Submitted:
07 March 2024
Posted:
12 March 2024
You are already at the latest version
Abstract
Keywords:
MSC: 42C15
1. Introduction
- (i)
- For every , the map is measurable.
- (ii)
- For every ,
- (iii)
- For every , the map is weakly measurable.
- (iv)
-
For every ,where the integral is weak integral.
- (i)
-
for , we havewhere q is the conjugate index of p.
- (ii)
- for , we have
- (iii)
- for , we have
- (i)
- For every , the map is measurable.
- (ii)
-
The mapis well-defined (need not be bounded).
- (iii)
- For every , the map is weakly measurable.
- (iv)
-
For every ,where the integral is weak integral.
2. Unexpected Uncertainty Principle
- (i)
- If is such that , then .
- (ii)
- for all .
- (iii)
- for all and for all with .
- (iv)
- for all and for all with .
- (v)
- is complete w.r.t. the metric for all .
- (i)
-
The mapis well-defined (need not be bounded).
- (ii)
- For every ,
References
- Benedetto, J.J.; Fickus, M. Finite normalized tight frames. Adv. Comput. Math. 2003, 18, 357–385. [Google Scholar] [CrossRef]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Elad, M.; Bruckstein, A.M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 2002, 48, 2558–2567. [Google Scholar] [CrossRef]
- Ricaud, B.; Torrésani, B. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory 2013, 59, 4272–4279. [Google Scholar] [CrossRef]
- Krishna, K.M. Functional Continuous Uncertainty Principle. arXiv:2308.00312v1 [math.FA], 1 August 2023.
- Krishna, K.M. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle. arXiv:2304. 03324v1, [math.FA], 5 April 2023.
- Krishna, K.M. Endpoint Functional Continuous Uncertainty Principles. SSRN Preprints:10.2139/ssrn.4629819, 11 November 2023.
- Krishna, K.M. Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principles. arXiv:2312. 00366v1, [math.FA], 1 December 2023.
- Krishna, K.M. Functional Donoho-Stark approximate support Uncertainty Principle. arXiv:2307.01215v1, [math.FA], 1 July 2023.
- Krishna, K.M.; Johnson, P.S. Towards characterizations of approximate Schauder frame and its duals for Banach spaces. J. Pseudo-Differ. Oper. Appl. 2021, 12, 9. [Google Scholar] [CrossRef]
- Liu, B.; Liu, R.; Zheng, B. Parseval p-frames and the Feichtinger conjecture. J. Math. Anal. Appl. 2015, 424, 248–259. [Google Scholar] [CrossRef]
- Christensen, O. Frames and pseudo-inverses. J. Math. Anal. Appl. 1995, 195, 401–414. [Google Scholar] [CrossRef]
- Antoine, J.P.; Balazs, P. Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim. 2012, 33, 736–769. [Google Scholar] [CrossRef]
- Antoine, J.P.; Balazs, P. Frames and semi-frames. J. Phys. A 2011, 44, 205201–25. [Google Scholar] [CrossRef]
- Antoine, J.P.; Trapani, C. Beyond frames: semi-frames and reproducing pairs. In Mathematical structures and applications; STEAM-H: Sci. Technol. Eng. Agric. Math. Health, Springer, Cham, 2018; pp. 21–59. [Google Scholar]
- Antoine, J.P.; Corso, R.; Trapani, C. Lower semi-frames, frames, and metric operators. Mediterr. J. Math. 2021, 18, 11. [Google Scholar] [CrossRef]
- Antoine, J.P.; Speckbacher, M.; Trapani, C. Reproducing pairs of measurable functions. Acta Appl. Math. 2017, 150, 81–101. [Google Scholar] [CrossRef]
- Garling, D.J.H. Inequalities: a journey into linear analysis; Cambridge University Press, Cambridge, 2007; pp. x+335. [CrossRef]
- Herman, J.; Kučera, R.; Šimša, J. Equations and inequalities; Vol. 1, CMS Books in Mathematics, Springer-Verlag, New York, 2000; pp. xii+344. [CrossRef]
- Tao, T. An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 2005, 12, 121–127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).