Submitted:
22 April 2024
Posted:
23 April 2024
You are already at the latest version
Abstract
Keywords:
MSC: 17A01; 17B30; 17B10; 17B38; 17B56
1. Introduction
2. Representations of Modified Rota-Baxter Pre-Lie Algebras
3. Cohomology of Modified Rota-Baxter Pre-Lie Algebras
4. Abelian Extensions of Modified Rota-Baxter Pre-Lie Algebras
5. Skeletal Modified Rota-Baxter Pre-Lie 2-Algebras
ACKNOWLEDGEMENT
References
- A. Cayley. On the Theory of Analytic Forms Called Trees. Collected Mathematical Papers of Arthur Cayley. Cambridge Univ. Press, Cambridge, 1890, 3: 242–246.
- M. Gerstenhaber. The cohomology structure of an associative ring. Ann. Math. 1963, 78: 267–288. [CrossRef]
- H. Kim. Complete left-invariant affine structures on nilpotent Lie groups. J. Differ. Geom., 1986, 24: 373–394. [CrossRef]
- P. Etingof, A. Soloviev. Quantization of geometric classical r-matrix. Math. Res. Lett., 1999, 6: 223–228. [CrossRef]
- P. Etingof, T. Schedler, A. Soloviev. Set-theoretical solutions to the quantum Yang- Baxter equations. Duke Math. J., 1999, 100: 169–209. [CrossRef]
- A. Andrada, S. Salamon. Complex product structure on Lie algebras. Forum Math., 2005, 17: 261–295. [CrossRef]
- D. Burde. Left-symmetric algebras and pre-Lie algebrasin geometry and physics. Cent. Eur. J. Math., 2006, 4: 323–357. [CrossRef]
- C. Bai. Left-symmetric Bialgebras and an alogue of the Classical Yang-Baxter Equation. Commun. Contemp. Math. 2008,10(2): 221–260. [CrossRef]
- C. Bai. An introduction to pre-Lie algebras. in Algebra and Applications 1, coordinated by A. Makhlouf, ISTE-Wiley, 2020, 243-273.
- X. Li, D. Hou, C. Bai. Rota-Baxter operators on pre-Lie algebras. J. Nonlinear Math. Phy., 2007, 14: 269–289. [CrossRef]
- J. Liu. Twisting on pre-Lie algebras and quasi-pre-Lie bialgebras. 2020. arXiv:2003.11926.
- J. Liu, Q. Wang. Pre-Lie analogues of Poisson-Nijenhuis structures and Maurer-Cartan equations. 2020. arXiv:2004.02098.
- Q. Wang, Y. Sheng, C. Bai, J. Liu. Nijenhuis operators on pre-Lie algebras. Commun. Contemp. Math., 2019, 21(7): 1850050, 37 pp. [CrossRef]
- A. Dzhumaldil’daev. Cohomologies and deformations of right-symmetric algebras. J. Math. Sci., 1999, 93(6): 836–876. [CrossRef]
- Y. Sheng. Categorification of pre-Lie algebras and solutions of 2-graded classical Yang-Baxter equations. Theory Appl. Categ., 2019, 34: 269–294.
- G. Baxter. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math., 1960, 10: 731–742. [CrossRef]
- G. C. Rota. Baxter algebras and combinatorial identities I, II. Bull. Amer. Math. Soc., 1969, 75: 325–329. [CrossRef]
- A. Connes, D. Kreimer. Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys., 2000, 210: 249–273. [CrossRef]
- A. Das. Deformations of associative Rota-Baxter operators. J. Algebra, 2020, 560: 144–180. [CrossRef]
- T. Chtioui, S. Mabrouk, A. Makhlouf. Cohomology and deformations of O-operators on Hom-associative algebras. J. Algebra, 2022, 604: 727–759.
- R. Tang, C. Bai, L. Guo, Y. Sheng. Deformations and their controlling cohomologies of O-operators. Comm. Math. Phys., 2019, 368: 665–700.
- R. Tang, C. Bai, L. Guo, Y. Sheng. Homotopy Rota-Baxter operators and post-Lie algebras. J. Noncommut. Geom., 2023, 17: 1–35. [CrossRef]
- J. Jang, Y. Sheng. Representations and cohomologies of relative Rota-Baxter Lie algebras and applications. J. Algebra, 2022, 602(7): 637–670.
- K. Wang, G. Zhou. Deformations and homotopy theory of Rota-Baxter algebras of any weight. 2021. arXiv:2108.06744.
- A. Das. Cohomology and deformations of weighted RotaCBaxter operators. J. Math. Physics, 2022, 63(9): 091703. [CrossRef]
- A. Das. Cohomology of weighted Rota-Baxter Lie algebras and Rota-Baxter paired operators. 2021. arXiv:2109.01972.
- S. Hou, Y. Sheng, Y. Zhou. 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras. J. Algebra, 2023, 615: 103–129. [CrossRef]
- S. Guo, Y. Qin, K. Wang, G. Zhou. Deformations and cohomology theory of Rota-Baxter 3-Lie algebras of arbitrary weights. J. Geom. Phys., 2023, 183: 104704. [CrossRef]
- S. Chen, Q. Lou, Q. Sun. Cohomologies of Rota-Baxter Lie triple systems and applications. Commun. Algebra, 2023, 51: 4299–4315. [CrossRef]
- S. Guo, Y. Qin, K. Wang, G. Zhou. Cohomology theory of Rota-Baxter pre-Lie algebras of arbitrary weights. arXiv:2204.13518.
- M. Semonov-Tian-Shansky. What is a classical r-matrix? Funct. Anal. Appl., 1983, 17: 259–272. [CrossRef]
- S. Zheng, L. Guo, H. Qiu. Extended Rota-Baxter algebras, diagonally colored Delannoy paths and Hopf algebras. 2024. arXiv:2401.11363.
- J. Jiang, Y. Sheng. Deformations of modified r-matrices and cohomologies of related algebraic structures. To appear in J. Noncommut. Geom. [CrossRef]
- W. Teng, S. Guo. Modified Rota-Baxter Lie-Yamaguti algebras. 2024. arXiv:2401.17726. [CrossRef]
- A. Das, A cohomological study of modified Rota-Baxter algebras. 2022. arXiv:2207.02273.
- B. Mondal, R. Saha. Cohomology of modified Rota-Baxter Leibniz algebra of weight κ, J. Alg. Appl. to appear, 2023.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).