Submitted:
29 April 2024
Posted:
30 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Application Case of Fractals: DIAPHONIES, Michael Paouris
3. Materials and Methods
3.1. Fractal Analysis
3.1.1. Theoretical Background
3.1.2. Application of Fractal Analysis
- 1)
- The music time-series is divided into segments (windows). In accordance to the previous papers, the segmentation is set to 1024 samples per window.
- 2)
- The PSD of the musical signal is calculated in each discrete window utilising the CWT with the Morlet base wavelet.
- 3)
- The PSD is checked for hidden power-law trends of Equation (4), in each segment, by utilising as frequency (f) the central frequency of the Fourier transform of each Morlet wavelet of Equation (3) at the corresponding scale (C). This is implemented via a least square fit to the linear transformation of (4).
- 4)
- Accurate fractal segments are considered those with square of the Spearman’s correlation coefficient, of the linear fit.
- (i)
- (ii)
3.1.3. Classifications
- 1.
-
Regarding the characterisation of the related physical process:
- a)
- A value of implies that the variations of the musical procedures do not grow, i.e., the related music is stationary;
- b)
- Values of b in the range means that the associated music is antipersistent;
- c)
- A value of means that the related music follows random paths that are described by non-memory dynamics, because there is no correlation between the increments of the musical process. The related music is stochastic, deterministic and mathematical;
- d)
- Values b in the range suggest musical signal’s persistency.
- 2.
-
Regarding the modelling class of the related process:
- a)
- Values b between are related to music that follows the fractional Gaussian noise (fGn);
- b)
- Values n the range mean that the time profile of the associated music is a temporal fractal and that it follows the fractional Brownian motion (fBm);
- 3.
-
Regarding the classification of the b segments of the musical signal:
- (a)
- Class I segments: These comprise the music time series segments with accurate fractal description () that, simultaneously, follow the fBm class (). According to publications these segments can be classified of noteworthy criticality value [17,18,19] and, especially, the segments with clear changes between persistency and great antipersistency, namely changes between (great antipersistency) and (persistency). Most important, however, are the segments with or, better, with b above or equal 2.3 (great persistent behaviour). According to numerous publications ([19,28,29,30,31,32,34,35,40] and references therein) the latter Class I segments () are characterised as footprints of criticality.
- (b)
- Class II segments: These consist of the music windows that do not follow the fBm class, i.e., and , or follow the fGn class. i.e., . These windows are of low criticality value according to previous research [17,18,19,28,29,30,31,32,34,35,40]. Apparently, Class I and Class II segments are complements of each other.
4. Results and Discussion
- Diaphonies 1; Coding: fc1; Movement :2; Number of chunks: 4; Actual time in Diaphonies 1: 03:30-03:50
- Diaphonies 1; Coding: fc2; Movement :2; Number of chunks: 16; Actual time in Diaphonies 1: 07:30-08:50
- Diaphonies 2; Coding: fc3; Movement :3; Number of chunks: 12; Actual time in Diaphonies 2: 04:00-05:00
- a)
- Noteworthy number of segments (blue areas, middle and upper plots) present successive () power-law b-values between 1.7 and 2.0;
- b)
- Significant number of segments (blue areas, middle and upper plots) exhibit successive () b-values greater than 2.0 and in several cases, greater than 2.3;
- c)
- There are many segments that do not exhibit fractal behaviour (red areas, middle and upper plots);
- d)
- There are cases where some non-fractal segments (red areas, middle and upper plots) are dipped within many successive fractal segments;
- e)
- Periods of significant waveform amplitude variations are not associated de facto with observations (a)-(c).
- use raw amplitude data, i.e.,data without any mathematical processing;
- identify fBm Class I segments where the musical system has increased possibility to evolve to a chaotic solution out-breaking of which will make the system to return to harmony description;
- recognise persistent and anti-persistent areas with tendencies to increase (decrease) or to inter-change between high and low amplitude values;
- locate fractal versus non-fractal (deterministic-mathematical) areas of each signal under investigation;


5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DOAJ | Directory of open access journals |
| TLA | Three letter acronym |
| LD | Linear dichroism |
References
- Banerjee, A.; Sanyal, S.; Patranabis, A.; Banerjee, K.; Guhathakurta, T.; R. , S.; Ghosh, D.; Ghose, P. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals. Physica A 2021, 567, 2. [Google Scholar]
- Shekatkar, S.M.; Kotriwar, Y.; Harikrishnan, K.P.; others. Detecting abnormality in heart dynamics from multifractal analysis of ECG signals. Sci Rep 2017, 7, 15127. [Google Scholar] [CrossRef]
- Bhaduri, S.; Bhaduri, A.; Ghosh, D. Acoustical genesis of uniqueness of tanpura-drone signal-Probing with non-statistical fluctuation pattern. Physica A 2020, 124206. [Google Scholar] [CrossRef]
- Datta, A.K.; Sengupta, R.; Banerjee, K.; Ghosh, D. Evaluation of musical quality of tanpura by non linear analysis,. Acoustical Analysis of the Tanpura 2019, pp. 133–149. Springer, Singapore.
- Mandelbrot, B.B.; Ness, J.W.V. Fractional Brownian motions, fractional noises and applications. J. Soc. Ind. Appl. Math 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Banerjee, A.; Ranjan, S.S.; R, S.; D, G. Variation of singing styles within a particular Gharana of Hindustani classical music-a nonlinear multifractal study. The Journal of Acoustic Society India 2021, 48, 1–2. [Google Scholar]
- Voss, R.V.; Clarke, J. 1/f noise in music and speech. Nature 1975, 258, 317–8. [Google Scholar] [CrossRef]
- Voss, R.V.; Clarke, J. 1/f noise from systems in thermal equilibrium. Phys Rev Lett 1976, 36, 42–5. [Google Scholar] [CrossRef]
- Voss, R.V.; Clarke, J. 1/f noise in music: music from 1/f noise. J Acoust Soc Am 1978, 63, 258–6. [Google Scholar] [CrossRef]
- Chatzisavvas, N.; Priniotakis, G.; Papoutsidakis, M.; Nikolopoulos, D.; Valais, I.; Karpetas, G. Monte Carlo Computational Software and Methods in Radiation Dosimetry. (AETiC) 2021, 5, 3. [Google Scholar] [CrossRef]
- Smirnova, N.; Hayakawa, M.; Gotoh, K. Precursory behaviour of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes. Physics and Chemistry of the Earth Parts A/B/C 2004, 29, 445–451. [Google Scholar] [CrossRef]
- Smirnova, N.A.; Kiyashchenko, D.A.T.; N. , V.; Hayakawa, M. Multifractal Approach to Study the Earthquake Precursory Signatures Using the Ground-Based Observations. Review of Applied Physics 2013, 2, 3. [Google Scholar]
- Serra, X.; Smith, J. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Music J. Comput 1990, 14, 12–24. [Google Scholar] [CrossRef]
- Sanyal, S.; Banerjee, A.; Basu, M.; Nag, S.; Ghosh, D. Karmkamar S Do musical notes correlate with emotions? A neuro-acoustical study with Indian classical music, Proceedings of Meetings on Acoustics 2021, 035005, 1–13. [Google Scholar]
- Anderson, C.M. From molecules to mindfulness: how vertically convergent fractal time fluctuations unify cognition and emotion. Consciousness Emotion 2000, 1, 193–226. [Google Scholar] [CrossRef]
- Alam, A.; Wang, N.; Zhao, G.; Mehmood, T.; Nikolopoulos, D. Long-lasting patterns of radon in groundwater at Panzhihua, China: Results from DFA, fractal dimensions and residual radon concentration. Geochem. J. 2019, 53, 341–358. [Google Scholar] [CrossRef]
- Cantzos, D.; Nikolopoulos, D.; Petraki, E.; Nomicos, C.; Yannakopoulos, P.H.; Kottou, S. Identifying Long-Memory Trends in Pre-Seismic MHz Disturbances through Support Vector Machines. J. Earth Sci 2015, 6, 1–9. [Google Scholar]
- Cantzos, D.; Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Fractal Analysis, Information-Theoretic Similarities and SVM Classification for Multichannel, Multi-Frequency Pre-Seismic Electromagnetic Measurements. J. Earth Sci 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Cantzos, D.; Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Earthquake precursory signatures in electromagnetic radiation measurements in terms of day-to-day fractal spectral exponent variation: analysis of the eastern Aegean 13/04/2017–20/07/2017 seismic activity. J. Seismol. 2018, 22, 1499–1513. [Google Scholar] [CrossRef]
- Eftaxias, K.; Panin, V.; Deryugin, Y. Evolution-EM signals before earthquakes in terms of mesomechanics and complexity. Phys. Chem. Earth 2007, 29, 445–451. [Google Scholar] [CrossRef]
- Eftaxias, K.; Contoyiannis, Y.; Balasis, G.; Karamanos, K.; Kopanas, J.; Antonopoulos, G.; Koulouras, G.; Nomicos, C. Evidence of fractional-Brownian-motion-type asperity model for earthquake generation in candidate pre-seismic electromagnetic emissions. Nat. Hazard Earth Sys. 2008, 8, 657–669. [Google Scholar] [CrossRef]
- Eftaxias, K.; Balasis, G.; Contoyiannis, Y.; Papadimitriou, C.; Kalimeri, M.; Athanasopoulou, L.; Nikolopoulos, S.; Kopanas, J.; Antonopoulos, G.; Nomicos, C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones-Part 1. Nat. Hazard Earth Sys. 2009, 9, 1953–1971. [Google Scholar] [CrossRef]
- Eftaxias, K.; Balasis, G.; Contoyiannis, Y.; Papadimitriou, C.; Kalimeri, M.; Athanasopoulou, L.; Nikolopoulos, S.; Kopanas, J.; Antonopoulos, G.; Nomicos, C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones-Part 2. Nat. Hazard Earth Sys. 2010, 10, 275–294. [Google Scholar] [CrossRef]
- Ida, Y., Y.; Li, D.; Q. , S.; H., H.; M.. Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China. Nonlin. Processes Geophys. 2012, 19, 577–583. [Google Scholar] [CrossRef]
- Ida, Y., H.; M. . Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlin. Processes Geophys. 2012, 13, 409–412. [Google Scholar] [CrossRef]
- Ida, Y.; Hayakawa, M. Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlinear Processes in Geophysics 2006, 13, 409–412. [Google Scholar] [CrossRef]
- Kalimeri, M.; Papadimitriou, C.; Balasis, G.; Eftaxias, K. Dynamical complexity detection in pre-seismic emissions using non-additive Tsallis entropy. Physica A 2008, 387, 1161–1172. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Marousaki, A.; Potirakis, S.; Koulouras, G.; Nomicos, C.; Panagiotaras, D.; Stonhamb, J.; Louizi, A. Environmental monitoring of radon in soil during a very seismically active period occurred in South West Greece. J. Environ. Monit. 2012, 14, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, D.; Petraki, E.; Vogiannis, E.; Chaldeos, Y.; Giannakopoulos, P.; Kottou, S.; Nomicos, C.; Stonham, J. Traces of self-organisation and long-range memory in variations of environmental radon in soil: Comparative results from monitoring in Lesvos Island and Ileia (Greece). J. Radioana.l Nucl. Chem. 2014, 299, 203–219. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Nomicos, C.; Koulouras, G.; Kottou, S.; Yannakopoulos, P.H. Long-Memory Trends in Disturbances of Radon in Soil Prior ML=5.1 Earthquakes of 17 November 2014 Greece. J. Earth Sci. Clim. Change 2015, 6, 1–11. [Google Scholar]
- Nikolopoulos, D.; Valais, I.; Michail, C.; Bakas, A.; Fountzoula, C.; Cantzos, D.; Bhattacharyya, D.; Sianoudis, I.; Fountos, G.; Yannakopoulos, P.H.; Panayiotakis, G.; Kandarakis, I. Radioluminescence properties of the CdSe/ZnS Quantum Dot nanocrystals with analysis of long-memory trends. Radiat. Meas. 2016, 92, 19–31. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Cantzos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Traces of long-memory in pre-seismic MHz electromagnetic time series-Part1: Investigation through the R/S analysis and time-evolving spectral fractals. J. Earth Sci. Clim. Change 2016, 7. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Cantzos, D.; Yannakopoulos, P.H.; Panagiotaras, D.; Nomicos, C. Fractal Analysis of Pre-Seismic Electromagnetic and Radon Precursors: A Systematic Approach. J. Earth Sci. Clim. Change 2016, 7, 1–11. [Google Scholar]
- Nikolopoulos, D.; Matsoukas, C.; Yannakopoulos, P.H.; Petraki, E.; Cantzos, D.; Nomicos, C. Long-Memory and Fractal Trends in Variations of Environmental Radon in Soil: Results from Measurements in Lesvos Island in Greece. J. Earth Sci. Clim. Change 2018, 9, 1–11. [Google Scholar]
- Nikolopoulos, D.; Yannakopoulos, P.H.; Petraki, E.; Cantzos, D.; Nomicos, C. Long-Memory and Fractal Traces in kHz-MHz Electromagnetic Time Series Prior to the ML=6.1, 12/6/2007 Lesvos, Greece Earthquake: Investigation through DFA and Time-Evolving Spectral Fractals. J. Earth Sci. Clim. Change 2018, 9, 1–15. [Google Scholar]
- Petraki, E.; Nikolopoulos, D.; Fotopoulos, A.; Panagiotaras, D.; Koulouras, G.; Zisos, A.; Nomicos, C.; Louizi, A.; Stonham, J. Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece. Appl. Radiat. Isotop. 2013, 72, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Petraki, E.; Nikolopoulos, D.; Fotopoulos, A.; Panagiotaras, D.; Nomicos, C.; Yannakopoulos, P.; Kottou, S.; Zisos, A.; Louizi, A.; Stonham, J. Long-range memory patterns in variations of environmental radon in soil. Anal. Methods 2013, 5, 4010–4020. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; others. Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review. J. Earth Sci. Clim. Change 2015, 6, 1–11. [Google Scholar]
- Petraki, E.; Nikolopoulos, D.; Panagiotaras, D.; Cantzos, D.; Yannakopoulos, P.; others. Radon-222: A Potential Short-Term Earthquake Precursor. J Earth Sci Clim Change 2015, 6, 1–11. [Google Scholar]
- Petraki, E. Electromagnetic Radiation and Radon-222 Gas Emissions as Precursors of Seismic Activity. PhD thesis, Department of Electronic and Computer Engineering, Brunel University London, UK, 2016.
- Smirnova, N.A.; Hayakawa, M. Fractal characteristics of the ground-observed ULF emissions in relation to geomagnetic and seismic activities. J Atmos Sol Terr Phys 2007, 69, 1833–1841. [Google Scholar] [CrossRef]
- Moustris, K.; Petraki, E.; Ntourou, K.; Priniotakis, G.; Nikolopoulos, D. Spatiotemporal Evaluation of PM10 Concentrations within the Greater Athens Area, Greece. Trends, Variability and Analysis of a 19 Years Data Series. Environments 2020, 53. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Koulougliotis, D.; Cantzos, D. Fractal and Long-Memory Traces in PM10 Time Series in Athens, Greece. Environments 2019, 7. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Cantzos, D. Long-memory traces in PM10 time series in Athens, Greece: investigation through DFA and R/S analysis. Meteorol. Atmospheric Phys. 2020. [Google Scholar]
- Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.; Priniotakis, G.; Voyiatzis, I.; Cantzos, D. Long-Lasting Patterns in 3 kHz Electromagnetic Time Series after the ML = 6.6 Earthquake of 2018-10-25 near Zakynthos, Greece. Geosciences 2020, 10. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Alam, A.; Petraki, E.; Papoutsidakis, M.; Yannakopoulos, P.; Moustris, K.P. Stochastic and Self-Organisation Patterns in a 17-Year PM10 Time Series in Athens, Greece. Entropy 2021, 23. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, K.; Hayakawa, M.; Smirnova, N.; Hattori, K. Fractal analysis of seismogenic ULF emissions. Phys. Chem. Earth 2004, 29, 419–424. [Google Scholar] [CrossRef]
- Karamanos, K.; Dakopoulos, D.; Aloupis, K.; Peratzakis, A.; Athanasopoulou, L.; Nikolopoulos, S.; P, P.K.; Eftaxias, K. Study of pre-seismic electromagnetic signals in terms of complexity. Phys. Rev. E. 2006, 74, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, K.; Dakopoulos, D.; Aloupis, K.; Peratzakis, A.; Athanasopoulou, L.; Nikolopoulos, S.; P, P.K.; Eftaxias, K. Study of pre-seismic electromagnetic signals in terms of complexity. Phys. Rev. E. 2006, 74, 21–36. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on basis of the fractal theory. Physica D 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Hurst, H. Long term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Nicolis, G.; Gaspard, P. Toward a probabilistic approach to complex systems. Chaos Soliton. Fract. 1994, 4, 41–57. [Google Scholar] [CrossRef]
- Sevcik, C. On fractal dimension of waveforms. Chaos Solit. Fract. 2006, 27, 579–580. [Google Scholar] [CrossRef]
- Zunino, L.; Perez, D.; Kowalski, A.; Martin, M.; Garavaglia, M.; Plastino, A.; Rosso, O. Fractional Brownian motion, fractional Gaussian noise and Tsallis permutation entropy. Physica A 2008, 387, 60057–6068. [Google Scholar] [CrossRef]
- Wornell, G. Signal Processing with Fractals; BooksCraft, Inc, 1995.
- Bernardi, A.; Bugna, G.; Poli, G.D. Musical signal analysis with chaos. Musical Signal Process 1997, 18, 7–220. [Google Scholar]
- Bigerelle, M.; Iost, A. Fractal dimension and classification of music. Chaos Solitons Fractals 2000, 11, 2179–2192. [Google Scholar] [CrossRef]
- Lopez, T.; Martınez-Gonzalez, C.; Manjarrez, J.; Plascencia, N.; Balankin, A. Fractal Analysis of EEG Signals in the Brain of Epileptic Rats, with and without Biocompatible Implanted Neuroreservoirs. AMM 2009, 15, 127–136. [Google Scholar] [CrossRef]
- Li, X.; Polygiannakis, J.; Kapiris, P.; Peratzakis, A.; Eftaxias, K.; Yao, X. Fractal spectral analysis of pre-epileptic seizures in terms of criticality. J. Neural Eng. 2005, 2, 11–16. [Google Scholar] [CrossRef]
- Bascompte, J.; Vilá, C. Fractals and search paths in mammals. Landscape Ecol. 1997, 12, 213–221. [Google Scholar] [CrossRef]
- Avramidis, K.; Zlatintsi, A.; Garoufis, C.; Maragos, P. Multiscale Fractal Analysis on EEG Signals for Music-Induced Emotion Recognition. EUSIPCO ISBN: 2021, 978, 1316–1320. [Google Scholar] [CrossRef]
- Pease, A.; Mahmoodi, K.; West, B.J. Complexity measures of music. Chaos, Solitons & Fractals 2018, 108, 82–86. [Google Scholar] [CrossRef]
- Das, A.; Das, P. Fractal analysis of songs: Performer’s preference, Nonlinear Analysis: Real World Applications 2010, 11, 1790–1794. [Google Scholar] [CrossRef]
- Rankin, S. ; F.D.Fink.; Lagre, E. Fractal structure enables temporal prediction in music. J. Acoust. Soc, 2014, p. EL256.
- Contoyiannis, Y.; Diakonos, F.K.; Kampitakis, M.; Potirakis, S.M. Can high-frequency ECG fluctuations differentiate between healthy and myocardial infarction cases? Biomedical Engineering Advances 2021, 2, 100011. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Hausdorff, J.; Mietus, J.; Stanley, H.; Goldberger, A. Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease. Journal of Electrocardiology 1995, 28, 59–65, Research and Technology Transfer in Computerized Electrocardiology. [Google Scholar] [CrossRef]



| Class II | Class I | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| s.fGn | s.fBm | |||||||||||
| L | S | A | R | P | A-P | P | A-P | A | ||||
| Coding | Chunk | Class II | Class I | |||||||||
| fc1-D1 | 1 | 119381 | 119595 | 0 | 0 | 2191 | 0 | 117404 | 14196 | 105399 | 119595 | 2191 |
| 2 | 120368 | 118608 | 0 | 0 | 7099 | 0 | 111509 | 27179 | 90624 | 117803 | 6294 | |
| 3 | 110346 | 128630 | 0 | 0 | 6040 | 0 | 122590 | 35649 | 92777 | 128426 | 5836 | |
| 4 | 144273 | 94703 | 0 | 0 | 12708 | 0 | 81995 | 43892 | 49380 | 93272 | 11277 | |
| fc2-D1 | 1 | 159724 | 79252 | 0 | 0 | 1705 | 0 | 77547 | 4836 | 74289 | 79125 | 1578 |
| 2 | 102228 | 136748 | 0 | 0 | 1567 | 0 | 135181 | 8315 | 128378 | 136693 | 1512 | |
| 3 | 86066 | 152910 | 0 | 0 | 7607 | 0 | 145303 | 26471 | 125316 | 151787 | 6484 | |
| 4 | 148394 | 90582 | 0 | 0 | 4682 | 0 | 85900 | 19173 | 71306 | 90479 | 4579 | |
| 5 | 136723 | 102253 | 0 | 0 | 5734 | 0 | 96519 | 22309 | 79772 | 102081 | 5562 | |
| 6 | 122781 | 116195 | 0 | 0 | 14128 | 0 | 102067 | 35712 | 77618 | 113330 | 11263 | |
| 7 | 137481 | 101495 | 0 | 0 | 5424 | 0 | 96071 | 16992 | 82733 | 99725 | 3654 | |
| 8 | 106424 | 132552 | 0 | 0 | 6778 | 0 | 125774 | 26642 | 105377 | 132019 | 6245 | |
| 9 | 124292 | 114684 | 0 | 0 | 2992 | 0 | 111692 | 19350 | 95334 | 114684 | 2992 | |
| 10 | 142123 | 96853 | 0 | 0 | 1467 | 0 | 95386 | 8277 | 88576 | 96853 | 1467 | |
| 11 | 102477 | 136499 | 0 | 0 | 7686 | 0 | 128813 | 27082 | 109409 | 136491 | 7678 | |
| 12 | 153433 | 85543 | 0 | 0 | 3955 | 0 | 81588 | 19721 | 64592 | 84313 | 2725 | |
| 13 | 128042 | 128042 | 0 | 0 | 6425 | 0 | 121617 | 21074 | 106104 | 127178 | 5561 | |
| 14 | 131744 | 107232 | 0 | 0 | 6348 | 0 | 100884 | 22427 | 84382 | 106809 | 5925 | |
| 15 | 101065 | 137911 | 0 | 0 | 3158 | 0 | 134753 | 26399 | 111331 | 137730 | 2977 | |
| 16 | 126279 | 112697 | 0 | 0 | 1392 | 0 | 111305 | 10348 | 102349 | 112697 | 1392 | |
| Class II | Class I | |||||||||||
| s.fGn | s.fBm | |||||||||||
| L | S | A | R | P | A-P | P | A-P | A | ||||
| Coding | Chunk | Class II | Class I | |||||||||
| fc3-D2 | 1 | 133505 | 105471 | 0 | 0 | 816 | 0 | 104655 | 11271 | 94200 | 105471 | 816 |
| 2 | 135376 | 103600 | 0 | 0 | 533 | 0 | 103067 | 531 | 103067 | 103598 | 531 | |
| 3 | 176553 | 62423 | 0 | 0 | 102 | 0 | 62321 | 10012 | 52411 | 62423 | 102 | |
| 4 | 156258 | 82718 | 0 | 0 | 1827 | 0 | 80891 | 13234 | 69392 | 82626 | 1735 | |
| 5 | 127882 | 111094 | 0 | 0 | 1425 | 0 | 109669 | 10535 | 100559 | 111094 | 1425 | |
| 6 | 116714 | 122262 | 0 | 0 | 32 | 0 | 122230 | 6180 | 116082 | 122262 | 32 | |
| 7 | 110261 | 128715 | 0 | 0 | 279 | 0 | 128436 | 9918 | 118797 | 128715 | 279 | |
| 8 | 97243 | 141733 | 0 | 0 | 77 | 0 | 141656 | 7514 | 134218 | 141732 | 76 | |
| 9 | 111685 | 127291 | 0 | 0 | 1225 | 0 | 126066 | 20452 | 106839 | 127291 | 1225 | |
| 10 | 153593 | 85383 | 0 | 0 | 1096 | 0 | 84287 | 4078 | 81305 | 85383 | 1096 | |
| 11 | 152726 | 48203 | 0 | 0 | 12 | 0 | 48191 | 436 | 47767 | 48203 | 12 | |
| 12 | 146523 | 92453 | 0 | 0 | 2326 | 0 | 90127 | 9829 | 82622 | 92451 | 2324 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
