Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Small-Signal Stability of Hybrid Inverters with Grid-Following and Grid-Forming Controls

Version 1 : Received: 29 February 2024 / Approved: 4 March 2024 / Online: 6 March 2024 (04:20:08 CET)

A peer-reviewed article of this Preprint also exists.

Ji, X.; Liu, D.; Jiang, K.; Zhang, Z.; Yang, Y. Small-Signal Stability of Hybrid Inverters with Grid-Following and Grid-Forming Controls. Energies 2024, 17, 1644. Ji, X.; Liu, D.; Jiang, K.; Zhang, Z.; Yang, Y. Small-Signal Stability of Hybrid Inverters with Grid-Following and Grid-Forming Controls. Energies 2024, 17, 1644.

Abstract

In the modern power grid, characterized by the increased penetration of power electronics and extensive utilization of renewable energy, inverters-based power plants play a pivotal role as the principal interface of renewable energy sources (RESs) and the grid. Considering the stability characteristics of grid-following (GFL) inverters when the grid is relatively weak, the application of grid-forming (GFM) controls becomes imperative to enhance the stability of the entire power plant. Thus, there is an urgent need for suitable and effective models to study the interaction and stability of the paralleled inverters employing GFL and GFM controls. Thus, the small-signal modeling with full-order state space model and eigenvalues analysis is presented in this paper. First, the small-signal state-space model of the individual GFL and GFM inverters is obtained considering the control loop, interaction, reference frame, transmissions, and time delays. Then, the models of the individual inverter are extended to the hybrid inverters to study the effects of the GFM inverters on the small- signal stability of the entire system. And, the impacts of the inertia and damping are analyzed by the eigenvalues of the state-transition matrix. Case comprising three parallel GFL inverters and two GFL inverters with one GFM inverter, respectively, are studied to examine the effectiveness and accuracy of the model. Finally, the stability margin obtained from the eigenvalue analysis of the entire system is verified by time-domain simulations.

Keywords

Paralleled multiple inverters; grid-following; grid-forming; state-space model; small- 17 signal stability; eigenvalues analysis

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.