Submitted:
29 April 2024
Posted:
30 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Characteristics
3.2. Serum Lactate Levels
3.2. Multivariate Analysis
3.4. Receiver Operating Characteristic Curve of Serum Lactate Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kellum, J.A.; Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 2013, 4, 204. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Joshi, M.; Gupta, S.; Teoh, W.Y.; Gatta, F.; Snosi, M. Acute Kidney Injury Associated with Cardiac Surgery: A Comprehensive Literature Review. Braz J Cardiovasc Surg 2020, 35, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Pickkers, P.; Darmon, M.; Hoste, E.; Joannidis, M.; Legrand, M.; Ostermann, M.; Prowle, J.R.; Schneider, A.; Schetz, M. Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med 2021, 47, 835–850. [Google Scholar] [CrossRef]
- Su, L.J.; Li, Y.M.; Kellum, J.A.; Peng, Z.Y. Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis. Br J Anaesth 2018, 121, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Thiele, R.H.; Isbell, J.M.; Rosner, M.H. AKI associated with cardiac surgery. Clin J Am Soc Nephrol 2015, 10, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bellomo, R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol 2017, 13, 697–711. [Google Scholar] [CrossRef]
- Boyer, N. ; Eldridge, J,; Prowle, J.R.; Forni, L.G. Postoperative Acute Kidney Injury. Clin J Am Soc Nephrol 2022, 17, 1535-1545. [CrossRef]
- Hobson, C.; Ruchi, R.; Bihorac, A. Perioperative Acute Kidney Injury: Risk Factors and Predictive Strategies. Crit Care Clin 2017, 33, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves M, Gameiro J, Pereira M, Rodrigues, N. ; Godinho I.; Neves, M., Gouveia, J., Jorge, S., Eds.; Lopes, J.A. Serum lactates and acute kidney injury in patients with sepsis: A cohort analysis. Cogent Med 2017, 4, 1388209. [Google Scholar] [CrossRef]
- Yan G, Wang D, Tang C, Ma, G. The Association of Serum Lactate Level with the Occurrence of Contrast-Induced Acute Kidney Injury and Long-Term Prognosis in Patients Undergoing Emergency Percutaneous Coronary Intervention. Int J Gen Med 2021, 14, 3087-3097. [CrossRef]
- Andersen LW, Holmberg MJ, Doherty, M.; Khabbaz, K.; Lerner, A.; Berg, K.M.; Donnino, M.W. Postoperative Lactate Levels and Hospital Length of Stay After Cardiac Surgery. J Cardiothorac Vasc Anesth 2015, 29, 1454-1460. [CrossRef]
- Gomez-Martinez, R.; Tlacuilo-Parra, A.; Garibaldi-Covarrubias, R. Use of complementary and alternative medicine in children with cancer in Occidental, Mexico. Pediatr Blood Cancer 2007, 49, 820–823. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, J.M.; Hoenig, M.P.; Jones, G.R.D.; Lamb, E.J.; Parikh, C.R.; Tolan, N.V.; Wilson, F.P. AACC Guidance Document on Laboratory Investigation of Acute Kidney Injury. J Appl Lab Med 2021, 6, 1316–1337. [Google Scholar] [CrossRef]
- Chavez-Iniguez, J.S.; Madero, M. Global Perspectives in Acute Kidney Injury: Mexico. Kidney360 2022, 3, 737–739. [Google Scholar] [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Hans-Joachim, A. Acute kidney injury. Nat Rev Dis Primers 2021, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Koreeda, D.; Kobayashi, S.; Iwashita, Y.; Shigematu, T. Renal replacement therapy for acute kidney injury. Ren. Replace. Ther 2016, 27, 31. [Google Scholar] [CrossRef]
- Bairey-Merz, C.N.; Dember, L.M.; Ingelfinger, J.R.; Vinson, A.; Neugarten, J.; Sandberg, K.L.; Sullivan, J.C.; Maric-Bilkan, C.; Rankin, T.L.; Kimmel, P.L.; Star, R.A. Sex and the kidneys: current understanding and research opportunities. Nat Rev Nephrol 2019, 15, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh-Mahani, F.; Khaksari, M.; Raji-Amirhasani, A. Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1. Int Urol Nephrol 2021, 53, 2299–2310. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yang, L.; Ye, N.; Bian, W.; Ma, C.; Zhao, D.; Liu, J.; Hao, Y.; Yang, N.; Cheng, H. In-hospital acute kidney injury and atrial fibrillation: incidence, risk factors, and outcome. Ren Fail 2021, 43, 949–957. [Google Scholar] [CrossRef]
- Karim, H.M.; Yunus, M.; Saikia, M.K.; Kalita, J.P.; Mandal, M. Incidence and progression of cardiac surgery-associated acute kidney injury and its relationship with bypass and cross clamp time. Ann Card Anaesth 2017, 20, 22–27. [Google Scholar] [CrossRef] [PubMed]
- López-Delgado, J.C.; Esteve, F.; Torrado, H.; Rodríguez-Castro, D.; Carrio, M.L.; Farrero, E.; Javierre, C.; Ventura, J.L.; Manez, R. Influence of acute kidney injury on short- and long-term outcomes in patients undergoing cardiac surgery: risk factors and prognostic value of a modified RIFLE classification. Crit Care 2013, 17, R293. [Google Scholar] [CrossRef]
- Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail 2003, 25, 775-86. [CrossRef]
- Lassnigg, A.; Donner, E.; Grubhofer, G.; Presterl, E.; Druml, W.; Hiesmayr, M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 2000, 11, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, R.; Komaru, Y.; Miyamoto, Y.; Yoshida, T.; Yoshimoto, K.; Isshiki, R.; Mayumi, K.; Yamashita, T.; Hamasaki, Y.; Nangaku, M.; Noiri, E.; Morimura, N.; Doi, K. Response to different furosemide doses predicts AKI progression in ICU patients with elevated plasma NGAL levels. Ann Intensive Care 2018, 17, 8. [Google Scholar] [CrossRef]
- Okorie, O.N.; Dellinger, P. Lactate: biomarker and potential therapeutic target. Crit Care Clin 2011, 27, 299–326. [Google Scholar] [CrossRef]
- Vincent, J.L.; Quintairos, E.S.A.; Couto L, Jr.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 2016, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, H. Normalized lactate load is associated with development of acute kidney injury in patients who underwent cardiopulmonary bypass surgery. PLoS One 2015, 10, e0120466. [Google Scholar] [CrossRef] [PubMed]
- Radovic, M.; Bojic, S.; Kotur-Stevuljevic, J.; Lezaic, V.; Milicic, B.; Velinovic, M.; Karan, R.; Simic-Ogrizovic, S. Serum Lactate as Reliable Biomarker of Acute Kidney Injury in Low-risk Cardiac Surgery Patients. J Med Biochem 2019, 38, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Surgenor, S.D.; DeFoe, G.R.; Fillinger, M.P.; Likosky, D.S.; Groom, R.C.; Clark, C.; Helm, R.E.; Kramer, R.S.; Leavitt, B.J.; Klemperer, J.D.; Krumholz, C.F.; Westbrook, B.M.; Galatis, D.J.; Frumiento, C.; Ross, C.S.; Olmstead, E.M.; O'Connor, G.T. Intraoperative red blood cell transfusion during coronary artery bypass graft surgery increases the risk of postoperative low-output heart failure. Circ. J. 2006, 114, I43–8. [Google Scholar] [CrossRef]
- Czempik, P.F.; Gierczak, D.; Wilczek, D.; Krzych, Ł.J. The Impact of Red Blood Cell Transfusion on Blood Lactate in Non-Bleeding Critically Ill Patients-A Retrospective Cohort Study. J Clin Med 2022, 17; 11. [CrossRef]
- Fakhari, S.; Bavil, F.M.; Bilehjani, E.; Abolhasani, S.; Mirinazhad, M.; Naghipour, B. Prophylactic furosemide infusion decreasing early major postoperative renal dysfunction in on-pump adult cardiac surgery: a randomized clinical trial. Res Rep Urol 2017, 9, 5–13. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, L.; Zhu, B.; Wen, Y.; Xi, X.M. Fluid balance and mortality in critically ill patients with acute kidney injury: a multicenter prospective epidemiological study. Crit Care 2015, 19, 371. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Ozrazgat-Baslanti, T.; Kuxhausen, A.; Thottakkara, P.; Efron, P.A.; Moore, F.A.; Moldawer, L.L.; Segal, M.S.; Bihorac, A. Cost and Mortality Associated with Postoperative Acute Kidney Injury. Ann Surg 2015, 261, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Mandelbaum, T.; Scott, D.J.; Lee, J.; Mark, R.G.; Malhotra, A.; Waikar, S.S.; Howell, M.D.; Talmor, D. Outcome of critically ill patients with acute kidney injury using the Acute Kidney Injury Network criteria. Crit Care Med 2011, 39, 2659–2664. [Google Scholar] [CrossRef]
- Mak, N.T.; Iqbal, S.; de Varennes, B.; Khwaja, K. Outcomes of post-cardiac surgery patients with persistent hyperlactatemia in the intensive care unit: a matched cohort study. J Cardiothorac Surg 2016, 11, 33. [Google Scholar] [CrossRef]


| Variable | CS-AKIn= 66 (%) | Non-CS-AKIn= 198 (%) | p-value |
|---|---|---|---|
| Preoperative risk factors | |||
| Age | 60 | 59 | 0.4407 |
| Gender | |||
| Female | 12(18.2) | 64(32.3) | 0.04 |
| Male | 54(81.8) | 134(67.7) | |
| T2DM | 26(39.4) | 53(26.8) | 0.07 |
| Smoking | 26(39.4) | 71(35.8) | 0.71 |
| Systemic Arterial Hypertension | 42(63.6) | 103(52) | 0.13 |
| Obesity | 34(51.5) | 68(34.3) | 0.019 |
| Dyslipidemia | 16(24.2) | 52(26.3) | 0.870 |
| Diastolic dysfunction | 54(81.8) | 136 (68.6) | 0.057 |
| Atrial fibrillation | 24(36.3) | 34(17.2) | 0.002 |
| ACEI consumption | 17(25.7) | 38(19.2) | 0.33 |
| ARA consumption | 26(39.4) | 56(28.3) | 0.12 |
| Intraoperative risk factors | |||
| Transfusion | 66(100) | 185(93.4) | NA |
| < 3 PRBC | 28 (43) | 145 (73) | NA |
| ≥ 4 PRBC | 37 (56) | 53 (27) | NA |
| CPB time* | 156.0 [124.2-191.5] | 121.5 [87.25-159.75] | <0.0001 |
| AxC time | 109 [88-150] | 90 [67.5-116.8] | 0.0009 |
| Use of inotropes | 54(81.8) | 142(71.7) | 0.14 |
| Postoperative risk factors | |||
| Use of Furosemide | 15(22.7) | 178(89.8) | <0.0001 |
| Antiarrhythmics | 23(34.8) | 34(17.2) | 0.004 |
| Use of Vasopressors | 56(84.8) | 123(62.1) | 0.001 |
| Hospital length of stay (days) | 5 [3-8] | 3 [2-5] | <0.0001 |
| Variable | T0 serum lactate level | T4 serum lactate level | ||||
|---|---|---|---|---|---|---|
| β | OR [95%CI] | p-value | β | OR [95%CI] | p-value | |
| Hospital length of stay | 0.11 | 1.11 [1.05, 1.17] | 0.0002 | 0.08 | 1.10 [1.03-1.18] | 0.009 |
| Transfusion | ||||||
| ≤ 3 PRBC | -1.16 | 0.31 [0.18, 0.53] | <0.0001 | -1.64 | 0.17 [0.08, 0.34] | <0.0001 |
| Furosemide use | ||||||
| ≤ 40 mg | -0.95 | 0.38 [0.16, 0.89] | 0.027 | -2.20 | 0.12 [0.04, 0.36] | <0.0001 |
| Variable | β coefficient | OR [95% CI] | p-value |
|---|---|---|---|
| Female gender | -1.46 | 0.23 [0.06, 0.71] | 0.015 |
| Hospital length of stay | 0.13 | 1.15 [1.04, 1.29] | 0.013 |
| CPB time | 0.02 | 1.03 [1.01-1.05] | 0.008 |
| Atrial Fibrillation | 1.13 | 3.11 [1.08-9.40] | 0.037 |
| T0 serum lactate | 0.36 | 1.44 [1.12, 1.91] | 0.007 |
| T4 serum lactate | 0.31 | 1.38 [1.13, 1.69] | 0.001 |
| Use of furosemide ≤ 40 mg | -2.52 | 0.08 [0.02, 0.31] | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
