophysical Research: Atmospheres 1999, 104, 6199–6213. [Google Scholar] [CrossRef]
- Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking. Remote Sensing 2015, 7, 1529–1539. [Google Scholar] [CrossRef]
- Reguiegue, M.; Chouireb, F. Automatic Day Time Cloud Detection over Land and Sea from MSG SEVIRI Images Using Three Features and Two Artificial Intelligence Approaches. SIViP 2018, 12, 189–196. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Gatebe, C.; Tanikawa, T.; Hori, M.; Shimada, R.; Aoki, T.; Stamnes, K. New Neural Network Cloud Mask Algorithm Based on Radiative Transfer Simulations. Remote Sensing of Environment 2018, 219, 62–71. [Google Scholar] [CrossRef]
- Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a Support Vector Machine Based Cloud Detection Method for MODIS with the Adjustability to Various Conditions. Remote Sensing of Environment 2018, 205, 390–407. [Google Scholar] [CrossRef]
- Hadizadeh, M.; Rahnama, M.; Hesari, B. Verification of Two Machine Learning Approaches for Cloud Masking Based on Reflectance of Channel IR3.9 Using Meteosat Second Generation over Middle East Maritime. International Journal of Remote Sensing 2019, 40, 8899–8913. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Sha, D.; Lee, T.; Duffy, D.Q.; Walter, J.; Yang, C. Hyperspectral Infrared Sounder Cloud Detection Using Deep Neural Network Model. IEEE Geoscience and Remote Sensing Letters 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Di, D.; Yang, Y.; Zhou, C.; Hu, X.; Sohn, B.-J. A Machine Learning-Based Cloud Detection Algorithm for the Himawari-8 Spectral Image. Adv. Atmos. Sci. 2022, 39, 1994–2007. [Google Scholar] [CrossRef]
- Andreev, A.I.; Shamilova, Yu.A. Cloud Detection from the Himawari-8 Satellite Data Using a Convolutional Neural Network. Izv. Atmos. Ocean. Phys. 2021, 57, 1162–1170. [Google Scholar] [CrossRef]
- Matsunobu, L.M.; Pedro, H.T.C.; Coimbra, C.F.M. Cloud Detection Using Convolutional Neural Networks on Remote Sensing Images. Solar Energy 2021, 230, 1020–1032. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, Y.; Wang, L.; Liu, Q.; Wang, J. U-High Resolution Network (U-HRNet): Cloud Detection with High-Resolution Representations for Geostationary Satellite Imagery. International Journal of Remote Sensing 2021, 42, 3511–3533. [Google Scholar] [CrossRef]
- Wang, C.; Platnick, S.; Meyer, K.; Zhang, Z.; Zhou, Y. A Machine-Learning-Based Cloud Detection and Thermodynamic-Phase Classification Algorithm Using Passive Spectral Observations. Atmospheric Measurement Techniques 2020, 13, 2257–2277. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, P.; Zhou, Z.; Zhao, X. Daytime Sea Fog Detection Based on a Two-Stage Neural Network. Remote Sensing 2022, 14, 5570. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Chi, Y.; Yan, X.; Fan, H.; Yang, X.; Ma, Z.; Wang, Q.; Zhao, C. Machine Learning-Based Retrieval of Day and Night Cloud Macrophysical Parameters over East Asia Using Himawari-8 Data. Remote Sensing of Environment 2022, 273, 112971. [Google Scholar] [CrossRef]
- Whitburn, S.; Clarisse, L.; Crapeau, M.; August, T.; Hultberg, T.; Coheur, P.F.; Clerbaux, C. A CO2-Independent Cloud Mask from Infrared Atmospheric Sounding Interferometer (IASI) Radiances for Climate Applications. Atmospheric Measurement Techniques 2022, 15, 6653–6668. [Google Scholar] [CrossRef]
- Ma, N.; Sun, L.; Zhou, C.; He, Y.; Dong, C.; Qu, Y.; Yu, H. A Priori Land Surface Reflectance Synergized With Multiscale Features Convolution Neural Network for MODIS Imagery Cloud Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2023, 16, 3294–3308. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, M.; Wang, L.; Qin, W. A New Cloud and Haze Mask Algorithm From Radiative Transfer Simulations Coupled With Machine Learning. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Paola, F.D.; Cimini, D.; Larosa, S.; Mastro, P.; Masiello, G.; Serio, C.; Hultberg, T.; August, T.; Romano, F. A Feedforward Neural Network Approach for the Detection of Optically Thin Cirrus From IASI-NG. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Maestri, T.; Cossich, W.; Sbrolli, I. Cloud Identification and Classification from High Spectral Resolution Data in the Far Infrared and Mid-Infrared. Atmospheric Measurement Techniques 2019, 12, 3521–3540. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Jiang, L.; Su, X.; Chen, F. A Review on Deep Learning Techniques for Cloud Detection Methodologies and Challenges. SIViP 2021, 15, 1527–1535. [Google Scholar] [CrossRef]
- Gupta, R.; Nanda, S.J. Cloud Detection in Satellite Images with Classical and Deep Neural Network Approach: A Review. Multimed Tools Appl 2022, 81, 31847–31880. [Google Scholar] [CrossRef]
- Mahajan, S.; Fataniya, B. Cloud Detection Methodologies: Variants and Development—a Review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef]
- Sreerekha, T.R.; Buehler, S.A.; O’Keeffe, U.; Doherty, A.; Emde, C.; John, V.O. A Strong Ice Cloud Event as Seen by a Microwave Satellite Sensor: Simulations and Observations. Journal of Quantitative Spectroscopy and Radiative Transfer 2008, 109, 1705–1718. [Google Scholar] [CrossRef]
- Bennartz, R.; Bauer, P. Sensitivity of Microwave Radiances at 85–183 GHz to Precipitating Ice Particles. Radio Science 2003, 38. [Google Scholar] [CrossRef]
- English, S.J.; Renshaw, R.J.; Dibben, P.C.; EYRE, J.R. The AAPP Module for Identifying Precipitation, Ice Cloud, Liquid Water and Surface Type on the AMSU-A Grid. In Proceedings of the. In Proceedings of the 9th International TOVS Study Conference, Igls, Austria, 20–26 February 1997; 1997; pp. 20–26. [Google Scholar]
- Qin, Z.; Zou, X. Development and Initial Assessment of a New Land Index for Microwave Humidity Sounder Cloud Detection. J Meteorol Res 2016, 30, 12–37. [Google Scholar] [CrossRef]
- Alan Geer, P.B. Assimilating AMSU-A Temperature Sounding Channels in the Presence of Cloud and Precipitation. Available online: https://www.ecmwf.int/en/elibrary/74557-assimilating-amsu-temperature-sounding-channels-presence-cloud-and-precipitation (accessed on 10 April 2024).
- Heather Lawrence, N.B. An Evaluation of FY-3C MWHS-2 at ECMWF. Available online: https://www.ecmwf.int/en/elibrary/75346-evaluation-fy-3c-mwhs-2-ecmwf (accessed on 11 April 2024).
- Peter Weston, A.G. Investigations into the Assimilation of AMSU-A in the Presence of Cloud and Precipitation. Available online: https://www.ecmwf.int/en/elibrary/81118-investigations-assimilation-amsu-presence-cloud-and-precipitation (accessed on 11 April 2024).
- Zou, X.; Qin, Z.; Weng, F. Impacts from Assimilation of One Data Stream of AMSU-A and MHS Radiances on Quantitative Precipitation Forecasts. Quarterly Journal of the Royal Meteorological Society 2017, 143, 731–743. [Google Scholar] [CrossRef]
- Aires, F.; Marquisseau, F.; Prigent, C.; Sèze, G. A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations. Monthly Weather Review 2011, 139, 2347–2366. [Google Scholar] [CrossRef]
- Lindskog, M.; Dybbroe, A.; Randriamampianina, R. Use of Microwave Radiances from Metop-C and Fengyun-3 C/D Satellites for a Northern European Limited-Area Data Assimilation System. Adv. Atmos. Sci. 2021, 38, 1415–1428. [Google Scholar] [CrossRef]
- Wu, X.; Shi, Z. Utilizing Multilevel Features for Cloud Detection on Satellite Imagery. Remote Sensing 2018, 10, 1853. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Qin, Z. Development and Evaluation of a New Method for AMSU-A Cloud Detection over Land. Remote Sensing 2021, 13, 3646. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, Z.; Li, J. Impact of the One-Stream Cloud Detection Method on the Assimilation of AMSU-A Data in GRAPES. Remote Sensing 2020, 12, 3842. [Google Scholar] [CrossRef]
- Han, H.; Li, J.; Goldberg, M.; Wang, P.; Li, J.; Li, Z.; Sohn, B.-J.; Li, J. Microwave Sounder Cloud Detection Using a Collocated High-Resolution Imager and Its Impact on Radiance Assimilation in Tropical Cyclone Forecasts. Monthly Weather Review 2016, 144, 3937–3959. [Google Scholar] [CrossRef]
- Buehler, S.A.; Kuvatov, M.; Sreerekha, T.R.; John, V.O.; Rydberg, B.; Eriksson, P.; Notholt, J. A Cloud Filtering Method for Microwave Upper Tropospheric Humidity Measurements. Atmospheric Chemistry and Physics 2007, 7, 5531–5542. [Google Scholar] [CrossRef]
- Hong, G.; Heygster, G.; Miao, J.; Kunzi, K. Detection of Tropical Deep Convective Clouds from AMSU-B Water Vapor Channels Measurements. Journal of Geophysical Research: Atmospheres 2005, 110. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Christopher, S.A. Effect of Cold Clouds on Satellite Measurements near 183 GHz. Journal of Geophysical Research: Atmospheres 2002, 107, AAC 3-1–AAC 3-8. [Google Scholar] [CrossRef]
- Werner, F.; Livesey, N.J.; Schwartz, M.J.; Read, W.G.; Santee, M.L.; Wind, G. Improved Cloud Detection for the Aura Microwave Limb Sounder (MLS): Training an Artificial Neural Network on Colocated MLS and Aqua MODIS Data. Atmospheric Measurement Techniques 2021, 14, 7749–7773. [Google Scholar] [CrossRef]
- Larosa, S.; Cimini, D.; Gallucci, D.; Di Paola, F.; Nilo, S.T.; Ricciardelli, E.; Ripepi, E.; Romano, F. A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1. Remote Sensing 2023, 15, 1798. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. Journal of Atmospheric and Oceanic Technology 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission. Bulletin of the American Meteorological Society 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Heidinger, A.K.; Kopp, T.J.; Iisager, B.D.; Frey, R.A. Comparisons between VIIRS Cloud Mask Performance Results from Manually Generated Cloud Masks of VIIRS Imagery and CALIOP-VIIRS Match-Ups. International Journal of Remote Sensing 2014, 35, 4905–4922. [Google Scholar] [CrossRef]
- Kopp, T.J.; Thomas, W.; Heidinger, A.K.; Botambekov, D.; Frey, R.A.; Hutchison, K.D.; Iisager, B.D.; Brueske, K.; Reed, B. The VIIRS Cloud Mask: Progress in the First Year of S-NPP toward a Common Cloud Detection Scheme. Journal of Geophysical Research: Atmospheres 2014, 119, 2441–2456. [Google Scholar] [CrossRef]
| Cloud Product | Truth Data Source | Instruments | Accuracy/Comments |
| Amount (probability of correct typing) | Satellite-based | CALIOP & VIIRS imagery | >98 % (global and regional) |
| Cloud Top Phase (ice, water, mixed) | Satellite-based | CALIOP & VIIRS imagery | TBD |
| Cloud Top Height | Ground-based & Satellite-based | Height: MPL & CALIOP for cloud Boundaries | Height: ~30 m |
| Cloud Top Temp and Pressure inferred | Satellite-based | CALIOP | Temp for mean COT of cloud layer |
| Cloud Optical Prop. | Ground-based | Multi-Filter Rotating Shadow band Radiometer (MFRSR) measurements | Inferred with CEPS error >> COT |
| Cloud Base Height | Ground-based | Lidar Model CL31 Vaisala Ceilometer | Height: ~10 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
