Submitted:
18 March 2024
Posted:
22 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Unravelling Indirect Network of Gene Regulation
2.1. Status
2.2. Open Problem
3. Identification of Network Motifs to Increase the Precision Target Genes
3.1. Status
3.2. Open Problem
4. Enriched Pathways Identification by Jointly Dissecting Gene Regulators
4.1. Status
4.2. Open Problem
| Database/Softwares | Feature |
|---|---|
| ROSE [6,14] | Pipeline identifying SEs from ChIP-Seq data; separates SEs and typical |
| enhancers | |
| HOMER [13] | Software for motif discovery and ChIP-Seq analysis; identifies enhancers |
| and SEs | |
| SEdb 2.0 [17] | Database for SE resource and annotate the potential roles in gene |
| transcription | |
| SEanalysis 2.0 [18] | Web server for identifying association connecting SEs, pathways, TFs, |
| and genes | |
| CenhANCER [19] | Database for cancer enhancers from primary tissues and cell lines |
| ENdb [20] | Manually curated database of experimentally supported enhancers |
| EnhancerAtlas 2.0 [21] | Database with enhancer annotation across nine species |
| TRmir [48] | Database for miRNA related transcriptional regulation especially typical |
| enhancer and SE | |
| EnhFFL [49] | Database for enhancer related FFLs based on deterministic connections |
| EnhancerDB [50] | Database for enhancer related transcriptional regulatory associations |
| Methods | Feature |
|---|---|
| miRinGO [51] | Accumulate information from databases on TFs associated target genes |
| and miRNAs; then combine them to predict genes that miRNAs target | |
| via TFs | |
| PANDA [55] | A message-passing model integrating protein-protein interaction, gene |
| expression, and sequence motif data to predict regulatory relationships | |
| PUMA [52] | Identify gene regulatory networks under miRNA control using PANDA |
| and target genes | |
| Sonawane et al. [54] | Computationally predict tissue-specific TF associated with genes |
| using PANDA | |
| dChip-GemiNI [58] | Statistically ranks computationally predicted FFLs to account for |
| differential gene and miRNA expression between two biological | |
| conditions | |
| FFLtool [59] | A web based tool for detecting FFL of TF-miRNA-target regulation in |
| human | |
| Mangan and Alon [60] | Theoretically analyze the functions of all possible structural types of |
| FFLs | |
| Jiang et al. [66] | Identify network motif using stochastic networks |
| Yeger-Lotem et al. [67] | Developed algorithms for detecting networks motifs with two or |
| more types of interactions | |
| Kashtan et al. [68] | Algorithms for detecting network motif generalizations |
| Prompsy et al. [74] | Leveraged miRNA-TF co-regulatory networks to identify pathways |
| under miRNA control, and significantly enriched the proportion of true | |
| miRNA-target interactions | |
| MiEAA [75] | A web-based application for miRNA set enrichment analysis and |
| annotation | |
| miRFA [76] | Pipeline for biomarker discovery involving mature miRNAs |
| Shalgi et al. [38] | Identifies miRNA-TF regulatory network |
| Studies | Feature |
|---|---|
| Whyte et al. [6] | SEs play key roles in the control of mammalian cell identity; formation of |
| SE driven feedback loops; regulation of SE-associated gene expression | |
| via master TFs | |
| Hnisz et al. [7] | SEs are occupied more frequently by terminal TFs of the Wnt, TGF-b, and |
| LIF signaling pathways in ESCs/cancer cells; and SE-driven genes respond | |
| to manipulation of these pathways compared to typical enhancers | |
| Hnisz et al. [10] | Cancer cells generate SE at oncogenes and other genes related to tumor |
| pathogenesis | |
| Lovén et al. [14] | SEs are associated with critical oncogenic drivers in cancer cells |
| Suzuki et al. [45,56] | SEs potentially drive the biogenesis of miRNAs crucial for cell identity via |
| enhancement of both transcription and Drosha/DGCR8-mediated primary | |
| miRNA processing | |
| Ri et al. [47] | Over-expression of miR-1301 induced by deletion of KLF6 SE inhibits cell |
| proliferation in HepG2 cells | |
| Liang et al. [57] | SE-TF regulatory network plays a crucial role in the carcinogenesis of |
| malignant tumour | |
| Javierre et al. [62] | Promoter interactions are highly cell-type specific and enriched for |
| association between active promoters and epigenetically marked enhancers | |
| Hu et al. [63] | IKAROS, prominently associated with leukemia, collaborates with TFs and |
| SEs via FFL, and triggers aberrant gene expression program in a B-cell | |
| epithelial transition | |
| Zhou et al. [65] | SE-driven TF gene mediates oncogenesis in Natural Killer/T Cell |
| Lymphoma | |
| Scholz et al. [73] | WNT signaling activates MYC expression via SE in cancer cells |
| Zhang et al. [78] | miRNAs driven by SEs positively regulate Hippo pathway during liver |
| development | |
| Das et al. [79] | miRNAs driven by SEs mediates immune-suppression |
| Tan et al. [80] | miRNAs/genes with positive correlations tend to form super-enhancer-like |
| regions | |
| Turunen et al. [81] | Synergistic role of miRNAs and TFs on SEs associated with Hippo |
| signaling pathway |
5. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ponting, C.P.; Hardison, R.C. What fraction of the human genome is functional? Genome Res 2011, 21, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.T.; Corces, V.G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 2011, 12, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Levine, M. Transcriptional enhancers in animal development and evolution. Curr Biol 2010, 20, R754–R763. [Google Scholar] [CrossRef] [PubMed]
- Murakawa, Y.; Yoshihara, M.; Kawaji, H.; Nishikawa, M.; Zayed, H.; Suzuki, H.; Hayashizaki, Y.; Consortium, F.; others. Enhanced identification of transcriptional enhancers provides mechanistic insights into diseases. Trends in Genetics 2016, 32, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Karnuta, J.M.; Scacheri, P.C. Enhancers: bridging the gap between gene control and human disease. Human molecular genetics 2018, 27, R219–R227. [Google Scholar] [CrossRef] [PubMed]
- Whyte, W.A.; Orlando, D.A.; Hnisz, D.; Abraham, B.J.; Lin, C.Y.; Kagey, M.H.; Rahl, P.B.; Lee, T.I.; Young, R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Hnisz, D.; Schuijers, J.; Lin, C.Y.; Weintraub, A.S.; Abraham, B.J.; Lee, T.I.; Bradner, J.E.; Young, R.A. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell 2015, 58, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Oldridge, D.A.; Wood, A.C.; Weichert-Leahey, N.; Crimmins, I.; Sussman, R.; Winter, C.; McDaniel, L.D.; Diamond, M.; Hart, L.S.; Zhu, S.; Durbin, A.D.; Abraham, B.J.; Anders, L.; Tian, L.; Zhang, S.; Wei, J.S.; Khan, J.; Bramlett, K.; Rahman, N.; Capasso, M.; Iolascon, A.; Gerhard, D.S.; Guidry Auvil, J.M.; Young, R.A.; Hakonarson, H.; Diskin, S.J.; Look, A.T.; Maris, J.M. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 2015, 528, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Nakayamada, S.; Tanaka, Y. Critical roles of super-enhancers in the pathogenesis of autoimmune diseases. Inflamm Regen 2020, 40, 16. [Google Scholar] [CrossRef]
- Hnisz, D.; Abraham, B.J.; Lee, T.I.; Lau, A.; Saint-André, V.; Sigova, A.A.; Hoke, H.A.; Young, R.A. Super-enhancers in the control of cell identity and disease. Cell 2013, 155, 934–947. [Google Scholar] [CrossRef]
- Park, P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009, 10, 669–680. [Google Scholar] [CrossRef]
- Kleftogiannis, D.; Kalnis, P.; Bajic, V.B. Progress and challenges in bioinformatics approaches for enhancer identification. Brief Bioinform 2016, 17, 967–979. [Google Scholar] [CrossRef]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular cell 2010, 38, 576–589. [Google Scholar] [CrossRef]
- Lovén, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013, 153, 320–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Wong, C.H.; Birnbaum, R.Y.; Li, G.; Favaro, R.; Ngan, C.Y.; Lim, J.; Tai, E.; Poh, H.M.; Wong, E.; others. Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature 2013, 504, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Mumbach, M.R.; Satpathy, A.T.; Boyle, E.A.; Dai, C.; Gowen, B.G.; Cho, S.W.; Nguyen, M.L.; Rubin, A.J.; Granja, J.M.; Kazane, K.R.; others. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature genetics 2017, 49, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, J.; Liu, Z.; Duan, Y.; Li, C. Integrative approaches based on genomic techniques in the functional studies on enhancers. Brief Bioinform 2023, 25. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.C.; Zhou, L.W.; Li, Y.Y.; Yu, Z.M.; Li, L.D.; Wang, Y.Z.; Xu, M.C.; Wang, Q.Y.; Li, C.Q. SEanalysis 2.0: a comprehensive super-enhancer regulatory network analysis tool for human and mouse. Nucleic Acids Res 2023, 51, W520–W527. [Google Scholar] [CrossRef]
- Luo, Z.H.; Shi, M.W.; Zhang, Y.; Wang, D.Y.; Tong, Y.B.; Pan, X.L.; Cheng, S. CenhANCER: a comprehensive cancer enhancer database for primary tissues and cell lines. Database (Oxford) 2023, 2023. [Google Scholar] [CrossRef]
- Bai, X.; Shi, S.; Ai, B.; Jiang, Y.; Liu, Y.; Han, X.; Xu, M.; Pan, Q.; Wang, F.; Wang, Q.; others. ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic acids research 2020, 48, D51–D57. [Google Scholar] [CrossRef]
- Gao, T.; Qian, J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic acids research 2020, 48, D58–D64. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, P.V.; Kreis, S. Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput Struct Biotechnol J 2021, 19, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Yoon, S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 2010, 42, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Lewis, B.P.; Shih, I.h.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of mammalian microRNA targets. Cell 2003, 115, 787–798. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; Rajewsky, N. Combinatorial microRNA target predictions. Nat Genet 2005, 37, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol 2003, 5, R1. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Grocock, R.J.; van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34, D140–D144. [Google Scholar] [CrossRef]
- Papadopoulos, G.L.; Reczko, M.; Simossis, V.A.; Sethupathy, P.; Hatzigeorgiou, A.G. The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 2009, 37, D155–D158. [Google Scholar] [CrossRef]
- Zotos, P.; Papachristoudis, G.; Roubelakis, M.G.; Michalopoulos, I.; Pappa, K.I.; Anagnou, N.P.; Kossida, S. GOmir: a stand-alone application for human microRNA target analysis and gene ontology clustering. 2008 8th IEEE International Conference on BioInformatics and BioEngineering. IEEE, 2008, pp. 1–6.
- Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009, 37, D105–D110. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, P.; Maragkakis, M.; Papadopoulos, G.L.; Reczko, M.; Hatzigeorgiou, A.G. Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 2009, 25, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
- Cihan, M.; Andrade-Navarro, M.A. Detection of features predictive of microRNA targets by integration of network data. PLoS One 2022, 17, e0269731. [Google Scholar] [CrossRef] [PubMed]
- Tokar, T.; Pastrello, C.; Rossos, A.E.M.; Abovsky, M.; Hauschild, A.C.; Tsay, M.; Lu, R.; Jurisica, I. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res 2018, 46, D360–D370. [Google Scholar] [CrossRef] [PubMed]
- Friedman, Y.; Naamati, G.; Linial, M. MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 2010, 26, 1920–1921. [Google Scholar] [CrossRef] [PubMed]
- Andres-Leon, E.; González Peña, D.; Gomez-Lopez, G.; Pisano, D.G. miRGate: a curated database of human, mouse and rat miRNA–mRNA targets. Database 2015, 2015, bav035. [Google Scholar] [CrossRef] [PubMed]
- Shalgi, R.; Lieber, D.; Oren, M.; Pilpel, Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 2007, 3, e131. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008, 10, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Tay, Y.; Zhang, J.; Thomson, A.M.; Lim, B.; Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455, 1124–1128. [Google Scholar] [CrossRef]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Nersisyan, S.; Galatenko, A.; Galatenko, V.; Shkurnikov, M.; Tonevitsky, A. miRGTF-net: Integrative miRNA-gene-TF network analysis reveals key drivers of breast cancer recurrence. PLoS One 2021, 16, e0249424. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, P.H.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P.; Cannataro, M. Analysis of miRNA, mRNA, and TF interactions through network-based methods. EURASIP Journal on Bioinformatics and Systems Biology 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Arora, S.; Rana, R.; Chhabra, A.; Jaiswal, A.; Rani, V. miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 2013, 288, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.I.; Young, R.A.; Sharp, P.A. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis. Cell 2017, 168, 1000–1014. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, H.; Suzuki, H.I. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019, 21. [Google Scholar] [CrossRef] [PubMed]
- Ri, K.; Kim, C.; Pak, C.; Ri, P.; Om, H. The KLF6 Super Enhancer Modulates Cell Proliferation via MiR-1301 in Human Hepatoma Cells. Microrna 2020, 9, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Feng, C.; Zhang, Y.; Song, C.; Chen, J.; Li, Y.; Wei, L.; Qian, F.; Ai, B.; Liu, Y.; Zhu, J.; Su, X.; Li, C.; Wang, Q. TRmir: A Comprehensive Resource for Human Transcriptional Regulatory Information of MiRNAs. Front Genet 2022, 13, 808950. [Google Scholar] [CrossRef]
- Kang, R.; Tan, Z.; Lang, M.; Jin, L.; Zhang, Y.; Zhang, Y.; Guo, T.; Guo, Z. EnhFFL: A database of enhancer mediated feed-forward loops for human and mouse. Precis Clin Med 2021, 4, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Zhang, Y.; Huang, Q.; Meng, J.; Ding, R.; Chang, Y.; Xiong, L.; Guo, Z. EnhancerDB: a resource of transcriptional regulation in the context of enhancers. Database (Oxford) 2019, 2019. [Google Scholar] [CrossRef]
- Sayed, M.; Park, J.W. miRinGO: Prediction of biological processes indirectly targeted by human microRNAs. Non-coding RNA 2023, 9, 11. [Google Scholar] [CrossRef]
- Kuijjer, M.L.; Fagny, M.; Marin, A.; Quackenbush, J.; Glass, K. PUMA: PANDA Using MicroRNA Associations. Bioinformatics 2020, 36, 4765–4773. [Google Scholar] [CrossRef] [PubMed]
- Mitsis, T.; Efthimiadou, A.; Bacopoulou, F.; Vlachakis, D.; Chrousos, G.P.; Eliopoulos, E. Transcription factors and evolution: An integral part of gene expression. World Academy of Sciences Journal 2020, 2, 3–8. [Google Scholar] [CrossRef]
- Sonawane, A.R.; Platig, J.; Fagny, M.; Chen, C.Y.; Paulson, J.N.; Lopes-Ramos, C.M.; DeMeo, D.L.; Quackenbush, J.; Glass, K.; Kuijjer, M.L. Understanding Tissue-Specific Gene Regulation. Cell Rep 2017, 21, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; Huttenhower, C.; Quackenbush, J.; Yuan, G.C. Passing messages between biological networks to refine predicted interactions. PLoS One 2013, 8, e64832. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Katsura, A.; Matsuyama, H.; Miyazono, K. MicroRNA regulons in tumor microenvironment. Oncogene 2015, 34, 3085–3094. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, L.; Xin, T.; Li, B.; Zhang, D. Superenhancer–transcription factor regulatory network in malignant tumors. Open Medicine 2021, 16, 1564–1582. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Shah, P.K.; Amin, S.B.; Samur, M.K.; Huang, N.; Wang, X.; Misra, V.; Ji, H.; Gabuzda, D.; Li, C. Integrative analysis of gene and miRNA expression profiles with transcription factor-miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res 2012, 40, e135. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.Y.; Xia, M.; Miao, Y.R.; Luo, M.; Zhang, Q.; Guo, A.Y. FFLtool: a web server for transcription factor and miRNA feed forward loop analysis in human. Bioinformatics 2020, 36, 2605–2607. [Google Scholar] [CrossRef] [PubMed]
- Mangan, S.; Alon, U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 2003, 100, 11980–11985. [Google Scholar] [CrossRef]
- Sanyal, A.; Lajoie, B.R.; Jain, G.; Dekker, J. The long-range interaction landscape of gene promoters. Nature 2012, 489, 109–113. [Google Scholar] [CrossRef]
- Javierre, B.M.; Burren, O.S.; Wilder, S.P.; Kreuzhuber, R.; Hill, S.M.; Sewitz, S.; Cairns, J.; Wingett, S.W.; Várnai, C.; Thiecke, M.J.; Burden, F.; Farrow, S.; Cutler, A.J.; Rehnström, K.; Downes, K.; Grassi, L.; Kostadima, M.; Freire-Pritchett, P.; Wang, F.; Stunnenberg, H.G.; Todd, J.A.; Zerbino, D.R.; Stegle, O.; Ouwehand, W.H.; Frontini, M.; Wallace, C.; Spivakov, M.; Fraser, P.; BLUEPRINT Consortium. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell 2016, 167, 1369–1384.e19. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Z.; Kashiwagi, M.; Yoshida, T.; Joshi, I.; Jena, N.; Somasundaram, R.; Emmanuel, A.O.; Sigvardsson, M.; Fitamant, J.; El-Bardeesy, N.; Gounari, F.; Van Etten, R.A.; Georgopoulos, K. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia. Genes Dev 2016, 30, 1971–1990. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.B.; Yan, J.; Huang, G.; Selvarajan, V.; Tay, J.L.S.; Lin, B.; Bi, C.; Tan, J.; Kwong, Y.L.; Shimizu, N.; Aozasa, K.; Chng, W.J. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood 2011, 118, 4919–4929. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Toh, S.H.M.; Tan, T.K.; Balan, K.; Lim, J.Q.; Tan, T.Z.; Xiong, S.; Jia, Y.; Ng, S.B.; Peng, Y.; Jeyasekharan, A.D.; Fan, S.; Lim, S.T.; Ong, C.A.J.; Ong, C.K.; Sanda, T.; Chng, W.J. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Tu, Z.; Chen, T.; Sun, F. Network motif identification in stochastic networks. Proc Natl Acad Sci U S A 2006, 103, 9404–9409. [Google Scholar] [CrossRef] [PubMed]
- Yeger-Lotem, E.; Sattath, S.; Kashtan, N.; Itzkovitz, S.; Milo, R.; Pinter, R.Y.; Alon, U.; Margalit, H. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci U S A 2004, 101, 5934–5939. [Google Scholar] [CrossRef]
- Kashtan, N.; Itzkovitz, S.; Milo, R.; Alon, U. Topological generalizations of network motifs. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 70, 031909. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Alexander, K.; Clark, A.G.; Grimson, A.; Yu, H. Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. RNA 2016, 22, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.A.; Wentzel, E.A.; Zeller, K.I.; Dang, C.V.; Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005, 435, 839–843. [Google Scholar] [CrossRef]
- Matsumura, I.; Tanaka, H.; Kanakura, Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2003, 2, 333–338. [Google Scholar] [CrossRef]
- Lee, K.H.; Chen, Y.L.; Yeh, S.D.; Hsiao, M.; Lin, J.T.; Goan, Y.G.; Lu, P.J. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 2009, 28, 3360–3370. [Google Scholar] [CrossRef] [PubMed]
- Scholz, B.A.; Sumida, N.; de Lima, C.D.M.; Chachoua, I.; Martino, M.; Tzelepis, I.; Nikoshkov, A.; Zhao, H.; Mehmood, R.; Sifakis, E.G.; Bhartiya, D.; Göndör, A.; Ohlsson, R. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet 2019, 51, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Prompsy, P.B.; Toubia, J.; Gearing, L.J.; Knight, R.L.; Forster, S.C.; Bracken, C.P.; Gantier, M.P. Making use of transcription factor enrichment to identify functional microRNA-regulons. Comput Struct Biotechnol J 2021, 19, 4896–4903. [Google Scholar] [CrossRef] [PubMed]
- Backes, C.; Khaleeq, Q.T.; Meese, E.; Keller, A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res 2016, 44, W110–W116. [Google Scholar] [CrossRef]
- Borgmästars, E.; de Weerd, H.A.; Lubovac-Pilav, Z.; Sund, M. miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer. BMC Bioinformatics 2019, 20, 393. [Google Scholar] [CrossRef]
- Tang, F.; Yang, Z.; Tan, Y.; Li, Y. Super-enhancer function and its application in cancer targeted therapy. NPJ Precis Oncol 2020, 4, 2. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.Y.; Chen, P.P.; Xu, H.; Xie, S.J.; Xu, S.J.; Li, B.; Li, J.H.; Liu, S.; Yang, J.H.; Zhou, H.; Qu, L.H. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis 2021, 12, 1161. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mukherjee, S.; Ali, N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection. PLoS Pathog 2021, 17, e1009343. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Huang, S.; Zhang, Z.; Qian, X.; Sun, P.; Zhou, X. Pan-cancer analysis on microRNA-associated gene activation. EBioMedicine 2019, 43, 82–97. [Google Scholar] [CrossRef]
- Turunen, T.; Hernández de Sande, A.; Pölönen, P.; Heinäniemi, M. Genome-wide analysis of primary microRNA expression using H3K36me3 ChIP-seq data. Comput Struct Biotechnol J 2021, 19, 1944–1955. [Google Scholar] [CrossRef]
- Wang, D.; Gu, J.; Wang, T.; Ding, Z. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 2014, 30, 2237–8. [Google Scholar] [CrossRef] [PubMed]
- Pott, S.; Lieb, J.D. What are super-enhancers? Nat Genet 2015, 47, 8–12. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
