Preprint
Article

This version is not peer-reviewed.

Unexpected Uncertainty Principle for Disc Banach Spaces

Submitted:

07 March 2024

Posted:

12 March 2024

You are already at the latest version

Abstract
Let $(\{f_n\}_{n=1}^\infty, \{\tau_n\}_{n=1}^\infty)$ and $(\{g_n\}_{n=1}^\infty, \{\omega_n\}_{n=1}^\infty)$ be unbounded continuous p-Schauder frames ($0<p<1$) for a disc Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus\{0\}$, we show that \begin{align}\label{UB} \|\theta_f x\|_0\|\theta_g x\|_0 \geq \frac{1}{\left(\displaystyle\sup_{n,m \in \mathbb{N} }|f_n(\omega_m)|\right)^p\left(\displaystyle\sup_{n, m \in \mathbb{N}}|g_m(\tau_n)|\right)^p}, \end{align} where \begin{align*} & \theta_f: \mathcal{D}(\theta_f) \ni x \mapsto \theta_fx \coloneqq \{f_n(x)\}_{n=1}^\infty\in \ell^p(\mathbb{N}), \quad \theta_g: \mathcal{D}(\theta_g) \ni x \mapsto \theta_gx \coloneqq \{g_n(x)\}_{n=1}^\infty\in \ell^p(\mathbb{N}). \end{align*} Inequality (1) is unexpectedly different from both bounded uncertainty principle \textit{[arXiv:2308.00312v1]} and unbounded uncertainty principle \textit{[arXiv:2312.00366v1]} for Banach spaces.
Keywords: 
;  ;  

1. Introduction

Given a finite collection { τ j } j = 1 n in a finite dimensional Hilbert space H over K ( R or C ), define
θ τ : H h θ τ h ( h , τ j ) j = 1 n K n .
Recall that a collection { τ j } j = 1 n in H is said to be a Parseval frame [1] for H if
h 2 = j = 1 n | h , τ j | 2 , h H .
Most general form of discrete uncertainty principle for finite dimensional Hilbert spaces is the following.
Theorem 1.1
(Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle [2,3,4]). Let { τ j } j = 1 n , { ω j } j = 1 n be two Parseval frames for a finite dimensional Hilbert space H . Then
θ τ h 0 2 + θ ω h 0 2 2 θ τ h 0 + θ ω h 0 2 2 θ τ h 0 θ ω h 0 1 max 1 j , k n | τ j , ω k | 2 , h H { 0 } .
Recently, Theorem 1.1 has been derived for Banach spaces using continuous p-Schauder frames.
Definition 1.2
([5]). Let ( Ω , μ ) be a measure space. Let { τ α } α Ω be a collection in a Banach space X and { f α } α Ω be a collection in X * . The pair ( { f α } α Ω , { τ α } α Ω ) is said to be acontinuous p-Schauder framefor X ( 1 p < ) if the following holds.
(i)
For every x X , the map Ω α f α ( x ) K is measurable.
(ii)
For every x X ,
x p = Ω | f α ( x ) | p d μ ( α ) if 1 p < , x = ess~sup α Ω | f α ( x ) | if p = .
(iii)
For every x X , the map Ω α f α ( x ) τ α X is weakly measurable.
(iv)
For every x X ,
x = Ω f α ( x ) τ α d μ ( α ) ,
where the integral is weak integral.
Given a continuous p-Schauder frame ( { f α } α Ω , { τ α } α Ω ) for X , define
θ f : X x θ f x L p ( Ω , μ ) ; θ f x : Ω α ( θ f x ) ( α ) f α ( x ) K
Theorem 1.3
(Functional Continuous Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle [5,6,7]). Let ( Ω , μ ) , ( Δ , ν ) be measure spaces. Let ( { f α } α Ω , { τ α } α Ω ) and ( { g β } β Δ , { ω β } β Δ ) be continuous p-Schauder frames for a Banach space X . Then
(i)
for p > 1 , we have
μ ( supp ( θ f x ) ) 1 p ν ( supp ( θ g x ) ) 1 q 1 sup α Ω , β Δ | f α ( ω β ) | , x X { 0 } ; ν ( supp ( θ g x ) ) 1 p μ ( supp ( θ f x ) ) 1 q 1 sup α Ω , β Δ | g β ( τ α ) | , x X { 0 } .
where q is the conjugate index of p.
(ii)
for p = 1 , we have
μ ( supp ( θ f x ) ) 1 sup α Ω , β Δ | f α ( ω β ) | , ν ( supp ( θ g x ) ) 1 sup α Ω , β Δ | g β ( τ α ) | , x X { 0 } .
(iii)
for p = , we have
ν ( supp ( θ g x ) ) 1 sup α Ω , β Δ | f α ( ω β ) | , μ ( supp ( θ f x ) ) 1 sup α Ω , β Δ | g β ( τ α ) | , x X { 0 } .
An unbounded version of 1.3 has been recently derived for unbounded frames.
Definition 1.4
([8]). Let ( Ω , μ ) be a measure space and 1 p . Let { τ α } α Ω be a collection in a Banach space X and { f α } α Ω be a collection of linear functionals on X (which may not be bounded). The pair ( { f α } α Ω , { τ α } α Ω ) is called anunbounded continuous p-Schauder frameorcontinuous semi p-Schauder framefor X if the following conditions holds.
(i)
For every x X , the map Ω α f α ( x ) K is measurable.
(ii)
The map
θ f : D ( θ f ) x θ f x L p ( Ω , μ ) ; θ f x : Ω α ( θ f x ) ( α ) f α ( x ) K
is well-defined (need not be bounded).
(iii)
For every x X , the map Ω α f α ( x ) τ α X is weakly measurable.
(iv)
For every x D ( θ f ) ,
x = Ω f α ( x ) τ α d μ ( α ) ,
where the integral is weak integral.
Theorem 1.5
(Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principles [8]). Let ( Ω , μ ) , ( Δ , ν ) be measure spaces and p = 1 or p = . Let ( { f α } α Ω , { τ α } α Ω ) and ( { g β } β Δ , { ω β } β Δ ) be unbounded continuous p-Schauder frames for a Banach space X . Then for every x ( D ( θ f ) D ( θ g ) ) { 0 } , we have
μ ( supp ( θ f x ) ) ν ( supp ( θ g x ) ) 1 sup α Ω , β Δ | f α ( ω β ) | sup α Ω , β Δ | g β ( τ α ) | .
Above results cover the important Lebesgue spaces for 1 p . The next natural class of spaces is the Lebesgue spaces for 0 < p < 1 . Recall that for 0 < p < 1 , we define
p ( N ) { { a n } n = 1 : a n K , n N , n = 1 | a n | p < }
equipped with the inhomogeneous norm
{ a n } n = 1 p n = 1 | a n | p , { a n } n = 1 p ( N ) .
In this paper, we derive a surprising result which is counter intuitive to the feeling we gain from Theorem 1.3. This is why we called the uncertainty principle we obtained as unexpected uncertainty principle.

2. Unexpected Uncertainty Principle

We start by recalling the following definition.
Definition 2.1
([9]). Let X be a vector space over K . We say that X is adisc Banach spaceif there exists a map called asdisc norm · : X [ 0 , ) satisfying the following conditions.
(i)
If x X is such that x = 0 , then x = 0 .
(ii)
x + y x + y for all x , y X .
(iii)
λ x | λ | x for all x X and for all λ K with | λ | 1 .
(iv)
λ x | λ | x for all x X and for all λ K with | λ | 1 .
(v)
X is complete w.r.t. the metric d ( x , y ) x y for all x , y X .
Banach space frame theory which is modeled on classical Lebesgue sequence spaces [10] and the theory of unbounded frames for Hilbert and Banach spaces [11,12,13,14,15,16,17] naturally gives the following definition.
Definition 2.2.
Let X be a disc Banach space. Let { τ n } n = 1 be a collection in X and { f n } n = 1 be a collection of linear functionals on X (which may not be bounded). The pair ( { f n } n = 1 , { τ n } n = 1 ) is said to be aunbounded p-Schauder frame( 0 < p < 1 ) orsemi p-Schauder framefor X if the following conditions holds.
(i)
The map
θ f : D ( θ f ) x θ f x { f n ( x ) } n = 1 p ( N )
is well-defined (need not be bounded).
(ii)
For every x D ( θ f ) ,
x = n = 1 f n ( x ) τ n
We are going to use the following important result.
Theorem 2.3
([18,19]). For every 0 < p < 1 ,
n = 1 | a n | p n = 1 | a n | p , { a n } n = 1 p ( N ) .
Following is the main result of the paper.
Theorem 2.4.
Let ( { f n } n = 1 , { τ n } n = 1 ) and ( { g n } n = 1 , { ω n } n = 1 ) be unbounded p-Schauder frames for a disc Banach space X . Then for every x ( D ( θ f ) D ( θ g ) ) { 0 } , we have
θ f x 0 θ g x 0 1 sup n , m N | f n ( ω m ) | p sup n , m N | g m ( τ n ) | p .
Proof. 
Let x D ( θ f ) { 0 } . Then using Theorem 2.3,
θ f x = n = 1 | f n ( x ) | p = n supp ( θ f x ) | f n ( x ) | p = n supp ( θ f x ) f n m = 1 g m ( x ) ω m p = n supp ( θ f x ) m supp ( θ g x ) g m ( x ) f n ( ω m ) p n supp ( θ f x ) m supp ( θ g x ) | g m ( x ) f n ( ω m ) | p sup n , m N | f n ( ω m ) | p n supp ( θ f x ) m supp ( θ g x ) | g m ( x ) | p = sup n , m N | f n ( ω m ) | p θ f x 0 m = 1 | g m ( x ) | p sup n , m N | f n ( ω m ) | p θ f x 0 m = 1 | g m ( x ) | p = sup n , m N | f n ( ω m ) | p θ f x 0 θ g x .
Therefore
1 sup n , m N | f n ( ω m ) | p θ f x θ f x 0 θ g x .
On the other hand, let x D ( θ g ) { 0 } . Then again using Theorem 2.3,
θ g x = m = 1 | g m ( x ) | p = m supp ( θ g x ) | g m ( x ) | p = m supp ( θ f x ) g m n = 1 f n ( x ) τ n p = m supp ( θ g x ) n supp ( θ f x ) f n ( x ) g m ( τ n ) p m supp ( θ g x ) n supp ( θ f x ) | f n ( x ) ( x ) g m ( τ n ) | p sup n , m N | g m ( τ n ) | p m supp ( θ g x ) n supp ( θ f x ) | f n ( x ) | p = sup n , m N | g m ( τ n ) | p θ g x 0 n = 1 | f n ( x ) | p sup n , m N | g m ( τ n ) | p θ g x 0 n = 1 | f n ( x ) | p = sup n , m N | g m ( τ n ) | p θ g x 0 θ f x .
Therefore
1 sup n , m N | g m ( τ n ) | p θ g x θ g x 0 θ f x .
Multiplying Inequalities (1) and (2) we get
1 sup n , m N | f n ( ω m ) | p sup n , m N | g m ( τ n ) | p θ f x θ g x θ f x 0 θ g x 0 θ f x θ g x , x ( D ( θ f ) D ( θ g ) ) { 0 } .
A cancellation of θ f x θ g x gives the inequality. □
As continuous version of Theorem 2.3 fails (even for finite measure spaces) it seems that continuous version of Theorem 2.4 fails.
In view of Tao’s uncertainty principle [20] we believe that Theorem 2.3 can be improved in prime dimensions.

References

  1. Benedetto, J.J.; Fickus, M. Finite normalized tight frames. Adv. Comput. Math. 2003, 18, 357–385. [Google Scholar] [CrossRef]
  2. Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
  3. Elad, M.; Bruckstein, A.M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 2002, 48, 2558–2567. [Google Scholar] [CrossRef]
  4. Ricaud, B.; Torrésani, B. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory 2013, 59, 4272–4279. [Google Scholar] [CrossRef]
  5. Krishna, K.M. Functional Continuous Uncertainty Principle. arXiv:2308.00312v1 [math.FA], 1 August 2023.
  6. Krishna, K.M. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle. arXiv:2304. 03324v1, [math.FA], 5 April 2023.
  7. Krishna, K.M. Endpoint Functional Continuous Uncertainty Principles. SSRN Preprints:10.2139/ssrn.4629819, 11 November 2023.
  8. Krishna, K.M. Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principles. arXiv:2312. 00366v1, [math.FA], 1 December 2023.
  9. Krishna, K.M. Functional Donoho-Stark approximate support Uncertainty Principle. arXiv:2307.01215v1, [math.FA], 1 July 2023.
  10. Krishna, K.M.; Johnson, P.S. Towards characterizations of approximate Schauder frame and its duals for Banach spaces. J. Pseudo-Differ. Oper. Appl. 2021, 12, 9. [Google Scholar] [CrossRef]
  11. Liu, B.; Liu, R.; Zheng, B. Parseval p-frames and the Feichtinger conjecture. J. Math. Anal. Appl. 2015, 424, 248–259. [Google Scholar] [CrossRef]
  12. Christensen, O. Frames and pseudo-inverses. J. Math. Anal. Appl. 1995, 195, 401–414. [Google Scholar] [CrossRef]
  13. Antoine, J.P.; Balazs, P. Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim. 2012, 33, 736–769. [Google Scholar] [CrossRef]
  14. Antoine, J.P.; Balazs, P. Frames and semi-frames. J. Phys. A 2011, 44, 205201–25. [Google Scholar] [CrossRef]
  15. Antoine, J.P.; Trapani, C. Beyond frames: semi-frames and reproducing pairs. In Mathematical structures and applications; STEAM-H: Sci. Technol. Eng. Agric. Math. Health, Springer, Cham, 2018; pp. 21–59. [Google Scholar]
  16. Antoine, J.P.; Corso, R.; Trapani, C. Lower semi-frames, frames, and metric operators. Mediterr. J. Math. 2021, 18, 11. [Google Scholar] [CrossRef]
  17. Antoine, J.P.; Speckbacher, M.; Trapani, C. Reproducing pairs of measurable functions. Acta Appl. Math. 2017, 150, 81–101. [Google Scholar] [CrossRef]
  18. Garling, D.J.H. Inequalities: a journey into linear analysis; Cambridge University Press, Cambridge, 2007; pp. x+335. [CrossRef]
  19. Herman, J.; Kučera, R.; Šimša, J. Equations and inequalities; Vol. 1, CMS Books in Mathematics, Springer-Verlag, New York, 2000; pp. xii+344. [CrossRef]
  20. Tao, T. An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 2005, 12, 121–127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated