Submitted:
17 May 2024
Posted:
20 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
2.1. Soldiery Spending and Carbon Emissions Nexus
2.2. Industrialization and Carbon Emissions Nexus
2.3. Technical Innovation and Carbon Emissions Nexus
2.4. Use of Energy and Discharge of Carbon Nexus
3. Methodology of the Study
3.1. Data and Sources
3.2. Model Specification
3.3. Econometric Methodology
3.3.1. Slope Homogeneity Test
3.3.2. Cross-Sectional Dependence Test
3.3.3. Unit Root Tests
3.3.4. Pedroni and Kao Panel Cointegration Test
3.3.5. The panel ARDL Model
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Multicollinearity Tests Based on VIF
4.3. Heterogeneity of slope test
4.4. Cross-Sectional Dependence Test
4.5. Panel Unit Root Test
4.6. Pedroni and Kao Panel Cointegration Test
4.7. Parameter Estimation
4.7.1. Long-Run and Short-Run Estimates for Group 1 and Group 2
4.8. Robustness Estimates of GMM and FMOLS
4.9. Diagnostic Checks
5. Conclusion and Policy Implications
5.1. Conclusions
5.2. Policies and Implications
5.3. Limitations and directions for future research
| 1 | Economic growth (GDP) is used as a control variable that holds constant |
References
- Abbasi, M. A., Parveen, S., Khan, S., & Kamal, M. A. (2020). Urbanization and energy consumption effects on carbon dioxide emissions: Evidence from Asian-8 countries using panel data analysis. Environmental Science and Pollution Research, 27(15), 18029–18043. [CrossRef]
- Adebayo, T. S., Coelho, M. F., Onbaşıoğlu, D. Ç., Rjoub, H., Mata, M. N., Carvalho, P. V., Rita, J. X., & Adeshola, I. (2021). Modeling the Dynamic Linkage between Renewable Energy Consumption, Globalization, and Environmental Degradation in South Korea: Does Technological Innovation Matter? Energies, 14(14), 4265. [CrossRef]
- Adebayo, T. S., Oladipupo, S. D., Kirikkaleli, D., & Adeshola, I. (2022). Asymmetric nexus between technological innovation and environmental degradation in Sweden: An aggregated and disaggregated analysis. Environmental Science and Pollution Research, 29(24), 36547–36564. [CrossRef]
- Ahmed, Z., Zafar, M. W., & Mansoor, S. (2020). Analyzing the linkage between military spending, economic growth, and ecological footprint in Pakistan: Evidence from cointegration and bootstrap causality. Environmental Science and Pollution Research, 27(33), 41551–41567. [CrossRef]
- Akbostancı, E., Tunç, G. İ., & Türüt-Aşık, S. (2011). CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Applied Energy, 88(6), 2273–2278. [CrossRef]
- Albino, V., Ardito, L., Dangelico, R. M., & Messeni Petruzzelli, A. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836–854. [CrossRef]
- Aldieri, L., Bruno, B., Makkonen, T., & Vinci, C. P. (2023). Environmental innovations, geographically mediated knowledge spillovers, economic and environmental performance. Resources Policy, 81, 103423. [CrossRef]
- Ang, J. B. (2007). CO2 emissions, energy consumption, and output in France. Energy Policy, 35(10), 4772–4778. [CrossRef]
- Apergis, N., & Payne, J. E. (2010). The emissions, energy consumption, and growth nexus: Evidence from the commonwealth of independent states. Energy Policy, 38(1), 650–655.
- Arellano, M., & Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277. [CrossRef]
- Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), 29–51. [CrossRef]
- Asane-Otoo, E. (2015). Carbon footprint and emission determinants in Africa. Energy, 82, 426–435. [CrossRef]
- Asumadu-Sarkodie, S., & Owusu, P. A. (2016a). Carbon dioxide emission, electricity consumption, industrialization, and economic growth nexus: The Beninese case. Energy Sources, Part B: Economics, Planning, and Policy, 11(11), 1089–1096. [CrossRef]
- Asumadu-Sarkodie, S., & Owusu, P. A. (2016b). Carbon dioxide emissions, GDP per capita, industrialization and population: Evidence from Rwanda. Environmental Engineering Research, 22(1), 116–124. [CrossRef]
- Azam, M. (2020). Does military spending stifle economic growth? The empirical evidence from non-OECD countries. Heliyon, 6(12), e05853. [CrossRef]
- Azam, M., & Feng, Y. (2017). Does military expenditure increase external debt? Evidence from Asia. Defence and Peace Economics, 28(5), 550–567. [CrossRef]
- Aziz, N., & Khalid, U. (2019). Armed Conflict, Military Expenses and FDI Inflow to Developing Countries. Defence and Peace Economics, 30(2), 238–251. [CrossRef]
- Balsalobre-Lorente, D., Shahbaz, M., Roubaud, D., & Farhani, S. (2018). How do economic growth, renewable electricity, and natural resources contribute to CO2 emissions? Energy Policy, 113, 356–367. [CrossRef]
- Bildirici, M. (2017). CO 2 emissions and militarization in G7 countries: Panel cointegration and trivariate causality approaches. Environment and Development Economics, 22(6), 771–791. [CrossRef]
- Bildirici, M. (2019). CO2 emissions and militarisation in G20 countries: Panel cointegration and causality approaches. International Journal of Oil, Gas and Coal Technology, 22(1), 104–121.
- Bildirici, M. E. (2017a). The causal link among militarization, economic growth, CO2 emission, and energy consumption. Environmental Science and Pollution Research, 24(5), 4625–4636. [CrossRef]
- Bildirici, M. E. (2017b). The effects of militarization on biofuel consumption and CO2 emission. Journal of Cleaner Production, 152, 420–428. [CrossRef]
- Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143. [CrossRef]
- Brock, W. A., & Taylor, M. S. (2005). Economic growth and the environment: A review of theory and empirics. Handbook of Economic Growth, p. 1, 1749–1821.
- Cato, M. S. (2012). Green economics: An introduction to theory, policy and practice. Routledge.
- Chang, S., Chen, B., & Song, Y. (2023). Militarization, renewable energy utilization, and ecological footprints: Evidence from RCEP economies. Journal of Cleaner Production, 391, 136298. [CrossRef]
- Chiu, Y.-B., & Zhang, W. (2022). Effects of energy and economic growth on CO2 emissions: What does globalization matter? Environment, Development and Sustainability. [CrossRef]
- Chudik, A., & Pesaran, M. H. (2013). Large Panel Data Models with Cross-Sectional Dependence: A Survey. SSRN Electronic Journal. [CrossRef]
- Clark, B., & Jorgenson, A. K. (2012). The treadmill of destruction and the environmental impacts of militaries 1. Sociology Compass, 6(7), 557–569.
- Çolak, O., Özuyar, S. E. G., & Bölükbaşı, Ö. F. (2022). Asymmetric Effects of the Defense Burden on Environmental Degradation: Evidence from NATO Countries. Sustainability, 15(1), 573. [CrossRef]
- Dauda, L., Long, X., Mensah, C. N., & Salman, M. (2019). The effects of economic growth and innovation on CO2 emissions in different regions. Environmental Science and Pollution Research, 26(15), 15028–15038. [CrossRef]
- DeRouen, K. R. (1994). Défense spending and economic growth in Latin America: The externalities effects. International Interactions, 19(3), 193–212. [CrossRef]
- Destek, M. A., & Manga, M. (2021). Technological innovation, financialization, and ecological footprint: Evidence from BEM economies. Environmental Science and Pollution Research, 28(17), 21991–22001. [CrossRef]
- Dogan, E., & Turkekul, B. (2016). CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environmental Science and Pollution Research, 23(2), 1203–1213. [CrossRef]
- Dong, J., He, J., Li, X., Mou, X., & Dong, Z. (2020). The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis. Journal of Systems Science and Information, 8(1), 1–16. [CrossRef]
- Dycus, S. (1996). National defense and the environment. (No Title).
- Ehigiamusoe, K. U., & Lean, H. H. (2019). Effects of energy consumption, economic growth, and financial development on carbon emissions: Evidence from heterogeneous income groups. Environmental Science and Pollution Research, 26(22), 22611–22624. [CrossRef]
- EIA. (2015). U.S. Energy-related Carbon Dioxide Emissions, 2014, Washington, DC: US Department of Energy, [Available at] https://www.eia.gov/environment/ emissions/carbon/pdf/2014 co2analysis.pdf.
- Ekwueme, D. C., & Zoaka, J. D. (2020). Effusions of carbon dioxide in MENA countries: Inference of financial development, trade receptivity, and energy utilization. Environmental Science and Pollution Research, 27(11), 12449–12460. [CrossRef]
- Elfaki, K. E., Khan, Z., Kirikkaleli, D., & Khan, N. (2022). On the nexus between industrialization and carbon emissions: Evidence from ASEAN + 3 economies. Environmental Science and Pollution Research, 29(21), 31476–31485. [CrossRef]
- Engle, R. F., & Granger, C. W. J. (1987). Cointegration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251. [CrossRef]
- Erdogan, S. (2021). Dynamic Nexus between Technological Innovation and Building Sector Carbon Emissions in the BRICS Countries. Journal of Environmental Management, p. 293, 112780. [CrossRef]
- Erdogan, S., Gedikli, A., Çevik, E. İ., & Öncü, M. A. (2022). Does military expenditure impact environmental sustainability in developed Mediterranean countries? Environmental Science and Pollution Research, 29(21), 31612–31630. [CrossRef]
- Fisher-Vanden, K., Jefferson, G. H., Liu, H., & Tao, Q. (2004). What is driving China’s decline in energy intensity? Resource and Energy Economics, 26(1), 77–97. [CrossRef]
- Franco, S., Mandla, V. R., & Rao, K. R. M. (2017). Urbanization, energy consumption and emissions in the Indian context A review. Renewable and Sustainable Energy Reviews, 71, 898–907.
- Frees, E. W. (1995). Assessing cross-sectional correlation in panel data. Journal of Econometrics, 69(2), 393–414. [CrossRef]
- Friedman, M. (1937). Using Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. Journal of the American Statistical Association, 32(200), 675–701. [CrossRef]
- Givens, J. E. (2014). Global Climate Change Negotiations, the Treadmill of Destruction, and World Society: An Analysis of Kyoto Protocol Ratification. International Journal of Sociology, 44(2), 7–36. [CrossRef]
- Gokmenoglu, K. K., Taspinar, N., & Rahman, M. M. (2021). Military expenditure, financial development, and environmental degradation in Turkey: A comparison of CO 2 emissions and ecological footprint. International Journal of Finance & Economics, 26(1), 986–997. [CrossRef]
- González, D., & Martínez, M. (2012). Changes in CO2 emission intensities in the Mexican industry. Energy Policy, 51, 149–163. [CrossRef]
- Gould, K. A. (2007). The Ecological Costs of Militarization. Peace Review, 19(3), 331–334. [CrossRef]
- Grossman, G. M., & Krueger, A. B. (1991). Environmental impacts of a North American free trade agreement. National Bureau of Economic Research Cambridge, Mass., USA.
- Hammond, A., Adriaanse, A., Rodenburg, E., Bryant, D., & Woodward, R. (1995). E NVI RO NM ENTAL INDKAT 0 RS: A Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development.
- Harlan, S. L., Pellow, D. N., Roberts, J. T., Bell, S. E., Holt, W. G., & Nagel, J. (2015). Climate Justice and Inequality. In R. E. Dunlap & R. J. Brulle (Eds.), Climate Change and Society (pp. 127–163). Oxford University Press. [CrossRef]
- Hashem Pesaran, M., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50–93. [CrossRef]
- Hong, Y. (2018). The major innovations of Chinese economic development theories in the new era. China Political Economy, 1(1), 13–29. [CrossRef]
- Hooks, G., & Smith, C. L. (2004) a. The Treadmill of Destruction: National Sacrifice Areas and Native Americans. American Sociological Review, 69(4), 558–575. [CrossRef]
- Hooks, G., & Smith, C. L. (2005) b. Treadmills of Production and Destruction: Threats to the Environment Posed by Militarism. Organization & Environment, 18(1), 19–37. [CrossRef]
- Hou, N., & Chen, B. (2014). Military Expenditure and Investment in OECD Countries: Revisited. Peace Economics, Peace Science and Public Policy, 20(4), 621–630. [CrossRef]
- IEA. (2016). ‘Decoupling of global emissions and economic growth confirmed’, International Energy Agency, Paris, [Available at] https://www.iea.org/news room/news/2016/march/decoupling-of-global-emissions-and-economic-growthconfirmed. Html.
- IEA. (2022). International Energy Agency (IEA). Global Energy Review 2021: CO Emissions 2022. Available online: Https://www.iea.org/ reports/global-energy-review-2021/CO-emissions (accessed on 14 April 2022).
- Jamil, K., Dunnan, L., Gul, R. F., Shehzad, M. U., Gillani, S. H. M., & Awan, F. H. (2022). Role of Social Media Marketing Activities in Influencing Customer Intentions: A Perspective of a New Emerging Era. Frontiers in Psychology, 12, 808525. [CrossRef]
- Jorgenson, A. K., & Clark, B. (2011). Societies consuming nature: A panel study of the ecological footprints of nations, 1960–2003. Social Science Research, 40(1), 226–244.
- Jorgenson, A. K., & Clark, B. (2016). The temporal stability and developmental differences in the environmental impacts of militarism: The treadmill of destruction and consumption-based carbon emissions. Sustainability Science, 11(3), 505–514. [CrossRef]
- Jorgenson, A. K., Clark, B., & Kentor, J. (2010). Militarization and the Environment: A Panel Study of Carbon Dioxide Emissions and the Ecological Footprints of Nations, 1970–2000. Global Environmental Politics, 10(1), 7–29. [CrossRef]
- Jorgenson, D. W., & Wilcoxen, P. J. (1993). Energy, The Environment, and Economic Growth. In Handbook of Natural Resource and Energy Economics (Vol. 3, pp. 1267–1349). Elsevier. [CrossRef]
- Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90(1), 1–44. [CrossRef]
- Khan, L., Arif, I., & Waqar, S. (2021). The Impact of Military Expenditure on External Debt: The Case of 35 Arms Importing Countries. Defence and Peace Economics, 32(5), 588–599. [CrossRef]
- Khan, M. (2023). Macroeconomic factors affecting carbon dioxide emissions in Bangladesh: an ARDL approach. Polityka Energetyczna – Energy Policy Journal, 26(3), 27-46. [CrossRef]
- Koçak, E., & Ulucak, Z. Ş. (2019). The effect of energy R&D expenditures on CO 2 emission reduction: Estimation of the STIRPAT model for OECD countries. Environmental Science and Pollution Research, 26, 14328–14338.
- Kongkuah, M., Yao, H., & Yilanci, V. (2022). The relationship between energy consumption, economic growth, and CO2 emissions in China: The role of urbanization and international trade. Environment, Development and Sustainability, 24(4), 4684–4708. [CrossRef]
- Konuk, F., Kaya, E., Akpınar, S., & Yıldız, Ş. (2023). The Relationship Between Military Expenditures, Financial Development and Environmental Pollution in G7 Countries. Journal of the Knowledge Economy. [CrossRef]
- Kumar, S., & Managi, S. (2009). Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes. Resource and Energy Economics, 31(4), 334–353. [CrossRef]
- Lean, H. H., & Smyth, R. (2010). CO2 emissions, electricity consumption, and output in ASEAN. Applied Energy, 87(6), 1858–1864. [CrossRef]
- Lee, C. T., Hashim, H., Ho, C. S., Fan, Y. V., & Klemeš, J. J. (2017). Sustaining the low-carbon emission development in Asia and beyond Sustainable energy, water, transportation, and low-carbon emission technology. Journal of Cleaner Production, 146, 1–13. [CrossRef]
- Lee, K.-H., & Min, B. (2015). Green R&D for eco-innovation and its impact on carbon emissions and firm performance. Journal of Cleaner Production, 108, 534–542. [CrossRef]
- Lennerfors, T. T., Fors, P., & van Rooijen, J. (2015). ICT and environmental sustainability in a changing society: The ecological World Systems Theory view. Information Technology & People, 28(4), 758–774.
- Leslie, S. W. (1987). Playing the education game to win: Stanford’s military and interdisciplinary research. Historical Studies in the Physical and Biological Sciences, 18(1), 55–88.
- Li, D., Cao, L., Zhou, Z., Zhao, K., Du, Z., & Chen, Y. (2023). Correlating CO2 emissions of cities with the inter-city carbon compensation mechanism: A regional perspective in the middle reaches of the Yangtze River (MRYR), China. Environment, Development and Sustainability. [CrossRef]
- Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renewable and Sustainable Energy Reviews, p. 52, 1107–1122. [CrossRef]
- Li, K., & Lin, B. (2016). Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model. Energy Policy, pp. 89, 214–223. [CrossRef]
- Lin, B., Omoju, O. E., & Okonkwo, J. U. (2015). Impact of industrialization on CO 2 emissions in Nigeria. Renewable and Sustainable Energy Reviews, 52, 1228–1239. [CrossRef]
- Maryam, J., Mittal, A., & Sharma, V. (2017). CO2 emissions, energy consumption, and economic growth in BRICS: an empirical analysis.
- Melman, S. (1973). Pentagon capitalism: The political economy of war. HM Hodges (Ed.), Conflict and Consensus. Readings Toward a Sociological Perspective, New York et al.(Harper and Row, Publishers) 1973, Pp. 209–216.
- Moya, J. A., & Pardo, N. (2013). There is potential for improvements in energy efficiency and CO2 emissions in the EU27 iron and steel industry under different payback periods. Journal of Cleaner Production, 52, 71–83. [CrossRef]
- NATO. (2022a). Defence Expenditure of NATO Countries (2014-2022). Available online: Https://www.nato.int/nato_static_fl2014/assets/pdf/2023/3/pdf/230321-def-exp-2022-en.pdf.
- NATO. (2022b). North Atlantic Treaty Organization (NATO). Brussels Submit Communiqué 2021. Available online: Https://www.nato.int/cps/ en/natohq/news_185000.htm (accessed on 17 December 2022).
- Nemet, G., & Greene, J. (2022). Innovation in low-energy demand and its policy implications. Oxford Open Energy, 1, oiac003. [CrossRef]
- Odehnal, J. (2015). Military Expenditures and Free-Riding in NATO. Peace Economics, Peace Science and Public Policy, 21(4), 479–487. [CrossRef]
- Odehnal, J., & Neubauer, J. (2020). Economic, Security, and Political Determinants of Military Spending in NATO Countries. Defence and Peace Economics, 31(5), 517–531. [CrossRef]
- Olivier, J. G., Schure, K. M., & Peters, J. (2017). Trends in global CO2 and total greenhouse gas emissions. PBL Netherlands Environmental Assessment Agency, 5, 1–11.
- Omri, A., & Hadj, T. B. (2020). Foreign investment and air pollution: Do good governance and technological innovation matter? Environmental Research, 185, 109469.
- Pata, U. K. (2018). Renewable energy consumption, urbanization, financial development, income, and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. Journal of Cleaner Production, pp. 187, 770–779. [CrossRef]
- Pedroni, P. (1999). Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxford Bulletin of Economics and Statistics, 61(s1), 653–670. [CrossRef]
- Pesaran, M. (2004). General Diagnostic Tests for Cross Section Dependence in Panels [Cambridge Working Papers in Economics]. Faculty of Economics, University of Cambridge. https://EconPapers.repec.org/RePEc:cam:camdae:0435.
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312. [CrossRef]
- Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. Journal of the American Statistical Association, 94(446), 621–634. [CrossRef]
- Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, 68(1), 79–113. [CrossRef]
- Phimphanthavong, H. (2013). The impacts of economic growth on environmental conditions in Laos. International Journal of Business Management and Economic Research, 4(5), 766–774.
- Pieroni, L. (2009). MILITARY EXPENDITURE AND ECONOMIC GROWTH. Defence and Peace Economics, 20(4), 327–339. [CrossRef]
- Polsterer, F. (2015). The impacts of militarism on climate change: A sorely neglected relationship: The effects on human rights and how a civil society approach can bring about system change.
- Ponce, P., & Khan, S. A. R. (2021). A causal link between renewable energy, energy efficiency, property rights, and CO2 emissions in developed countries: A road map for environmental sustainability. Environmental Science and Pollution Research, 28(28), 37804–37817. [CrossRef]
- Rafique, M. Z., Li, Y., Larik, A. R., & Monaheng, M. P. (2020). The effects of FDI, technological innovation, and financial development on CO2 emissions: Evidence from the BRICS countries. Environmental Science and Pollution Research, 27(19), 23899–23913. [CrossRef]
- Raiser, K., Naims, H., & Bruhn, T. (2017). Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Research & Social Science, pp. 27, 1–8. [CrossRef]
- Rawtani, D., Gupta, G., Khatri, N., Rao, P. K., & Hussain, C. M. (2022). Environmental damages due to war in Ukraine: A perspective. Science of The Total Environment, p. 850, 157932. [CrossRef]
- RTO TECHNICAL REPORT of NATO. (2023). North Atlantic Treaty Organization (NATO). Handbook on Long Term Defense Planning 2021. Available online: Https://apps. Dtic.mil/sti/citations/ADA414193 (accessed on 14 April 2022).
- Saba, C. S., & Ngepah, N. (2020). Convergence in military expenditure and economic growth in Africa and its regional economic communities: Evidence from a club clustering algorithm. Cogent Economics & Finance, 8(1), 1832344. [CrossRef]
- Samargandi, N. (2017). Sector value addition, technology, and CO2 emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 78, 868–877. [CrossRef]
- Sanders, B. (2009). The green zone: The environmental costs of militarism. AK Press.
- Saud, S., Chen, S., Haseeb, A., & Sumayya. (2020). The role of financial development and globalization in the environment: Accounting ecological footprint indicators for selected one-belt-one-road initiative countries. Journal of Cleaner Production, 250, 119518. [CrossRef]
- Selvanathan, E. A., Jayasinghe, M., & Selvanathan, S. (2021). Dynamic modeling of inter-relationship between tourism, energy consumption, CO 2 emissions and economic growth in South Asia. International Journal of Tourism Research, 23(4), 597–610. [CrossRef]
- Sgobbi, A., Simões, S. G., Magagna, D., & Nijs, W. (2016). Assessing the impacts of technology improvements on the deployment of marine energy in Europe with an energy system perspective. Renewable Energy, 89, 515–525. [CrossRef]
- Shahbaz, M., Hye, Q. M. A., Tiwari, A. K., & Leitão, N. C. (2013). Economic growth, energy consumption, financial development, international trade, and CO2 emissions in Indonesia. Renewable and Sustainable Energy Reviews, 25, 109–121.
- Shahbaz, M., Raghutla, C., Song, M., Zameer, H., & Jiao, Z. (2020). Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Economics, 86, 104664. [CrossRef]
- Sheng, P., & Guo, X. (2016). The long-run and short-run impacts of urbanization on carbon dioxide emissions. Economic Modelling, 53, 208–215.
- Shrestha, R. M., Anandarajah, G., & Liyanage, M. H. (2009). Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific. Energy Policy, 37(6), 2375–2384. [CrossRef]
- Shrivastava, P., Stafford Smith, M., O’Brien, K., & Zsolnai, L. (2020). Transforming Sustainability Science to Generate Positive Social and Environmental Change Globally. One Earth, 2(4), 329–340. [CrossRef]
- SIPRI. (2021). Stockholm International Peace and Research Institute. SIPRI Yearbook 2021: Armaments, Disarmament and International Security 2021. Available online: Https://www.sipri.org/yearbook/2021 (accessed on 14 April 2022).
- Skytt, T., Nielsen, S. N., & Jonsson, B.-G. (2020). Global warming and absolute global temperature change potential from carbon dioxide and methane fluxes as regional sustainability indicators – A Jämtland, Sweden case study. Ecological Indicators, 110, 105831. [CrossRef]
- Smith, R. P. (1980). Military expenditure and investment in OECD countries, 1954–1973. Journal of Comparative Economics, 4(1), 19–32. [CrossRef]
- Statista. (2023a). Average defense expenditure of NATO countries as a share of GDP 2014-2023. Available online: Https://www.statista.com/statistics/1293314/nato-defense-spending-share-gdp/.
- Statista. (2023b). Combined defense expenditure of NATO countries from 2014 to 2023. Available online: Https://www.statista.com/statistics/1293301/combined-defense-expenditures-nato/.
- Statista. (2023c). The combined number of military personnel in NATO countries from 2014 to 2023. Available online: Https://www.statista.com/statistics/1293365/nato-overall-military-personnel/.
- Tahir, T., Luni, T., Majeed, M. T., & Zafar, A. (2021). The impact of financial development and globalization on environmental quality: Evidence from South Asian economies. Environmental Science and Pollution Research, 28(7), 8088–8101. [CrossRef]
- Trivedi, H. K., Massey, M. L., Bhattacharya, R. S., Strahl, G. A., & Collum, D. (2004). Cleaners for military machine parts—Is there a green alternative? Journal of Cleaner Production, 12(7), 771–780. [CrossRef]
- 126. Tucker, R. P. (2012). War and the Environment. A Companion to Global Environmental History, pp. 319–339.
- Uddin, M. G. S., Bidisha, S. H., & Ozturk, I. (2016). Carbon emissions, energy consumption, and economic growth relationship in Sri Lanka. Energy Sources, Part B: Economics, Planning, and Policy, 11(3), 282–287. [CrossRef]
- Uddin, M., Rashid, M. H. U., Ahamad, S., & Ehigiamusoe, K. U. (2023). Impact of militarization, energy consumption, and ICT on CO2 emissions in G20 countries. Environment, Development and Sustainability. [CrossRef]
- Ullah, S., Andlib, Z., Majeed, M. T., Sohail, S., & Chishti, M. Z. (2021). Asymmetric effects of militarization on economic growth and environmental degradation: Fresh evidence from Pakistan and India. Environmental Science and Pollution Research, 28(8), 9484–9497. [CrossRef]
- Urbain, J.-P., & Westerlund, J. (2006). Spurious regression in nonstationary panels with cross-unit cointegration (Research Memorandum 057). Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR). https://EconPapers.repec.org/RePEc:unm:umamet:2006057.
- Usman, O., Olanipekun, I. O., Iorember, P. T., & Abu-Goodman, M. (2020). Modeling environmental degradation in South Africa: The effects of energy consumption, democracy, and globalization using innovation accounting tests. Environmental Science and Pollution Research, 27, 8334–8349.
- Wang, L., Chang, H.-L., Rizvi, S. K. A., & Sari, A. (2020). Are eco-innovation and export diversification mutually exclusive to control carbon emissions in G-7 countries? Journal of Environmental Management, 270, 110829. [CrossRef]
- Wang, S., Li, G., & Fang, C. (2018). Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renewable and Sustainable Energy Reviews, 81, 2144–2159.
- Wang, Z., Shi, C., Li, Q., & Wang, G. (2011). Impact of heavy industrialization on the carbon emissions: An empirical study of China. Energy Procedia, 5, 2610–2616.
- Xinmin, W., Hui, P., Hafeez, M., Aziz, B., Akbar, M. W., & Mirza, M. A. (2020). The nexus of environmental degradation and technology innovation and adoption: An experience from the dragon. Air Quality, Atmosphere & Health, 13(9), 1119–1126. [CrossRef]
- Yahoo Finance. (2023). NATO Military Spending by Country: Top 20 Countries. Available online: Https://finance.yahoo.com/news/nato-military-spending-country-top-093007390.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAM_D5pH_hRz7RdIzLmIwq—ytbrK_U7AIHz5JBN_HWFl2b8rLBwGUcHr3WSksOKF-GfbKESjUYyLjOYAuGbrZTA7npKfvYxR1ANfPMQyc1PLqk7W9VHM58A4vPi2hJ5s7ewoFKbXQgRv_2bIaOVfbrA19uWm3gLnKa9Wm8-pNeKa.
- Yang, L., & Li, Z. (2017). Technology advance and the carbon dioxide emission in China–Empirical research based on the rebound effect. Energy Policy, 101, 150–161.
- Yii, K.-J., & Geetha, C. (2017). The Nexus between Technology Innovation and CO 2 Emissions in Malaysia: Evidence from Granger Causality Test. Energy Procedia, 105, 3118–3124. [CrossRef]
- Zafar, A., Ullah, S., Majeed, M. T., & Yasmeen, R. (2020). Environmental pollution in Asian economies: Does industrialization matter? OPEC Energy Review, 44(3), 227–248. [CrossRef]



| Regional panel classification | Selected countries |
| “Traditional NATO member countries” (Group 1) | Belgium, Canada, Denmark, France, Germany, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, United Kingdom, United States. |
| “New NATO member countries” (Group 2) |
Bulgaria, Croatia, Czechia, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovak Republic, Slovenia, Türkiye. |
| Note: Albania is excluded from Group 2 because the data is unavailable | |
| Variables | Abbreviation with log | Description | Units | Sources | |
|---|---|---|---|---|---|
| Carbon emissions () | Amount of emissions | Metric tons per capita | WDI | ||
| Military expenditure (ME) | lnMEX | Military spending | % of GDP | WDI | |
| Industrialization (IND) | lnIND | Industry (including construction) | value added per worker (constant 2015 US$) | WDI | |
| Technological innovation (TECH) | lnTECH | Patent applications, residents and non-residents | Total number of patent applications | WDI | |
| Energy consumption (EC) | lnEC | Total energy use | Kg of oil equivalent per capita | WDI | |
| Economic growth (GDP)1 | lnGDP | Gross domestic product (GDP) per capita | GDP per capita (constant 2015 US$) | WDI | |
| Variable | Mean | Std. Dev | Min | Max | Skewness | Kurtosis | JB Test |
|---|---|---|---|---|---|---|---|
| Group 1 | |||||||
| 2.907243 | 0.4774392 | -0.1590199 | 4.106891 | 0.1571 | 0.0000 | 167.8 | |
| lnMEX | 1.358008 | .4226931 | 0.3512265 | 2.589873 | 0.0129 | 0.4444 | 6.623 |
| lnIND | 11.89305 | 0.5761494 | 7.99373 | 13.17638 | 0.0000 | 0.0000 | 840.3 |
| lnTECH | 9.232924 | 2.066408 | 3.871635 | 14.03296 | 0.3353 | 0.0232 | 4.475 |
| lnEC | 9.012977 | 0.4478673 | 7.690614 | 9.844672 | 0.5987 | 0.0000 | 10.8 |
| lnGDP | 11.17935 | 0.4549325 | 10.00017 | 12.32313 | 0.2087 | 0.7707 | 1.566 |
| Group 2 | |||||||
| 2.55415 | 0.4826141 | 1.600814 | 4.095598 | 0.0006 | 0.4914 | 12.89 | |
| lnMEX | 1.288087 | 0.6730298 | -3.349606 | 3.106429 | 0.0000 | 0.0000 | 4191 |
| lnIND | 10.19661 | 1.876975 | -9.028168 | 11.39726 | 0.0000 | 0.0000 | 1.2e+05 |
| lnTECH | 6.570333 | 3.551128 | -9.534884 | 9.747418 | 0.0000 | 0.0000 | 2863 |
| lnEC | 8.563366 | 0.3766522 | 7.37726 | 9.703748 | 0.0006 | 0.0120 | 21.55 |
| lnGDP | 9.764018 | 0.5122664 | 8.200723 | 10.78417 | 0.0097 | 0.0038 | 11.63 |
| Group 1 | Group 2 | |||
|---|---|---|---|---|
| VIF | 1/VIF | VIF | 1/VIF | |
| lnGDP | 6.700 | 0.149 | 1.31 | 0.764756 |
| lnEC | 4.490 | 0.222 | 1.29 | 0.776475 |
| lnIND | 2.570 | 0.389 | 1.21 | 0.824004 |
| lnTECH | 1.750 | 0.570 | 1.14 | 0.873409 |
| lnMEX | 1.550 | 0.644 | 1.07 | 0.932037 |
| Mean VIF | 3.410 | . | 1.21 | . |
| Source: authors’ calculations | ||||
| Group 1 | Group 2 | |||
|---|---|---|---|---|
| Statistic | Probability | Statistic | Probability | |
| Delta tilde | 16.335*** | 0.000 | 18.646*** | 0.000 |
| Adj. Delta tilde | 18.263*** | 0.000 | 20.847*** | 0.000 |
| Note: *** represent statistical significance at 1% level, respectively Source: authors’ calculations | ||||
| Group 1 | Group 2 | |||
|---|---|---|---|---|
| Statistic | Probability | Statistic | Probability | |
| Pesaran’s test | 6.543*** | 0.0000 | 2.638*** | 0.0083 |
| Friedman’s test | 87.605*** | 0.0000 | 48.971*** | 0.0000 |
| Frees’ test | 1.783*** | 0.0000 | 0.954*** | 0.0000 |
| Note: ***, **, and * represent statistical significance at 1%, 5%, 10% level respectively. Source: authors’ calculations | ||||
| CIPS | CADF | |||||||
|---|---|---|---|---|---|---|---|---|
| Level I (0) |
First Difference I (1) |
Level I (0) |
First Difference I (1) |
|||||
| Constant | Constant & Trend | Constant | Constant & Trend | Constant | Constant & Trend | Constant | Constant & Trend | |
| Group 1 | ||||||||
| -3.126*** | -3.319*** | -4.844*** | -4.937*** | -2.036 | -2.973*** | -3.296*** | -3.292*** | |
| lnMEX | -2.687*** | -2.616 | -5.476*** | -5.601*** | -2.124 | -2.144 | -2.975*** | -3.097*** |
| lnIND | -2.641*** | -3.059*** | -4.747*** | -4.909*** | -1.896 | -2.206 | -2.889*** | -3.007*** |
| lnTECH | -1.737 | -2.053 | -3.891*** | -4.085*** | -1.492 | -1.951 | -2.963*** | -3.169*** |
| lnEC | -1.152 | -2.290 | -5.066*** | -5.348*** | -0.677 | -2.176 | -2.827*** | -3.283*** |
| lnGDP | -2.427** | -3.575 | -3.794*** | -3.759*** | -2.221* | -3.361*** | -3.344*** | -3.271*** |
| Group 2 | ||||||||
| -1.486 | -2.051 | -4.601*** | -4.803*** | -1.241 | -1.905 | -2.260** | -2.256 | |
| lnMEX | -2.836*** | -2.093 | -3.768*** | -4.161*** | -2.726 | -1.995 | -2.095 | -2.506 |
| lnIND | -1.508 | -1.511 | -4.404*** | -4.851*** | -1.485 | -1.257 | -2.571*** | -3.188*** |
| lnTECH | -1.310 | -2.858** | -4.772*** | -4.796*** | -1.257 | -2.454 | -2.992*** | -2.948*** |
| lnEC | -1.290 | -1.789 | -4.595*** | -5.013*** | -1.006 | -1.342 | -2.412** | -2.677* |
| lnGDP | -3.192*** | -3.153*** | -3.233*** | -3.354*** | -2.851*** | -2.609 | -2.310** | -2.426 |
|
Note: ***, **, and * represent statistical significance at 1%, 5%, 10% level respectively Source: authors’ calculations | ||||||||
| Pedroni residual cointegration test | ||||||||
|---|---|---|---|---|---|---|---|---|
| Statistic | Probability | Statistic | Probability | |||||
| Constant | Constant & Trend | Constant | Constant & Trend | Constant | Constant & Trend | Constant | Constant & Trend | |
| Group 1 | Group 2 | |||||||
| Within-dimension | ||||||||
| Panel v-Statistic | 4.727*** | 2.186** | 0.000 | 0.014 | 0.297 | 1.991** | 0.383 | 0.023 |
| Panel rho-Statistic | -2.488*** | -0.542*** | 0.006 | 0.293 | 1.016 | 2.448 | 0.845 | 0.992 |
| Panel PP-Statistic | -10.114*** | -10.124*** | 0.000 | 0.000 | -0.224 | -1.742** | 0.411 | 0.040 |
| Panel ADF-Statistic | -12.980*** | -13.753*** | 0.000 | 0.000 | -0.306 | -3.986*** | 0.379 | 0.000 |
| Between-dimension | ||||||||
| Group rho-Statistic | 2.871 | 3.654 | 0.998 | 0.999 | 2.447 | 3.986 | 0.992 | 1.000 |
| Group PP-Statistic | 1.917 | -0.171 | 0.972 | 0.431 | 0.053 | -3.166*** | 0.521 | 0.000 |
| Group ADF-Statistic | 0.260 | -1.170 | 0.602 | 0.120 | -0,983 | -6.200*** | 0.162 | 0.000 |
| Kao residual cointegration test | ||||||||
| ADF | -26.523*** | 0.000 | -.6.902*** | 0.000 | ||||
| Note: (1) Note: ***, **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively. (2) Schwarz information criteria were used to select the optimal lag lengths. | ||||||||
| Variables | MG | PMG | DFE | |||
|---|---|---|---|---|---|---|
| Coefficient | Probability | Coefficient | Probability | Coefficient | Probability | |
| Long-run relationship | ||||||
| lnMEX | -0.239454 | 0.347 | 0.1768092*** | 0.000 | 0.1721638*** | 0.005 |
| lnIND | -0.1763105 | 0.541 | -0.1934654*** | 0.000 | -0.1868367*** | 0.003 |
| lnTECH | -0.0854502 | 0.680 | -0.029903*** | 0.003 | 0.077325*** | 0.000 |
| lnEC | 1.340788*** | 0.000 | 1.094479*** | 0.000 | 1.254371*** | 0.000 |
| lnGDP | -0.4819572 | 0.287 | 0.1029753 | 0.210 | -0.0448153 | 0.699 |
| Short-run relationship | ||||||
| EC | 0.2445071*** | 0.005 | 0.1224995 | 0.154 | -0.4640908*** | 0.000 |
| ∆lnMEX | 0.0006244 | 0.990 | -0.0204241 | 0.789 | -0.0340196 | 0.597 |
| ∆lnIND | -0.0455854 | 0.599 | -0.0257829 | 0.756 | -0.1215438* | 0.086 |
| ∆lnTECH | -0.0588707** | 0.021 | -0.0778112** | 0.041 | -0.0295642* | 0.076 |
| ∆lnEC | 0.8429548*** | 0.000 | 0.8848524*** | 0.000 | 0.5832298*** | 0.000 |
| ∆lnGDP | 0.1940896* | 0.065 | 0.3268684** | 0.013 | 0.4576593*** | 0.005 |
| _cons | 0.391473 | 0.477 | 0.6984402 | 0.149 | -3.0758*** | 0.000 |
|
Hausman test (MG or PMG) Hausman test (PMG or DFE) |
chi2(5) = 90.38 chi2(5) = 0.01 |
Prob>chi2 =0.000 Prob>chi2 =1.00 |
||||
|
Note: ***, ** and * represent statistical significance at 1%, 5%, 10% level respectively. Source: authors’ calculations | ||||||
| Variables | MG | PMG | DFE | |||
|---|---|---|---|---|---|---|
| Coefficient | Probability | Coefficient | Probability | Coefficient | Probability | |
| Long-run relationship | ||||||
| lnMEX | -0.073165 | 0.344 | -0.0258854* | 0.095 | -0.014343 | 0.905 |
| lnIND | -0.6509841 | 0.223 | -0.0342161*** | 0.000 | -0.1193859* | 0.093 |
| lnTECH | -0.0559915 | 0.167 | 0.001171 | 0.577 | 0.0123523 | 0.614 |
| lnEC | 0.6173261 | 0.264 | 1.237353*** | 0.000 | 2.096976*** | 0.003 |
| lnGDP | 0.4541743 | 0.407 | -0.1844376*** | 0.000 | -0.2780919 | 0.197 |
| Short-run relationship | ||||||
| EC | 0.4554397*** | 0.000 | 0.237796*** | 0.002 | 0.0427209 | 0.112 |
| ∆lnMEX | 0.0427715 | 0.313 | 0.0321529** | 0.042 | -0.0428389*** | 0.002 |
| ∆lnIND | 0.1194509** | 0.046 | 0.1646023** | 0.051 | -0.0044866 | 0.212 |
| ∆lnTECH | -0.0191826** | 0.038 | -0.0147227** | 0.016 | -0.0052607** | 0.015 |
| ∆lnEC | 0.82537*** | 0.000 | 0.8540665*** | 0.000 | 0.8844481*** | 0.000 |
| ∆lnGDP | 0.1317669* | 0.096 | 0.12743 | 0.142 | 0.1337392** | 0.024 |
| _cons | 1.873465*** | 0.008 | 1.376883*** | 0.002 | 0.4765038* | 0.053 |
|
Hausman test (MG or PMG) Hausman test (PMG or DFE) |
chi2(5) = 14.03 chi2(5) = 1.51 |
Prob>chi2 =0.0154 Prob>chi2 =0.9114 |
||||
|
Note: ***, ** and * represent statistical significance at 1%, 5%, 10% level respectively.
Source: authors’ calculations | ||||||
| Variables |
GMM | |
|---|---|---|
| Coefficient | Probability | |
| Group 1 | ||
| lnMEX | 0.1270882 | 0.532 |
| lnIND | -0.1723895 | 0.493 |
| lnTECH | -0.0362646 | 0.413 |
| lnEC | 1.023732*** | 0.000 |
| lnGDP | 0.1070246 | 0.654 |
| _cons | -5.319957*** | 0.007 |
| Wald chi2(5) | 3546.72*** | 0.000 |
|
Arellano-Bond test for AR (2) in first differences: Hansen test of over-identifying restrictions: |
z = 1.12 chi2(34) = 12.76 |
Pr > z = 0.262 Prob > chi2 = 1.000 |
| Group 2 | ||
| lnMEX | 0.1007923 | 0.141 |
| lnIND | -0.0144558 | 0.456 |
| lnTECH | 0.0212856** | 0.013 |
| lnEC | 1.229355*** | 0.000 |
| lnGDP | -0.1306995** | 0.016 |
| _cons | -6.821844*** | 0.000 |
| Wald chi2(5) | 1975.88*** | 0.000 |
|
Arellano-Bond test for AR (2) in first differences: Hansen test of over-identifying restrictions: |
z = -0.57 chi2(34) = 9.49 |
Pr > z = 0.570 Prob > chi2 = 1.000 |
|
Note: ***, ** and * represent statistical significance at 1%, 5%, 10% level respectively.
Source: authors’ calculations | ||
| Statistic | Probability | |
|---|---|---|
| Breusch-Pagan / Cook-Weisberg test for heteroskedasticity | ||
| Group 1 | chi2(1) =0.35 | Prob > chi2=0.5546 |
| Group 2 | chi2(1) =0.83 | Prob > chi2=0.3616 |
| Wooldridge test for autocorrelation test | ||
| Group 1 | F (1, 13) =980.594 | Prob > F =0.0000 |
| Group 2 | F (1, 11) =50.925 | Prob > F =0.0000 |
| Specification error test: Ramsey RESET test | ||
| Group 1 | F (3, 481) =33.37 | Prob > F =0.0000 |
| Group 2 | F (3, 411) =30.18 | Prob > F =0.0000 |
| Source: authors’ calculations | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
