Submitted:
06 March 2024
Posted:
07 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
2.1. Evolution of DNA Barcoding
2.1.1. Historical Development and Key Milestones
- 1960s-1980s: Early Forays into Molecular Systematics
- 1980s-1990s: The Rise of DNA Sequencing
- 2003: Birth of the DNA Barcoding Initiative
- 2000s-2010s: Expansion and Standardization
2.1.2. Transition from Traditional Taxonomy to DNA-Based Approaches
- Objectivity: DNA barcodes provide an objective and quantifiable measure of genetic differences among species, reducing subjectivity in species identification.
- Rapid Identification: Barcoding allows for rapid and accurate identification, often within a matter of hours or days, as compared to the laborious and time-consuming process of morphological identification.
- Resolution of Cryptic Species: DNA barcoding has unveiled numerous cryptic species, which were previously indistinguishable based on morphology alone. This has reshaped our understanding of species diversity.
- Integration with Traditional Methods: DNA barcoding is not meant to replace traditional taxonomy but to complement it. Integrating molecular data with morphological characteristics offers a more comprehensive approach to species delineation.
- Applications Beyond Taxonomy: DNA barcoding extends its utility to areas such as biodiversity assessment, conservation, forensics, and ecological studies, demonstrating its versatility [15].
2.2. DNA Barcoding Techniques
- Standardized Barcode Regions (e.g., COI, rbcL, matK, ITS)
- Universality: The chosen barcode regions should be present in the majority of species within a taxonomic group, ensuring broad applicability.
- Conservation: These regions must display a degree of genetic stability within species while exhibiting sufficient variation between species to enable discrimination.
- Amplifiability: The regions should be amenable to polymerase chain reaction (PCR) amplification and sequencing.
- Database Compatibility: Data from these regions should be easily integrated into existing reference databases, facilitating species identification.
- Commonly used barcode regions include:
- COI (Cytochrome c oxidase subunit I): Widely applied in animal barcoding due to its evolutionary conservation and rapid mutation rate.
- rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit): A favored marker for plant barcoding, owing to its universal presence in plants.
- matK (Maturase K): Often used in combination with rbcL for plant barcoding, providing complementary information.
- ITS (Internal Transcribed Spacer): Frequently employed for fungal barcoding, offering variable regions for species differentiation.
- Advances in Sequencing Technologies (e.g., Next-Generation Sequencing)
- Sample Collection and Preservation Methods
- Ethical and Legal Compliance: Adherence to ethical guidelines and legal requirements is essential when collecting samples, especially for endangered or protected species.
- Field Sampling: Proper techniques for collecting and preserving specimens in the field, such as using DNA-grade storage buffers, preventing contamination, and maintaining a chain of custody, are vital.
- Museum Specimens: DNA extraction from historical museum specimens presents unique challenges but can offer valuable genetic data for retrospective studies.
- Sample Handling: Stringent protocols for sample handling, storage, and transportation are essential to prevent DNA degradation.
2.3. Applications of DNA Barcoding
- Species Identification and Delimitation
- Morphologically similar species: DNA barcodes can reveal subtle genetic differences that distinguish cryptic or morphologically indistinguishable species.
- Life stages: Barcoding can help identify life stages of species that exhibit drastic morphological changes throughout their development.
- Incomplete or damaged specimens: In cases where specimens are incomplete or damaged, DNA can provide critical identification information.
- Cryptic Species Discovery
- Marine environments: Identifying cryptic marine species has been crucial for effective conservation and resource management.
- Insects and arachnids: Many cryptic species have been uncovered within these highly diverse groups, shedding light on their ecology and evolution.
- Freshwater ecosystems: DNA barcoding has unveiled numerous cryptic species within aquatic organisms, redefining our perceptions of freshwater biodiversity.
- Phylogenetics and Evolutionary Studies
- Evolutionary history: DNA barcoding aids in reconstructing the evolutionary history and divergence times of species.
- Phylogenetic relationships: Molecular data can resolve intricate phylogenetic relationships among species, clarifying taxonomic classifications.
- Biogeography: By tracking the distribution of genetic lineages, DNA barcoding enhances our understanding of biogeographic patterns and historical migrations.
- Forensic Applications
- Species identification: DNA barcoding can identify the species origin of confiscated or processed wildlife products, facilitating prosecutions.
- Source tracking: By tracing the geographical origin of specimens, DNA barcoding helps identify regions of high illegal activity.
- Evidence in legal cases: DNA barcoding provides admissible genetic evidence in legal cases related to wildlife crime.
- Conservation Biology and Monitoring
- Assessing biodiversity: Rapid species identification enables researchers to assess and monitor biodiversity in ecosystems, habitats, and protected areas.
- Endangered species conservation: Identifying rare and endangered species is crucial for their protection and conservation.
- Invasive species detection: DNA barcoding assists in detecting invasive species, facilitating early intervention and management.
2.4. Challenges and Limitations
2.4.1. Incomplete Reference Databases
- Hybridization and Introgression
2.4.2. Issues Related to Barcoding Non-Standard Markers
2.4.3. Ethical and Legal Considerations
2.5. Case Studies
2.5.1. Insects: Lepidoptera (Butterflies and Moths)
2.5.2. Plants: Orchids
2.5.3. Fish: Ichthyology
2.5.4. Fungi: Mycology
2.6. Integrating DNA Barcoding with Other Approaches
2.6.1. Metabarcoding and Environmental DNA (eDNA)
- Machine Learning and Bioinformatics Tools
2.6.2. Combining Morphological and Molecular Data
2.7. Future Directions
2.7.1. Emerging Technologies and Trends in DNA Barcoding
2.7.2. Expanding the Application to New Taxonomic Groups
2.7.3. Addressing Gaps in Reference Databases
2.7.4. Potential Contributions to Conservation Efforts and Policy-Making
2.8. Conclusions
- Summarizing the Transformative Role of DNA Barcoding in Taxonomy
- Future Prospects and Challenges in the Field
Acknowledgments
Conflict of interest
Use of AI tools declaration
References
- Hebert, P.D.N.; Ratnasingham, S.; deWaard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270 (Suppl. S1), S96–S99. [Google Scholar] [CrossRef] [PubMed]
- Meusnier, I.; Singer, G.A.C.; Landry, J.F.; Hickey, D.A.; Hebert, P.D.N.; Hajibabaei, M. A DNA barcode for land plants. Proc. Natl. Acad. Sci. 2008, 105, 19497–19502. [Google Scholar]
- Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W. A DNA barcode for land plants. Proc. Natl. Acad. Sci. 2009, 106, 12794–12797. [Google Scholar]
- Hajibabaei, M.; Singer, G.A.C.; Hebert, P.D.N.; Hickey, D.A. DNA barcoding: How it complements taxonomy, molecular phylogenetics, and population genetics. Trends Genet. 2007, 23, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (www. barcodinglife. org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Pompanon, F.; Deagle, B.E.; Symondson, W.O.C.; Brown, D.S.; Jarman, S.N.; Taberlet, P. Who is eating what: Diet assessment using next-generation sequencing. Mol. Ecol. 2012, 21, 1931–1950. [Google Scholar] [CrossRef] [PubMed]
- Leray, M.; Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. 2015, 112, 2076–2081. [Google Scholar] [CrossRef]
- Ji, Y.; Ashton, L.; Pedley, S.M.; Edwards, D.P.; Tang, Y.; Nakamura, A.; Kitching, R.L. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 2013, 16, 1245–1257. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Ratnasingham, S.; deWaard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270 (Suppl. S1), S96–S99. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. 1977, 74, 5088–5090. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of birds through DNA barcodes. PLoS Biol. 2004, 2, e312. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, Q.D.; Meier, R. Species Concepts and Phylogenetic Theory: A Debate; Columbia University Press: 2000.
- Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W. A DNA barcode for land plants. Proc. Natl. Acad. Sci. 2009, 106, 12794–12797. [Google Scholar]
- Hebert, P.D.N.; Ratnasingham, S.; deWaard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270 (Suppl. S1), S96–S99. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W. A DNA barcode for land plants. Proc. Natl. Acad. Sci. 2009, 106, 12794–12797. [Google Scholar]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- Meyer, C.P.; Paulay, G. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol. 2005, 3, e422. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Singer, G.A.; Hebert, P.D.N.; Hickey, D.A. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 2007, 23, 167–172. [Google Scholar] [CrossRef]
- Meyer, C.P.; Paulay, G. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol. 2005, 3, e422. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of birds through DNA barcodes. PLoS Biol. 2004, 2, e312. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed]
- Lahaye, R.; Van der Bank, M.; Bogarin, D.; Warner, J.; Pupulin, F.; Gigot, G.; Savolainen, V. DNA barcoding the floras of biodiversity hotspots. Proc. Natl. Acad. Sci. 2008, 105, 2923–2928. [Google Scholar] [CrossRef] [PubMed]
- Hubert, N.; Hanner, R.; Holm, E.; Mandrak, N.E.; Taylor, E.; Burridge, M.; Bernatchez, L. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 2008, 3, e2490. [Google Scholar] [CrossRef] [PubMed]
- Thüs, H.; Muggia, L.; Pérez-Ortega, S.; Favero-Longo, S.E.; Joneson, S.; O’Brien, H.E. Re-evaluating the systematics of the lichen-forming genus Melanohalea (Parmeliaceae, Ascomycota). Lichenologist 2011, 43, 461–471. [Google Scholar]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Oliver, I.; Beattie, A.J.; York, A.; Marshall, A. Patterns of ground-active ants in jarrah forest: Implications for biodiversity conservation in a biodiversity hotspot. J. Appl. Ecol. 1998, 35, 927–942. [Google Scholar]
- Saini, R.K.; Orlova, M.; Rueda, F.J. Bird sound classification using deep convolutional neural networks. J. Acoust. Soc. Am. 2018, 143, EL308–EL314. [Google Scholar]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [Google Scholar] [CrossRef]
- Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Pääbo, S. Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl. Acad. Sci. 1989, 86, 1939–1943. [Google Scholar] [CrossRef]
- Orlando, L.; Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 573–598. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2008, 2, e508. [Google Scholar] [CrossRef] [PubMed]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Bernatchez, L. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.D.; Sperling, F.A. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Mol. Phylogenetics Evol. 2007, 44, 325–345. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
