Submitted:
27 May 2024
Posted:
27 May 2024
You are already at the latest version
Abstract
Keywords:
1. Purpose
2. Introduction
3. Structure of the Paper
4. Tools
4.1. Dedekind’s Criterion
- 1.
- p does not divide the index .
- 2.
- For every , either or and does not divide in .
4.2. The Field Index
4.3. Newton Polygon Method
- 1.
- We haveThe equality holds if is p-regular.
- 2.
- If is p-regular, thenis the factorization of into powers of prime ideals of lying above p, where , is the length of , is the ramification degree of , and is the residue degree of the prime ideal over p.
4.4. Algorithmic Methods
5. Results
5.1. Pure Fields, Trinomials, Quadrinomials, etc.
- Z. S. Aygin and K. D. Nguyen [8]
- L. El Fadil [39]
- L. El Fadil [41]
- L. El Fadil [43]
- L. El Fadil [33]
- L. El Fadil [35]
- L. El Fadil, H. Ben Yakkou and J. Didi [51]
- L. El Fadil, H. Choulli and O. Kchit [52]
- L. El Fadil and M. Faris [53]
- H. Ben Yakkou and O.Kchit [18]
- L. El Fadil [36]
- L. El Fadil [42]
- H. Ben Yakkou, A. Chillali and L. El Fadil [15]
- L. El Fadil [38]
- L. El Fadil and A. Najim [40]
- L. El Fadil and O. Kchit [60]
- L. El Fadil [44]
- H. Ben Yakkou and L. El Fadil [16]
- L. El Fadil [34] , m composite
- L. El Fadil and I. Gaál [56] , m composite
- L. El Fadil [39]
- L. El Fadil and I. Gaál [54]
- H. Smith [151]
- L. Jones [128] showed that there exist exactly three distinct monogenic trinomials of the form with Galois
- A. Jakhar, S. Kaur and S. Kumar [101]
- L. El Fadil [45]
- L. El Fadil [47]
- L. El Fadil [48]
- A. Jakhar and S. Kumar [107]
- L. El Fadil [46]
- L. El Fadil and O. Kchit [57]
- A. Jakhar and S. Kaur [102]
- R. Ibarra, H. Lembeck, M. Ozaslan, H. Smith and K. E. Stange [91] for
- L. El Fadil and O. Kchit [58]
- H. Ben Yakkou [9]
- A. Jakhar, S. Kaur and S. Kumar [105]
- H. Ben Yakkou [10]
- H. Ben Yakkou and B. Boudine [14]
- A. Jakhar, S. Kaur and S. Kumar [104]
- L. Jones [129] considered monogenic trinomials of type with prescribed Galois group
- O. Kchit [135]
- H. Ben Yakkou and P. Tiebekabe [19]
- L. El Fadil and O. Kchit, [59]
- L. El Fadil and O. Kchit [61]
- H. Ben Yakkou [11]
- H. Ben Yakkou and L. El Fadil [17]
- A. Jakhar and S. Kumar [108] gave explicit conditions for the non-monogenity of
- A. Jakhar [94]
- B. Jhorar and S. K. Khanduja [97] , showed also that is monogenic if and only if is square-free
- H. Ben Yakkou [12]
- L. El Fadil [49]
- A. Jakhar [93]
- A. Jakhar, S. Khanduja and N. Sangwan [99]
- A. Jakhar, S. Khanduja and N. Sangwan [100] gave necessary and sufficient conditions in terms of for a given prime p to divide where is a root of
- L. Jones [121] considered monogenic reciprocal trinomials of type
- L. Jones [114] showed that there are infinitely many primes p such that is monogenic with Galois group
- L. Jones [115] showed that is monogenic, if and only if its discriminant is squarefree
- L. Jones and T. Phillips [130] showed that is monogenic infinitely often
- L. Jones and D. White [131] found new infinite families of monogenic trinomials of type
- T. A. Gassert, H. Smith and K. E. Stange [80]
- H. Ben Yakkou [13]
- J. Harrington and L. Jones [88] constructed new families of quartic polynomials with various Galois groups, which are monogenic infinitely often
- A. Jakhar and R. Kalwaniya [95]
- L. Jones [129]
- L. Jones [120]
- A. Jakhar, S. Kaur and S. Kumar [103]
- A. Jakhar, S. Kaur and S. Kumar [106]
- A. Jakhar [92]
- L. Jones [113] constructed infinite families of reciprocal monogenic polynomials with prescribed Galois group
- L. Jones [116] showed that if and then is monogenic for infinitely many primes p
- L. Jones [109]
- L. Jones [110] with , when is monic and
- L. Jones [118] constructed reciprocal monogenic quintinomials of type
- L. Jones [119] considered infinite families of monogenic quadrinomials, quintinomials and sextinomials
5.2. The Relative Case
- M. Sahmoudi and M. E. Charkani [148] considered relative pure cyclic extensions
- A. Soullami, M. Sahmoudi and O. Boughaleb [150] over number fields
- O. Boughaleb, A. Soullami and M. Sahmoudi [23] over number fields
- H. Smith [152] relative radical extensions
- S. K. Khanduja and B. Jhorar [138] give equivalent versions of Dedekind criterion in general rings
- R. Sekigawa [149] constructs an infinite number of cyclic relative extensions of prime degree that are relative monogenic
5.3. Composite Polynomials
- J. Harrington and L. Jones [84] gave conditions for the monogenity of the composition of and
- A. Jakhar, R. Kalwaniya and P. Yadav [96] consider monogenity of , the composition of and using a refined version of the Dedekind criterion
- J. Harrington and L. Jones [85] considers monogenity of , where is the cyclotomic polynomial of index N
- L. Jones [112] considers monotonically stable polynomial of type
- L. Jones [117] constructs infinite collections of monic Eisenstein polynomials such that are monogenic for all integers and
- L.Jones [125] considers monogenity of where the Shanks polynomial
- L. Jones [126] considers monogenity of where is the characteristic polynomial of an Nth order linear recurrence
- J. Harrington and L. Jones [86] give conditions for the monogenity of where
- S. Kaur, S. Kumar and L. Remete [134] consider monogenity of where
5.4. Connection with Primes
5.5. Number of Generators of Power Integral Bases
- M. Kang and D. Kim [132] considered the number of monogenic orders in pure cubic fields
- J. H. Evertse [31] considered "rationally monogenic" orders of number fields
- S. Akhtari [2] showed that a positive proportion of cubic number fields, when ordered by their discriminant, are not monogenic
- L. Alpöge, M. Bhargava, A. Shnidman [4] showed that if isomorphism classes of cubic fields are ordered by absolute discriminant, then a positive proportion are not monogenic and yet have no local obstruction to being monogenic (that is, the index form equations represent or mod p for all primes p)
- M. Bhargava [20] proves that an order O in a quartic number field can have at most 2760 inequivalent generators of power integral bases (and at most 182 if is suffciently large). The problem is reduced to counting the number solutions of cubic and quartic Thue equations, somewhat analogously like described in Section 4.4, using a refined enumeration
- S. Akhtari [3] gives another proof of Bhargava’s result [20]: she uses the more direct approach of Section 4.4 and applies sharp bounds for the numbers of solutions of cubic and quartic Thue equations
5.6. Miscellaneous
- H. H. Kim [139] showed that the number of monogenic dihedral quartic extensions with absolute discriminant is of size
- N. Khan, S. Katayama, T. Nakahara and T. Uehara [137] proved that the composite of a totally real field with a cyclotomic field of odd conductor or even has no power integral basis
- N. Khan, T. Nakahara and H. Sekiguchi [136] proved that there are exactly three monogenic cyclic sextic fields of prime-power conductor, namely and the maximal real subfield of
- D. Gil-Mun̆oz and M. Tinková [81] considered the indices of non-monogenic simplest cubic polynomials
- L. Jones [122] considered infinite families of monogenic Pisot (anti-Pisot) polynomials
- A. Jakhar and S. K. Khanduja [98] gave lower bounds for the p-index of a polynomial
- M. Castillo, [25] showed e.g. that is monogenic, where and for
- T. Kashio and R. Sekigawa [133] showed that a monogenic normal cubic field is a simplest cubic field for some parameter
- F. E. Tanoé [153] considered monogenity of biquadratic fields using a special integer basis
- Aruna C. and P. Vanchinathan [7] showed that an infinite number of so called exceptional quartic fields are monogenic
5.7. Explicit Calculations, Algorithms
- Z. Franŭsić and B. Jadrijević [63] calculated generators of relative power integral bases in a family of quartic extensions of imaginary quadratic fields
- I. Gaál [65] showed that index form equations in composites of a totally real cubic field and a complex quadratic field can be reduced to absolute Thue equations
- I. Gaál [68] showed that the index form equations in composites of a totally real field and a complex quadratic field can be reduced to the absolute index form equations of the totally real field
- I. Gaál [66] considered generators of power integral bases in fields generated by monogenic trinomials of type
- I. Gaál [67] considered generators of power integral bases in fields generated by monogenic binomial compositions of type
- I. Gaál [70] gave an efficient method to determine all generators of power integral bases of pure sextic fields
- I. Gaál and L. Remete [78] considered monogenity in octic fields of type
- I. Gaál [69] determined "small" solutions of the index form equation in , for such that is monogenic (1521 fields) Experience: is the only generator of power integral bases
- I. Gaál [71] determined "small" solutions of index form equations in , such that is monogenic (2024 fields) Experience: is the only generator of power integral bases, except for
6. Further Research
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- S. Ahmad, T. Nakahara and M. Syed, Power integral bases for certain pure sextic fields, Int. J. Number Theory 10(2014), 2257-2265.
- S. Akhtari, Counting monogenic cubic orders, in: Nathanson, Melvyn B. (ed.), Combinatorial and additive number theory III. Papers based on talks given at the CANT 2017 and 2018 workshops, New York, NY, USA, May 2017 and May 2018. Cham: Springer. Springer Proc. Math. Stat. 297(2020), 13-24.
- S. Akhtari, Quartic index form equations and monogenizations of quartic orders, Essent. Number Theory 1(2022), 57-72.
- L. Alpöge, M. Bhargava and A. Shnidman, A positive proportion of cubic fields are not monogenic yet have no local obstruction to being so, arXiv:2011.01186 (2020).
- S. Arpin, S. Bozlee, L. Herr and H. Smith, The scheme of monogenic generators I: Representability, Res. Number Theory 9(2023), Paper No. 14, 33 p.
- S. Arpin, S. Bozlee, L. and H. Smith, The scheme of monogenic generators. II: Local monogenicity and twists, Res. Number Theory 9(2023), Paper No. 43, 39 p.
- Aruna C. and P. Vanchinathan, Exceptional Quartics are Ubiquitous, arXiv:2306.17556 (2023).
- Z. S. Aygin and K. D. Nguyen, Monogenic pure cubics, J. Number Theory 219, 356-367, corregindum J. Number Theory 242(2023), 244.
- H. Ben Yakkou, The index of the septic number field defined by , arXiv:2206.14345 (2022).
- H. Ben Yakkou, On monogenity of certain number fields defined by , Acta Math. Hung. 166(2022), 614-623.
- H. Ben Yakkou, On monogenity of certain number fields defined by , arXiv:2203.10413 (2022).
- H. Ben Yakkou, On nonmonogenic number fields defined by trinomials of type , Rocky Mt. J. Math. 53(2023), 685-699.
- H. Ben Yakkou, On indices and monogenity of quartic number fields defined by quadrinomials, arXiv:2401.12782 (2024).
- H. Ben Yakkou and B. Boudine, On the index of the octic number field defined by , Acta Math. Hung. 170(2023), 585-607.
- H. Ben Yakkou, A. Chillali and L. El Fadil, On power integral bases for certain pure number fields defined by , Commun. Algebra 49(2021), 2916-2926.
- H. Ben Yakkou and L. El Fadil, On monogenity of certain pure number fields defined by , Int. J. Number Theory 17(2021), 2235-2242.
- H. Ben Yakkou and L. El Fadil, On monogenity of certain number fields defined by trinomials, Funct. Approximatio, Comment. Math. 67(2022), 199-221.
- H. Ben Yakkou and O.Kchit, On power integral bases of certain pure number fields defined by , Sao Paulo J. Math. Sci. 16(2022), 1072-1079.
- H. Ben Yakkou and P. Tiebekabe, On common index divisors and monogenity of of the nonic number field defined by a trinomial , arXiv:2212.05029 (2022).
- M. Bhargava, On the number of monogenizations of a quartic order (with an appendix by Shabnam Akhtari), Publ. Math. Debr. 100(2022), 513-531.
- B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc., 24(1972), 385–394.
- W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System. I. The User Language. J. Symbolic Comput. 24(1997), 235-265.
- O. Boughaleb, A. Soullami and M. Sahmoudi, On relative monogeneity of a family of number fields defined by , Bol. Soc. Mat. Mex., III. Ser. 29(2023), Paper No. 5, 13 p.
- B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, S. M. Watt (eds.), MAPLE, Reference Manual, Watcom Publications, Waterloo, Canada, 1988.
- M. Castillo, A dynamical characterization for monogenity at every level of some infinite 2-towers, Canad. Math. Bull. 65(2022), 806-814.
- M. E. Charkani and A. Deajim, Generating a power basis over a Dedekind ring, J. Number Theory 132(2012), 2267-2276.
- H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag Berlin Heidelberg, 1993.
- A. Deajim and L. El Fadil, A note on generating a power basis over a Dedekind ring, Stud. Sci. Math. Hung. 58(2021), 367-370.
- R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen 23 (1878) 1–23.
- H. T. Engstrom, On the common index divisor of an algebraic number field, Trans. Am. Math. Soc. 32(1930), 223-237.
- J. H. Evertse, Orders with few rational monogenizations, Acta Arith.(2023) 210, 307-335.
- L. El Fadil, On Newton polygon techniques and factorization of polynomial over Henselian valued fields, J. Algebra and Appl 19(10), 9p. (2020), Article ID 2050188.
- L. El Fadil, On power integral bases for certain pure number fields defined by , Stud. Sci. Math. Hung. 57(2020), 397-407.
- L. El Fadil, On integral bases and monogeneity of pure sextic number fields with non-squarefree coefficients, J. Number Theory 228(2021), 375-389.
- L. El Fadil, On power integral bases for certain pure number fields defined by , Stud. Sci. Math. Hung. 58(2021), 371-380.
- L. El Fadil, On power integral bases for certain pure number fields defined by , Acta Arith. 201(2021), 269-280.
- L. El Fadil, A note on monogenity of pure number fields, arXiv:2106.00004, (2021).
- L. El Fadil, On power integral bases of certain pure number fields defined by , Colloq. Math. 169(2022), 307-317.
- L. El Fadil, On power integral bases for certain pure number fields, Publ. Math. Debr. 100(2022), 219-231.
- L. El Fadil and A. Najim, On monogenity of certain pure number fields defined by , Acta Sci. Math. 88(2022), 581-594.
- L. El Fadil, On power integral bases for certain pure number fields defined by , Commentat. Math. Univ. Carol. 63(2022), 11-19.
- L. El Fadil, On power integral bases for certain pure sextic fields, Bol. Soc. Parana. Mat. 40(2022), Paper No. 143, 7 p.
- L. El Fadil, On monogenity of certain pure number fields defined by , Sao Paulo J. Math. Sci. 16(2022), 1063-1071.
- L. El Fadil, On monogenity of certain pure number fields defined by , arXiv:2204.02436 (2022).
- L. El Fadil, On common index divisors and monogenity of certain number fields defined by , Commun. Algebra 50(2022), 3102-3112.
- L. El Fadil, On non monogenity of certain number fields defined by trinomials , J. Number Theory 239(2022), 489-500.
- L. El Fadil, On the index divisors and monogenity of number fields defined by , Quaest. Math. 46(2023), 2355-2365.
- L. El Fadil, On common index divisor and monogenity of certain number fields defined by trinomials , Quaest. Math. 46(2023), 1609-1627.
- L. El Fadil, On index and monogenity of certain number fields defined by trinomials. Math. Slovaca 73(2023), 861-870.
- L. El Fadil, A note on indices of quartic number fields defined by trinomials , Commun. Algebra 52(2024), 1349-1359.
- L. El Fadil, H. Ben Yakkou and J. Didi, On power integral bases of certain pure number fields defined by , Bol. Soc. Mat. Mex., III. Ser. 27(2021), Paper No. 81, 10 p.
- L. El Fadil, H. Choulli and O. Kchit, On monogenity of certain pure number fields defined by , Acta Math. Vietnam. 48(2023), 283-293.
- L. El Fadil and M. Faris, On power integral bases of certain pure number fields defined by , Rev. Unión Mat. Argent. 65(2023), 197-211.
- L. El Fadil and I. Gaál, On the monogenity of quartic number fields defined by , arXiv:2204.03226 (2022).
- L. El Fadil and I. Gaál, On integral bases and monogenity of pure octic number fields with non-square free parameters, arXiv:2202.04417.
- L. El Fadil and I. Gaál, Integral bases and monogenity of pure number fields with non-square free parameters up to degree 9, Tatra Mt. Math. Publ. 83(2023), 61-86.
- L. El Fadil and O. Kchit, On index divisors and monogenity of certain sextic number fields defined by , arXiv:2206.05529 (2022).
- L. El Fadil and O. Kchit, On index divisors and monogenity of certain septic number fields defined by , Commun. Algebra 51(2023), 2349-2363.
- L. El Fadil and O. Kchit, The index of certain nonic number fields defined by , arXiv:2310.13509, (2023).
- L. El Fadil and O. Kchit, On monogenity of certain pure number fields defined by , Bol. Soc. Parana. Mat. 41(2023), Paper No. 138, 9 p.
- L. El Fadil and O. Kchit, On index divisors and monogenity of certain number fields defined by , Ramanujan J. 63(2024), 451-482.
- L. El Fadil, J. Montes and E. Nart, Newton polygons and p-integral bases of quartic number fields, J. Algebra and Appl. 11(4), 33p. (2012), Article ID 1250073.
- Z. Franŭsić and B. Jadrijević, Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields Publ. Math. Debrecen 92(2018), 293ű-315.
- I. Gaál, Diophantine equations and power integral bases. Theory and algorithms. 2nd edition, Birkhäuser, Boston, 2019.
- I.Gaál, Monogenity in totally complex sextic fields, revisited, JP J. Algebra Number Theory Appl. 47(2020), 87-98.
- I. Gaál, An experiment on the monogenity of a family of trinomials, JP J. Algebra Number Theory Appl. 51(2021), 97-111.
- I. Gaál, On the monogenity of certain binomial compositions, JP J. Algebra Number Theory Appl. 57(2022), 1-16.
- I. Gaál, Monogenity in totally real extensions of imaginary quadratic fields with an application to simplest quartic fields Acta Sci. Math. 89(2023), 3-12.
- I. Gaál, A note on the monogenity of totally complex pure sextic fields, JP J. Algebra Number Theory Appl. 60(2023), 85-96.
- I. Gaál, Calculating generators of power integral bases in pure sextic fields, Funct. Approximatio, Comment. Math. 70(2024), 85-100.
- I. Gaál, On the monogenity of totally complex pure octic fields, arXiv:2402.09293 (2024).
- I. Gaál. A note on the monogenity of some trinomials of type JP J. Algebra Number Theory Appl. 63(2024), 265-279.
- I. Gaál, Calculating power integral bases in some quartic fields corresponding to monogenic families of polynomials, arXiv:2405.13429 (2024).
- I. Gaál, A. Petho and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Comput., 16(1993), 563–584.
- I. Gaál, A. Petho and M. Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms – with an application to index form equations in quartic number fields, J. Number Theory, 57(1996), 90–104.
- I. Gaál and M. Pohst, Computing power integral bases in quartic relative extensions, J. Number Theory 85 (2000), 201-219.
- I. Gaál and L. Remete, Integral bases and monogenity of pure fields, J. Number Theory 173(2017), 129-146.
- I. Gaál and L. Remete, On the monogenity of pure quartic relative extensions of Q(i), Acta Sci. Math. 89(2023), 357-371.
- T.A. Gassert, A note on the monogeneity of power maps, Albanian J. of Math. 11(2017), 3-12.
- T. A. Gassert, H. Smith and K. E. Stange, A family of monogenic S4 quartic fields arising from elliptic curves, J. Number Theory 197(2019), 361-382.
- D. Gil-Munoz and M. Tinková, Additive structure of non-monogenic simplest cubic fields, arXiv:2212.00364 (2022).
- J. Guardia, J. Montes and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364(2012) 361–416.
- K. Gyory, Sur les polynômes a coefficients entiers et de discriminant donne, III, Publ. Math. (Debrecen), 23(1976), 141–165.
- J. Harrington and L. Jones, Monogenic binomial compositions, Taiwanese J. Math. 24(2020), 1073-1090.
- J. Harrington and L. Jones, Monogenic cyclotomic compositions, Kodai Math. J. 44(2021), 115-125.
- J. Harrington and L. Jones, The Irreducibility and Monogenicity of Power-Compositional Trinomials, arXiv:2204.07784 (2022).
- J. Harrington and L. Jones, A note on generalised Wall-Sun-Sun primes, Bull. Aust. Math. Soc. 108(2023), 373-378.
- J. Harrington and L. Jones, Monogenic quartic polynomials and their Galois groups, arXiv:2404.05487v2.
- H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1963.
- K. Hensel, Theorie der algebraischen Zahlen, Teubner Verlag, Leipzig, 1908.
- R. Ibarra, H. Lembeck, M. Ozaslan, H. Smith and K. E. Stange, Monogenic fields arising from trinomials, Involve 15(2022), 299-317.
- A. Jakhar, On primes dividing the index of a quadrinomial, Rocky Mt. J. Math. 50(2020), 2117-2125.
- A. Jakhar, Nonmonogenity of number fields defined by trinomials, New York J. Math. 28(2022), 650-658.
- A. Jakhar, On nonmonogenic algebraic number fields., Rocky Mt. J. Math. 53(2023), 103-110.
- A. Jakhar and R. Kalwaniya, On the index divisors of certain number fields, arXiv:2303.00484 (2023).
- A. Jakhar, R. Kalwaniya and P. Yadav, A study of monogenity of binomial composition, arXiv:2402.10131 (2024).
- B. Jhorar and S. K. Khanduja, On power basis of a class of algebraic number fields, Int. J. Number Theory 12(2016), 2317-2321.
- A. Jakhar and S. K. Khanduja, On the index of an algebraic integer and beyond, J. Pure Appl. Algebra 224(2020), Article ID 106281, 10 p.
- A. Jakhar, S. K. Khanduja and N. Sangwan, On prime divisors of the index of an algebraic integer, J. Number Theory 166(2016), 47-61.
- A. Jakhar, S. K. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory 13(2017), 2505-2514.
- A. Jakhar, S. Kaur and S. Kumar, Common index divisor of the number fields defined by , Proc. Edinb. Math. Soc., II. Ser. 65(2022), 1147-1161.
- A. Jakhar and S. Kaur, A note on non-monogenity of number fields arised from sextic trinomials, Quaest. Math. 46(2023), 833-840.
- A. Jakhar, S. Kaur and S. Kumar, On power basis of a class of number fields, Mediterr. J. Math. 20(2023), Paper No. 315, 11 p.
- A. Jakhar, S. Kaur and S. Kumar, Non-monogenity of certain octic number fields defined by trinomials, Colloq. Math. 171(2023), 145-152.
- A. Jakhar, S. Kaur and S. Kumar, On common index divisor of the number fields defined by , arXiv:2301.00365 (2023).
- A. Jakhar, S. Kaur and S. Kumar, On non-monogenity of the number fields defined by certain quadrinomials, Commun. Algebra 51(2023), 2448-2459.
- A. Jakhar and S. Kumar, On nonmonogenic number fields defined by , Can. Math. Bull. 65(2022), 788-794.
- A. Jakhar and S. Kumar, Non-monogenity of some number fields generated by binomials or trinomials of prime-power degree, J. Algebra Appl. 23(2024), Article ID 2450095, 8 p.
- L. Jones, A brief note on some infinite families of monogenic polynomials, Bull. Aust. Math. Soc. 100(2019), 239-244.
- L. Jones, Generating infinite families of monogenic polynomials using a new discriminant formula, Albanian J. Math. 14(2020), 37-45.
- L. Jones, Monogenic polynomials with non-squarefree discriminant, Proc. Am. Math. Soc. 148(2020), 1527-1533.
- L. Jones, Monogenically stable polynomials, Albanian J. Math. 15(2021), 85-98.
- L. Jones, Infinite families of reciprocal monogenic polynomials and their Galois groups, New York J. Math. 27(2021), 1465-1493.
- L. Jones, Sextic reciprocal monogenic dihedral polynomials, Ramanujan J. 56(2021), 1099-1110.
- L. Jones, Infinite families of non-monogenic trinomials, Acta Sci. Math. 87(2021), 95-105.
- L. Jones, Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith. 197(2021), 213-219.
- L. Jones, The monogenity of power-compositional Eisenstein polynomials, Ann. Math. Inform. 55(2022), 93-113.
- L. Jones, Reciprocal monogenic quintinomials of degree 2n, Bull. Aust. Math. Soc. 106(2022), 437-447. .
- L. Jones, Infinite families of monogenic quadrinomials, quintinomials and sextinomials, Colloq. Math. 169(2022), 1-10.
- L. Jones, On necessary and sufficient conditions for the monogeneity of a certain class of polynomials, Math. Slovaca 72(2022), 591-600.
- L. Jones, Monogenic reciprocal trinomials and their Galois groups, J. Algebra Appl. 21(2022), Article ID 2250026, 11 p.
- L. Jones, Monogenic Pisot and anti-Pisot polynomials, Taiwanese J. Math. 26(2022), 233-250.
- L. Jones, A connection between the monogenicity of certain power-compositional trinomials and k-Wall-Sun-Sun primes, arXiv:2211.14834.
- L. Jones, Generalized Wall-Sun-Sun primes and monogenic power compositional trinomials, Albanian J. Math. 17(2023), 3-17.
- L. Jones, On the monogenicity of power-compositional Shanks polynomials, Funct. Approximatio, Comment. Math. 69(2023), 93-103.
- L. Jones, The monogenicity of power-compositional characteristic polynomials, arXiv:2311.08875 (2023).
- L. Jones, A new condition for k-Wall-Sun-Sun primes, Taiwanese J. Math. 28(2024), 17-28.
- L. Jones, Monogenic cyclic quartic trinomials, arXiv:2404.17869 (2024).
- L. Jones, Monogenic even octic polynomials and their Galois groups, arXiv:2404.17921 (2024).
- L. Jones and T. Phillips, Infinite families of monogenic trinomials and their Galois groups, Int. J. Math. 29(2018), Article ID 1850039, 11 p.
- L. Jones and D. White, Monogenic trinomials with non-squarefree discriminant, Int. J. Math. 32(2021), Article ID 2150089, 21 p.
- M. Kang and D. Kim, The proportion of monogenic orders of prime power indices of the pure cubic field, arXiv:2306.13295 (2023).
- T. Kashio and R. Sekigawa, The characterization of cyclic cubic fields with power integral bases, Kodai Math. J. 44(2021), 290-306.
- S. Kaur, S. Kumar and L. Remete, On the index of power compositional polynomials, arXiv:2404.17351 (2024).
- O. Kchit, On the index divisors and monogenity of certain nonic number fields, arXiv:2307.03284.
- N. Khan, T. Nakahara and H. Sekiguchi, An ideal theoretic proof on monogenity of cyclic sextic fields of prime power conductor, J. Number Theory 198(2019), 43-51.
- N. Khan, S. Katayama, T. Nakahara and T. Uehara, Monogenity of totally real algebraic extension fields over a cyclotomic field, J. Number Theory 158(2016), 348-355.
- S. K. Khanduja and B. Jhorar, When is integrally closed? J. Algebra Appl. 15(2016), Article ID 1650091, 7 p.
- H. H. Kim, Monogenic dihedral quartic extensions, Ramanujan J. 50(2019), 459-464.
- K. V. Kouakou and F. E. Tanoé, Chatelain’s integral bases for triquadratic number fields, Afr. Mat. 28(2017), 119-149.
- J. Montes and E. Nart, On a theorem of Ore, J. Algebra, 146(2) (1992) 318–334.
- L. J. Mordell, Diophantine Equations, Academic Press, New York–London, 1969.
- W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd edn. Springer Verlag, Berlin, 2004.
- E. Nart, On the index of a number field, Trans. Amer. Math. Soc., 289(1985), 171-183.
- J. Neukirch, Algebraic Number Theory, Springer Verlag, Berlin (1999).
- O. Ore, Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann., 99 (1928), 84–117.
- M. P. Pohst and H. Zassenhaus, Algorithmic algebraic number theory,Encyclopedia of mathematics and its applications, em Campridge University Press, 1989.
- M. Sahmoudi and M. E. Charkani, On relative pure cyclic fields with power integral bases, Math. Bohem. 148(2023), 117-128.
- R. Sekigawa, Rikuna’s generic cyclic polynomial and the monogenity, J. Number Theory 231(2022), 239-250 .
- A. Soullami, M. Sahmoudi and O. Boughaleb, On relative power integral basis of a family of numbers fields, Rocky Mt. J. Math. 51(2021), 1443-1452.
- H. Smith, Two families of monogenic S4 quartic number fields, Acta Arith. 186(2018), 257-271.
- H. Smith, The monogeneity of radical extensions, Acta Arith. 198(2021), 313-327.
- F. E. Tanoé, Chatelain’s integer bases for biquadratic fields, Afr. Mat. 28(2017), 727-744.
- F. E. Tanoé and K. V. Kouakou, Diophantine proof of non-monogeneity for triquadratic number fields with odd discriminant, Fundamental J. Math. and Math. Sci. 15(2021), 9-37.
- F. E. Tanoé and V. Kouassi, Generators of power integral bases of , Annales Mathématiques Africaines 5(2025), 117-131.
| 1 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).