Submitted:
04 May 2024
Posted:
06 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Systemic Therapies
2.1. Tyrosine Kinase Inhibitors (TKIs)
2.2. Immune Checkpoint Inhibitors (ICIs)
2.2.1. Efficacy & Safety
2.2.2. Response Assessment
2.2.3. Biomarkers
3. Future Directions
4. Conclusion
Funding
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global Burden of Primary Liver Cancer in 2020 and Predictions to 2040. Journal of Hepatology 2022, 77, 1598–1606. [CrossRef]
- Rumgay, H.; Ferlay, J.; de Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.E.P.P.; Soerjomataram, I. Global, Regional and National Burden of Primary Liver Cancer by Subtype. Eur J Cancer 2022, 161, 108–118. [CrossRef]
- Singal, A.G.; Kanwal, F.; Llovet, J.M. Global Trends in Hepatocellular Carcinoma Epidemiology: Implications for Screening, Prevention and Therapy. Nat Rev Clin Oncol 2023, 20, 864–884. [CrossRef]
- Llovet, J.M.; Villanueva, A.; Marrero, J.A.; Schwartz, M.; Meyer, T.; Galle, P.R.; Lencioni, R.; Greten, T.F.; Kudo, M.; Mandrekar, S.J.; et al. Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology 2021, 73, 158–191. [CrossRef]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver Transplantation for the Treatment of Small Hepatocellular Carcinomas in Patients with Cirrhosis. N Engl J Med 1996, 334, 693–699. [CrossRef]
- Pavel, M.-C.; Fuster, J. Expansion of the Hepatocellular Carcinoma Milan Criteria in Liver Transplantation: Future Directions. World J Gastroenterol 2018, 24, 3626–3636. [CrossRef]
- Yao, F.Y.; Roberts, J.P. Applying Expanded Criteria to Liver Transplantation for Hepatocellular Carcinoma: Too Much Too Soon, or Is Now the Time? Liver Transplantation 2004, 10, 919–921. [CrossRef]
- Barreto, S.G.; Strasser, S.I.; McCaughan, G.W.; Fink, M.A.; Jones, R.; McCall, J.; Munn, S.; Macdonald, G.A.; Hodgkinson, P.; Jeffrey, G.P.; et al. Expansion of Liver Transplantation Criteria for Hepatocellular Carcinoma from Milan to UCSF in Australia and New Zealand and Justification for Metroticket 2.0. Cancers 2022, 14, 2777. [CrossRef]
- Bento de Sousa, J.H.; Calil, I.L.; Tustumi, F.; da Cunha Khalil, D.; Felga, G.E.G.; de Arruda Pecora, R.A.; de Almeida, M.D. Comparison between Milan and UCSF Criteria for Liver Transplantation in Patients with Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Transl Gastroenterol Hepatol 2021, 6, 11. [CrossRef]
- Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Ng, C.H.; Muthiah, M.D.; Tan, E.X.; Xiao, J.; Lim, S.Y.; Pin Tang, A.S.; Pan, X.H.; et al. UNOS Down-Staging Criteria for Liver Transplantation of Hepatocellular Carcinoma: Systematic Review and Meta-Analysis of 25 Studies. Clin Gastroenterol Hepatol 2023, 21, 1475–1484. [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat Rev Dis Primers 2021, 7, 1–28. [CrossRef]
- Sokolich, J.; Buggs, J.; LaVere, M.; Robichaux, K.; Rogers, E.; Nyce, S.; Kumar, A.; Bowers, V. HCC Liver Transplantation Wait List Dropout Rates Before and After the Mandated 6-Month Wait Time. Am Surg 2020, 86, 1592–1595. [CrossRef]
- Gao, Q.; Anwar, I.J.; Abraham, N.; Barbas, A.S. Liver Transplantation for Hepatocellular Carcinoma after Downstaging or Bridging Therapy with Immune Checkpoint Inhibitors. Cancers 2021, 13, 6307. [CrossRef]
- Crocetti, L.; Bozzi, E.; Scalise, P.; Bargellini, I.; Lorenzoni, G.; Ghinolfi, D.; Campani, D.; Balzano, E.; De Simone, P.; Cioni, R. Locoregional Treatments for Bridging and Downstaging HCC to Liver Transplantation. Cancers 2021, 13, 5558. [CrossRef]
- Lewis, S.; Dawson, L.; Barry, A.; Stanescu, T.; Mohamad, I.; Hosni, A. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: From Infancy to Ongoing Maturity. JHEP Rep 2022, 4, 100498. [CrossRef]
- Mou, L.; Tian, X.; Zhou, B.; Zhan, Y.; Chen, J.; Lu, Y.; Deng, J.; Deng, Y.; Wu, Z.; Li, Q.; et al. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front Oncol 2021, 11, 752725. [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. New England Journal of Medicine 2008, 359, 378–390. [CrossRef]
- Saidi, R.F.; Shah, S.A.; Rawson, A.P.; Grossman, S.; Piperdi, B.; Bozorgzadeh, A. Treating Hepatocellular Carcinoma with Sorafenib in Liver Transplant Patients: An Initial Experience. Transplant Proc 2010, 42, 4582–4584. [CrossRef]
- Aless; Vitale, R.; Salinas, F.; Zanus, G.; Lombardi, G.; Senzolo, M.; Russo, F.; Cillo, U. Could Sorafenib Disclose New Prospects as Bridging Therapy to Liver Transplantation in Patients with Hepatocellular Carcinoma? Journal of Liver 2, 1–3. [CrossRef]
- Golse, N.; Radenne, S.; Rode, A.; Ducerf, C.; Mabrut, J.-Y.; Merle, P. Liver Transplantation After Neoadjuvant Sorafenib Therapy: Preliminary Experience and Literature Review. Exp Clin Transplant 2018, 16, 227–236. [CrossRef]
- Minoux, K.; Lassailly, G.; Ningarhari, M.; Lubret, H.; El Amrani, M.; Canva, V.; Truant, S.; Mathurin, P.; Louvet, A.; Lebuffe, G.; et al. Neo-Adjuvant Use of Sorafenib for Hepatocellular Carcinoma Awaiting Liver Transplantation. Transpl Int 2022, 35, 10569. [CrossRef]
- Kulik, L.; Vouche, M.; Koppe, S.; Lewandowski, R.J.; Mulcahy, M.F.; Ganger, D.; Habib, A.; Karp, J.; Al-Saden, P.; Lacouture, M.; et al. Prospective Randomized Pilot Study of Y90+/−sorafenib as Bridge to Transplantation in Hepatocellular Carcinoma. Journal of Hepatology 2014, 61, 309–317. [CrossRef]
- Hoffmann, K.; Ganten, T.; Gotthardtp, D.; Radeleff, B.; Settmacher, U.; Kollmar, O.; Nadalin, S.; Karapanagiotou-Schenkel, I.; Von Kalle, C.; Jäger, D.; et al. Impact of Neo-Adjuvant Sorafenib Treatment on Liver Transplantation in HCC Patients - a Prospective, Randomized, Double-Blind, Phase III Trial. BMC Cancer 2015, 15, 392. [CrossRef]
- Abdelrahim, M.; Victor, D.; Esmail, A.; Kodali, S.; Graviss, E.A.; Nguyen, D.T.; Moore, L.W.; Saharia, A.; McMillan, R.; Fong, J.N.; et al. Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience. Cancers 2022, 14, 650. [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. New England Journal of Medicine 2018, 379, 54–63. [CrossRef]
- Bhardwaj, H.; Fritze, D.; Mais, D.; Kadaba, V.; Arora, S.P. Neoadjuvant Therapy With Cabozantinib as a Bridge to Liver Transplantation in Patients With Hepatocellular Carcinoma (HCC): A Case Report. Frontiers in Transplantation 2022, 1.
- Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Perspectives. World J Gastroenterol 2023, 29, 1054–1075. [CrossRef]
- Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma | NEJM Available online: https://www.nejm.org/doi/full/10.1056/nejmoa1915745 (accessed on 26 February 2024).
- Wang, T.; Chen, Z.; Liu, Y.; Jia, Y.; Ju, W.; Chen, M.; Zhao, Q.; Wang, D.; Guo, Z.; Tang, Y.; et al. Neoadjuvant Programmed Cell Death 1 Inhibitor before Liver Transplantation for HCC Is Not Associated with Increased Graft Loss. Liver Transpl 2023, 29, 598–606. [CrossRef]
- Kuo, F.-C.; Chen, C.-Y.; Lin, N.-C.; Liu, C.; Hsia, C.-Y.; Loong, C.-C. Optimizing the Safe Washout Period for Liver Transplantation Following Immune Checkpoint Inhibitors with Atezolizumab, Nivolumab, or Pembrolizumab. Transplant Proc 2023, 55, 878–883. [CrossRef]
- Tabrizian, P.; Florman, S.S.; Schwartz, M.E. PD-1 Inhibitor as Bridge Therapy to Liver Transplantation? American Journal of Transplantation 2021, 21, 1979–1980. [CrossRef]
- Chen, Z.; Hong, X.; Wang, T.; Guo, Y.; Huang, C.; Li, M.; He, X.; Ju, W.; Chen, M. Prognosis after Liver Transplantation in Patients Treated with Anti-PD-1 Immunotherapy for Advanced Hepatocellular Carcinoma: Case Series. Ann Palliat Med 2021, 10, 9354–9361. [CrossRef]
- Schnickel, G.T.; Fabbri, K.; Hosseini, M.; Misel, M.; Berumen, J.; Parekh, J.; Mekeel, K.; Dehghan, Y.; Kono, Y.; Ajmera, V. Liver Transplantation for Hepatocellular Carcinoma Following Checkpoint Inhibitor Therapy with Nivolumab. Am J Transplant 2022, 22, 1699–1704. [CrossRef]
- Sogbe, M.; López-Guerra, D.; Blanco-Fernández, G.; Sangro, B.; Narváez-Rodriguez, I. Durvalumab as a Successful Downstaging Therapy for Liver Transplantation in Hepatocellular Carcinoma: The Importance of a Washout Period. Transplantation 2021, 105, e398–e400. [CrossRef]
- Chen, G.-H.; Wang, G.-B.; Huang, F.; Qin, R.; Yu, X.-J.; Wu, R.-L.; Hou, L.-J.; Ye, Z.-H.; Zhang, X.-H.; Zhao, H.-C. Pretransplant Use of Toripalimab for Hepatocellular Carcinoma Resulting in Fatal Acute Hepatic Necrosis in the Immediate Postoperative Period. Transpl Immunol 2021, 66, 101386. [CrossRef]
- Schwacha-Eipper, B.; Minciuna, I.; Banz, V.; Dufour, J.F. Immunotherapy as a Downstaging Therapy for Liver Transplantation. Hepatology 2020, 72, 1488–1490. [CrossRef]
- Nordness, M.F.; Hamel, S.; Godfrey, C.M.; Shi, C.; Johnson, D.B.; Goff, L.W.; O’Dell, H.; Perri, R.E.; Alexopoulos, S.P. Fatal Hepatic Necrosis after Nivolumab as a Bridge to Liver Transplant for HCC: Are Checkpoint Inhibitors Safe for the Pretransplant Patient? American Journal of Transplantation 2020, 20, 879–883. [CrossRef]
- Qiao, Z.; Zhang, Z.; Lv, Z.; Tong, H.; Xi, Z.; Wu, H.; Chen, X.; Xia, L.; Feng, H.; Zhang, J.; et al. Neoadjuvant Programmed Cell Death 1 (PD-1) Inhibitor Treatment in Patients With Hepatocellular Carcinoma Before Liver Transplant: A Cohort Study and Literature Review. Frontiers in Immunology 2021, 12.
- Abdelrahim, M.; Esmail, A.; Umoru, G.; Westhart, K.; Abudayyeh, A.; Saharia, A.; Ghobrial, R.M. Immunotherapy as a Neoadjuvant Therapy for a Patient with Hepatocellular Carcinoma in the Pretransplant Setting: A Case Report. Curr Oncol 2022, 29, 4267–4273. [CrossRef]
- Schmiderer, A.; Zoller, H.; Niederreiter, M.; Effenberger, M.; Oberhuber, G.; Krendl, F.J.; Oberhuber, R.; Schneeberger, S.; Tilg, H.; Djanani, A. Liver Transplantation after Successful Downstaging of a Locally Advanced Hepatocellular Carcinoma with Systemic Therapy. Dig Dis 2023, 41, 641–644. [CrossRef]
- Dave, S.; Yang, K.; Schnickel, G.T.; Kono, Y.; Delebecque, F.; Arellano, D.; Liu, A.; Zhang, X.; Tu, X.M.; Ajmera, V. The Impact of Treatment of Hepatocellular Carcinoma With Immune Checkpoint Inhibitors on Pre– and Post–Liver Transplant Outcomes. Transplantation 2022, 106, e308–e309. [CrossRef]
- Tsujita, Y.; Sofue, K.; Ueshima, E.; Ueno, Y.; Hori, M.; Tsurusaki, M.; Murakami, T. Evaluation and Prediction of Treatment Response for Hepatocellular Carcinoma. Magn Reson Med Sci 2023, 22, 209–220. [CrossRef]
- Bruix, J.; Sherman, M.; Llovet, J.M.; Beaugrand, M.; Lencioni, R.; Burroughs, A.K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodés, J.; et al. Clinical Management of Hepatocellular Carcinoma. Conclusions of the Barcelona-2000 EASL Conference. European Association for the Study of the Liver. J Hepatol 2001, 35, 421–430. [CrossRef]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) Assessment for Hepatocellular Carcinoma. Semin Liver Dis 2010, 30, 52–60. [CrossRef]
- Kim, M.N.; Kim, B.K.; Han, K.-H.; Kim, S.U. Evolution from WHO to EASL and mRECIST for Hepatocellular Carcinoma: Considerations for Tumor Response Assessment. Expert Rev Gastroenterol Hepatol 2015, 9, 335–348. [CrossRef]
- Kudo, M.; Montal, R.; Finn, R.S.; Castet, F.; Ueshima, K.; Nishida, N.; Haber, P.K.; Hu, Y.; Chiba, Y.; Schwartz, M.; et al. Objective Response Predicts Survival in Advanced Hepatocellular Carcinoma Treated with Systemic Therapies. Clin Cancer Res 2022, 28, 3443–3451. [CrossRef]
- Lee, D.H.; Hwang, S.; Koh, Y.H.; Lee, K.-H.; Kim, J.Y.; Kim, Y.J.; Yoon, J.-H.; Lee, J.-H.; Park, J.-W. Outcome of Initial Progression During Nivolumab Treatment for Hepatocellular Carcinoma: Should We Use iRECIST? Front Med (Lausanne) 2021, 8, 771887. [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.-L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology 2018, 69, 182–236. [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J Hepatol 2022, 76, 862–873. [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncology 2020, 6, e204564. [CrossRef]
- Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma | NEJM Evidence Available online: https://evidence.nejm.org/doi/full/10.1056/EVIDoa2100070 (accessed on 11 March 2024).
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus Sorafenib in Advanced Hepatocellular Carcinoma (CheckMate 459): A Randomised, Multicentre, Open-Label, Phase 3 Trial. The Lancet Oncology 2022, 23, 77–90. [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomised, Open-Label Phase 2 Trial. Lancet Oncol 2018, 19, 940–952. [CrossRef]
- Yang, Y.; Chen, D.; Zhao, B.; Ren, L.; Huang, R.; Feng, B.; Chen, H. The Predictive Value of PD-L1 Expression in Patients with Advanced Hepatocellular Carcinoma Treated with PD-1/PD-L1 Inhibitors: A Systematic Review and Meta-Analysis. Cancer Med 2023, 12, 9282–9292. [CrossRef]
- Pinato, D.J.; Mauri, F.A.; Spina, P.; Cain, O.; Siddique, A.; Goldin, R.; Victor, S.; Pizio, C.; Akarca, A.U.; Boldorini, R.L.; et al. Clinical Implications of Heterogeneity in PD-L1 Immunohistochemical Detection in Hepatocellular Carcinoma: The Blueprint-HCC Study. Br J Cancer 2019, 120, 1033–1036. [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015, 372, 2509–2520. [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. Lancet Oncol 2016, 17, 717–726. [CrossRef]
- Frenel, J.-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J Clin Oncol 2017, 35, 4035–4041. [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol 2020, 38, 1–10. [CrossRef]
- Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164 - PubMed Available online: https://pubmed.ncbi.nlm.nih.gov/31725351/ (accessed on 11 March 2024).
- Eso, Y.; Shimizu, T.; Takeda, H.; Takai, A.; Marusawa, H. Microsatellite Instability and Immune Checkpoint Inhibitors: Toward Precision Medicine against Gastrointestinal and Hepatobiliary Cancers. J Gastroenterol 2020, 55, 15–26. [CrossRef]
- Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Kodama, K.; Morio, K.; Fujino, H.; et al. Complete Response to Pembrolizumab in Advanced Hepatocellular Carcinoma with Microsatellite Instability. Clin J Gastroenterol 2020, 13, 867–872. [CrossRef]
- Kawaoka, T.; Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Morio, K.; Fujino, H.; et al. Incidence of Microsatellite Instability-High Hepatocellular Carcinoma among Japanese Patients and Response to Pembrolizumab. Hepatol Res 2020, 50, 885–888. [CrossRef]
- Muhammed, A.; Fulgenzi, C.A.M.; Dharmapuri, S.; Pinter, M.; Balcar, L.; Scheiner, B.; Marron, T.U.; Jun, T.; Saeed, A.; Hildebrand, H.; et al. The Systemic Inflammatory Response Identifies Patients with Adverse Clinical Outcome from Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2021, 14, 186. [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol 2020, 21, 1353–1365. [CrossRef]
- Aggarwal, C.; Ben-Shachar, R.; Gao, Y.; Hyun, S.W.; Rivers, Z.; Epstein, C.; Kaneva, K.; Sangli, C.; Nimeiri, H.; Patel, J. Assessment of Tumor Mutational Burden and Outcomes in Patients With Diverse Advanced Cancers Treated With Immunotherapy. JAMA Network Open 2023, 6, e2311181. [CrossRef]
- Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Laheru, D.A.; Frampton, G.M.; et al. PD-L1 Expression and Tumor Mutational Burden Are Independent Biomarkers in Most Cancers. JCI Insight 2019, 4, e126908, 126908. [CrossRef]
- Sangro, B.; Melero, I.; Wadhawan, S.; Finn, R.S.; Abou-Alfa, G.K.; Cheng, A.-L.; Yau, T.; Furuse, J.; Park, J.-W.; Boyd, Z.; et al. Association of Inflammatory Biomarkers with Clinical Outcomes in Nivolumab-Treated Patients with Advanced Hepatocellular Carcinoma. J Hepatol 2020, 73, 1460–1469. [CrossRef]
- Dharmapuri, S.; Özbek, U.; Lin, J.-Y.; Sung, M.; Schwartz, M.; Branch, A.D.; Ang, C. Predictive Value of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Advanced Hepatocellular Carcinoma Patients Treated with Anti-PD-1 Therapy. Cancer Med 2020, 9, 4962–4970. [CrossRef]
- Wong, C.C.; Yu, J. Gut Microbiota in Colorectal Cancer Development and Therapy. Nat Rev Clin Oncol 2023, 20, 429–452. [CrossRef]
- Checkpoint Inhibitor Responses Can Be Regulated by the Gut Microbiota – A Systematic Review - PMC Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465958/ (accessed on 11 March 2024).
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut Microbiome Affects the Response to Anti-PD-1 Immunotherapy in Patients with Hepatocellular Carcinoma. J Immunother Cancer 2019, 7, 193. [CrossRef]
- Mao, J.; Wang, D.; Long, J.; Yang, X.; Lin, J.; Song, Y.; Xie, F.; Xun, Z.; Wang, Y.; Wang, Y.; et al. Gut Microbiome Is Associated with the Clinical Response to Anti-PD-1 Based Immunotherapy in Hepatobiliary Cancers. J Immunother Cancer 2021, 9, e003334. [CrossRef]
- Lee, P.-C.; Wu, C.-J.; Hung, Y.-W.; Lee, C.J.; Chi, C.-T.; Lee, I.-C.; Yu-Lun, K.; Chou, S.-H.; Luo, J.-C.; Hou, M.-C.; et al. Gut Microbiota and Metabolites Associate with Outcomes of Immune Checkpoint Inhibitor-Treated Unresectable Hepatocellular Carcinoma. J Immunother Cancer 2022, 10, e004779. [CrossRef]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; Castro de Moura, M.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-Specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017, 153, 812–826. [CrossRef]
- Zucman-Rossi, J.; Villanueva, A.; Nault, J.-C.; Llovet, J.M. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149, 1226-1239.e4. [CrossRef]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin Cancer Res 2019, 25, 2116–2126. [CrossRef]
- Morita, M.; Nishida, N.; Sakai, K.; Aoki, T.; Chishina, H.; Takita, M.; Ida, H.; Hagiwara, S.; Minami, Y.; Ueshima, K.; et al. Immunological Microenvironment Predicts the Survival of the Patients with Hepatocellular Carcinoma Treated with Anti-PD-1 Antibody. Liver Cancer 2021, 10, 380–393. [CrossRef]
- RenJi Hospital Safety and Efficacy Study of Pembrolizumab in Combination With LENvatinib in Participants With Hepatocellular Carcinoma (HCC) Before Liver Transplant as Neoadjuvant TherapY--PLENTY Randomized Clinical Trial; clinicaltrials.gov, 2020;
- Sohal, D. Durvalumab (MEDI4736) and Tremelimumab for Hepatocellular Carcinoma in Patients Listed for a Liver Transplant; clinicaltrials.gov, 2023;
- Abdelrahim, M. Atezolizumab and Bevacizumab Pre-Liver Transplantation for Patients With Hepatocellular Carcinoma Beyond Milan Criteria: A Feasibility Study; clinicaltrials.gov, 2023;
- RenJi Hospital Safety and Efficacy Study of Durvalumab in Combination With Lenvatinib in Participants With Locally Advanced and Metastatic Hepatocellular Carcinoma-- DULECT2020-1 Trial; clinicaltrials.gov, 2020;
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University A Prospective, Single-Arm Study of Downstaging Protocol Containing Immunotherapy for HCC Beyond the Milan Criteria Before Liver Transplantation; clinicaltrials.gov, 2023;
| Author/year | Milan Criteria | Treatment | No. of transplanted patients | Post-LT DFS | Post-LT OS | Post-LT follow-up (months) |
|---|---|---|---|---|---|---|
| Minoux et al. (2022) [21] | In: 69.4% Out: 30.7% |
Sorafenib | 26 | 48% | 77% | 60 |
| Abdelrahim et al. (2022) [24] | In: 74% Out: 26% |
TACE +/- Sorafenib | 128 | 100% vs 67.2%, p=0.07 | 77.8% vs 61.5%, p=0.51 | 60 |
| Bhardwaj et al. (2022) [26] | In: 100% | Cabozantinib | 2 | 50% | 50% | 21 |
| Golse et al. (2018) [20] | In: 60% Out: 40% |
3/5: hepatectomy or TACE then Sorafenib 2/5: Sorafenib |
5 | 100% | NA | 27 |
| Hoffmann et al. (2015) [23] | In: 100% | TACE + Sorafenib vs TACE+ Placebo |
17 | HR: 1.259 (95%CI: 0.486, 3.270) | NA | 10 |
| Kulik et al. (2014) [22] | up to UCSF criteria: 100% | Y90 radioembolization +/- Sorafenib | 17 | NA | 72% vs 70%, p=0.57 | 36 |
| Vitale et al. (2013) [19] | Out: 100% | Sorafenib | 6 | 66% | 66% | (27-41) |
| Saidi et al. (2010) [18] | In: 100% | Sorafenib | 7 | 85% | NA | NA |
| Author/year | Milan Criteria | Treatment | No. of transplanted patients | WashoutPeriod (Days) | Post-LT IS-protocol included steroids | BPAR | HCC recurrence | Post-LT follow-up (months) |
|---|---|---|---|---|---|---|---|---|
| Schmiderer et al (2023) [40] | Out: 100% | Atezolizumab +Bevacizumab | 1 | 42 | Yes | No | No | 12 |
| Abdelrahim et al. (2022) [39] | Out: 100% | Atezolizumab +Bevacizumab | 1 | 60 | No | No | No | 12 |
| Dave et al (2022) [41] | In: 87% Out: 13% |
Nivolumab | 5/8 | 11–354 (Median: 105) |
NA | Yes: 40% | No | NA |
| Schnickel et al (2022) [33] | NA | Nivolumab | 5 | 10-330 | NA: 40% No: 20% Yes: 40% |
Yes: 40% | No | 2–16 |
| Tabrizian et al. (2021) [31] | up to UCSF criteria: 100% | Nivolumab | 9 | 1-253 (80% of patients <= 30 days) | Yes | No | No | 8-23 (median: 16) |
| Chen et al (2021) [32] | Out: 100% | Nivolumab | 5 | Mean: 63.80±18.26 | No | No | Yes: 40% | NA |
| Sogbe et al. (2021) [34] | Out: 100% | Durvalumab | 1 | 90 | Yes | No | No | 24 |
| Chen et al. (2021) [35] | In: 100% | Toripalimab | 1 | 93 | Yes | Yes: 100%, fatal hepatic necrosis | NA | NA |
| Qiao et al. (2021) [38] | NA | (Pembrolizumab or Camrelizumab) + Lenvatinib | 7 | 42 | Yes | Yes: 14.3% | NA | NA |
| Nordness et al. (2020) [37] | In: 100% | Nivolumab | 1 | 8 | Yes | Yes: 100%, fatal hepatic necrosis | NA | NA |
| Schwacha-Eipper et al. (2020) [36] | In: 100% | Nivolumab | 1 | 105 | NA | No | No | 12 |
| RECIST criteria | mRECIST criteria |
|---|---|
| CR: Disappearance of all target lesions | CR: Disappearance of any intra-tumoral arterial enhancement in all target lesions. |
| PR: ≥30% reduction of the sum of the diameters of target lesions. | PR: ≥30% reduction of the sum of the diameters of viable (enhancing) target lesions. |
| SD: features classified as neither PR nor PD. | SD: features classified as neither PR nor PD. |
| PD: ≥20% increase of the sum of the diameter of target legions. | PD: ≥20% increase of the sum of the diameter of viable (enhancing) target legions. |
| ClinicalTrials.gov ID | Bridging therapy | Trial phase | Primary Endpoints |
|---|---|---|---|
| NCT04425226 [79] | Pembrolizumab + Lenvatinib | NA | RFS |
| NCT05027425 [80] | Durvalumab + Tremelimumab | 2 | Cellular rejection rate |
| NCT05185505 [81] | Atezolizumab + Bevacizumab | 4 | Acute rejection rate post liver transplant |
| NCT04443322 [82] | Durvalumab + Lenvatinib | NA | RFS, PFS |
| NCT05475613 [83] | Anti-PD-1 inhibitors (Tislelizumab, Pembrolizumab, Nivolumab) | 2 | 2-year event-free survival rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
