Submitted:
29 February 2024
Posted:
06 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. What’s the Roadmap of Multilayered Heterogeneity in EOC?
3.1.1. Developmental Heterogeneity of EOC
3.1.2. Cellular Heterogeneity of EOC
3.1.3. Microenvironmental Heterogeneity in EOC
3.1.4. Heterogeneity of Molecular Milieu in EOC
3.2. Any Viable Options and Challenges in Targeting Drug Resistant CSCs?
3.3. Are There Any Candidate Biomarkers for Prognosis and Outcome Prediction
3.3.1. miRNA, Exosomes and Chemoresistance
- Liquid biopsy-based biomarkers in EOC
4. Discussion and Future Challenges
5. Concluding Remarks
Supplementary Materials
Funding statement
Data Access Statement
Acknowledgments
Conflicts of Interest
References
- Teeuwssen M, Fodde R. Wnt signaling in ovarian cancer stemness, EMT, and therapy resistance. J Clin Med [Internet]. 2019;8(10):1658. Available from: http://dx.doi.org/10.3390/jcm8101658. [CrossRef]
- Colombo, N., Sessa, C., Bois, A. du, Ledermann, J., McCluggage, W. G., McNeish, I., Morice, P., Pignata, S., Ray-Coquard, I., Vergote, I., Baert, T., Belaroussi, I., Dashora, A., Olbrecht, S., Planchamp, F., Querleu, D., & ESMO-ESGO Ovarian Cancer Consensus Conference Working Group. (2019). ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society, 29(4), 728–760. [CrossRef]
- National Comprehensive Cancer Network, Ovarian cancer including fallopian tube cancer and primary peritoneal cancer. NCCN Practice Guidelines, Version 1, 2023.
- O’Malley, D. M., Krivak, T. C., Kabil, N., Munley, J., & Moore, K. N. (2023). PARP inhibitors in ovarian cancer: A review. Targeted Oncology, 18(4), 471–503. [CrossRef]
- Coughlan AY, Testa G. Exploiting epigenetic dependencies in ovarian cancer therapy. Int J Cancer [Internet]. 2021;149(10):1732–43. Available from: http://dx.doi.org/10.1002/ijc.33727. [CrossRef]
- Marchetti, C., De Felice, F., Romito, A., Iacobelli, V., Sassu, C. M., Corrado, G., Ricci, C., Scambia, G., & Fagotti, A. (2021). Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Seminars in Cancer Biology, 77, 144–166. [CrossRef]
- Roy L, Cowden Dahl K. Can stemness and chemoresistance be therapeutically targeted via signaling pathways in ovarian cancer? Cancers (Basel) [Internet]. 2018;10(8):241. Available from: http://dx.doi.org/10.3390/cancers10080241. [CrossRef]
- Jiri Hatina, Maximilian Boesch, Sieghart Sopper, Michaela Kripnerova, Dominik Wolf, Daniel Reimer, Christian Marth, and Alain G. Zeimet. (2021). Ovarian cancer stem cell heterogeneity. In A. Birbrair (Ed.), Stem Cells Heterogeneity in Cancer (pp. 201–216).
- Horowitz, M., Esakov, E., Rose, P., & Reizes, O. (2020). Signaling within the epithelial ovarian cancer tumor microenvironment: the challenge of tumor heterogeneity. Annals of Translational Medicine, 8(14), 905. [CrossRef]
- Yang, Y., Yang, Y., Yang, J., Zhao, X., & Wei, X. (2020). Tumor microenvironment in ovarian cancer: Function and therapeutic strategy. Frontiers in Cell and Developmental Biology, 8, 758. [CrossRef]
- Jou H-J, Ling P-Y, Hsu H-T. Circulating tumor cells as a “real-time liquid biopsy”: Recent advances and the application in ovarian cancer. Taiwan J Obstet Gynecol [Internet]. 2022;61(1):34–9. Available from: http://dx.doi.org/10.1016/j.tjog.2021.11.008. [CrossRef]
- Gasparri ML, Besharat ZM, Farooqi AA, Khalid S, Taghavi K, Besharat RA, et al. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J Cancer Res Clin Oncol [Internet]. 2018;144(12):2313–8. Available from: http://dx.doi.org/10.1007/s00432-46018-2737-y. [CrossRef]
- Chebouti I, Kuhlmann JD, Buderath P, Weber S, Wimberger P, Bokeloh Y, et al. ERCC1-expressing circulating tumor cells as a potential diagnostic tool for monitoring response to platinum-based chemotherapy and for predicting post-therapeutic outcome of ovarian cancer. Oncotarget [Internet]. 2017;8(15):24303–13. Available from: http://dx.doi.org/10.18632/oncotarget.13286. [CrossRef]
- Stieg, D. C., Wang, Y., Liu, L.-Z., & Jiang, B.-H. (2022). ROS and miRNA dysregulation in ovarian cancer development, angiogenesis and therapeutic resistance. International Journal of Molecular Sciences, 23(12). [CrossRef]
- Balla, A., Bhak, J., & Biró, O. (2022). The application of circulating tumor cell and cell-free DNA liquid biopsies in ovarian cancer. Molecular and Cellular Probes, 66(101871), 101871. [CrossRef]
- Khan, M. A., Vikramdeo, K. S., Sudan, S. K., Singh, S., Wilhite, A., Dasgupta, S., Rocconi, R. P., & Singh, A. P. (2021). Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Seminars in Cancer Biology, 77, 99–109. [CrossRef]
- Cancer Genome Atlas Research Network (2011): Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615. [CrossRef]
- Testa, U., Petrucci, E., Pasquini, L., Castelli, G., & Pelosi, E. (2018). Ovarian cancers: Genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines (Basel, Switzerland), 5(1). [CrossRef]
- Chang HL, MacLaughlin DT, Donahoe PK (2008) Somatic stem cells of the ovary and their relationship to human ovarian cancers. In: StemBook. Harvard Stem Cell Institute, Cambridge.
- Amr, A. Soliman, Alaa A. Elzarkaa, and Eduard Malik. (2022). Epithelial ovarian cancer and cancer stem cells. In H. Schatten (Ed.), Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies (pp. 29–37).
- Al-Alem, L. F., Pandya, U. M., Baker, A. T., Bellio, C., Zarrella, B. D., Clark, J., DiGloria, C. M., & Rueda, B. R. (2019). Ovarian cancer stem cells: What progress have we made? The International Journal of Biochemistry & Cell Biology, 107, 92–103. [CrossRef]
- Plaks, V., Kong, N., & Werb, Z. (2015). The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16(3), 225–238. [CrossRef]
- Padilla, M. A. A., Binju, M., Wan, G., Rahmanto, Y. S., Kaur, P., & Yu, Y. (2019). Relationship between ovarian cancer stem cells, epithelial mesenchymal transition and tumour recurrence. Cancer Drug Resistance, 2(4), 1127–1135. [CrossRef]
- Orlandric Miree, Sanjeev Kumar Srivastava, Santanu Dasgupta, Seema Singh, Rodney Rocconi, and Ajay Pratap Singh. (2022). Current and Futuristic Roadmap of Ovarian Cancer Management: An Overview. In H. Schatten (Ed.), Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies (pp. 10–14).
- Ahmed, N., Escalona, R., Leung, D., Chan, E., & Kannourakis, G. (2018). Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Seminars in Cancer Biology, 53, 265–281. [CrossRef]
- Daniele, G., Raspagliesi, F., Scambia, G., Pisano, C., Colombo, N., Frezzini, S., Tognon, G., Artioli, G., Gadducci, A., Lauria, R., Ferrero, A., Cinieri, S., De Censi, A., Breda, E., Scollo, P., De Giorgi, U., Lissoni, A. A., Katsaros, D., Lorusso, D., … Pignata, S. (2021). Bevacizumab, carboplatin, and paclitaxel in the first line treatment of advanced ovarian cancer patients: the phase IV MITO-16A/MaNGO-OV2A study. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society, 31(6), 875–882. [CrossRef]
- Haunschild, C. E., & Tewari, K. S. (2020). Bevacizumab use in the frontline, maintenance and recurrent settings for ovarian cancer. Future Oncology (London, England), 16(7), 225–246. [CrossRef]
- Cordani, N., Bianchi, T., Ammoni, L. C., Cortinovis, D. L., Cazzaniga, M. E., Lissoni, A. A., Landoni, F., & Canova, S. (2023). An overview of PARP resistance in ovarian cancer from a molecular and clinical perspective. International Journal of Molecular Sciences, 24(15). [CrossRef]
- Vergote, I., González-Martín, A., Ray-Coquard, I., Harter, P., Colombo, N., Pujol, P., Lorusso, D., Mirza, M. R., Brasiuniene, B., Madry, R., Brenton, J. D., Ausems, M. G. E. M., Büttner, R., Lambrechts, D., & European experts’ consensus group. (2022). European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer. Annals of Oncology, 33(3), 276–287. [CrossRef]
- Le Page, C., Amuzu, S., Rahimi, K., Gotlieb, W., Ragoussis, J., & Tonin, P. N. (2021). Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2 mutation carriers. Seminars in Cancer Biology, 77, 110–126. [CrossRef]
- Zhang, H., & Lu, B. (2020). microRNAs as biomarkers of ovarian cancer. Expert Review of Anticancer Therapy, 20(5), 373–385. [CrossRef]
- Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews. Clinical Oncology, 8(2), 97–106. [CrossRef]
- Maio, M., Ascierto, P. A., Manzyuk, L., Motola-Kuba, D., Penel, N., Cassier, P. A., Bariani, G. M., De Jesus Acosta, A., Doi, T., Longo, F., Miller, W. H., Oh, D.-Y., Gottfried, M., Xu, L., Jin, F., Norwood, K., & Marabelle, A. (2022). Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Annals of Oncology, 33(9), 929–938. [CrossRef]
- Akbarzadeh, M., Akbarzadeh, S., & Majidinia, M. (2020). Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathology, Research and Practice, 216(11), 153158. [CrossRef]
- Lee, J.-Y., Kim, B.-G., Kim, J.-W., Lee, J. B., Park, E., Joung, J.-G., Kim, S., Choi, C. H., Kim, H. S., & Korean Gynecologic Oncology Group (KGOG) investigators. (2022). Biomarker-guided targeted therapy in platinum-resistant ovarian cancer (AMBITION; KGOG 3045): a multicentre, open-label, five-arm, uncontrolled, umbrella trial. Journal of Gynecologic Oncology, 33(4), e45. [CrossRef]
- Deng, J., Bai, X., Feng, X., Ni, J., Beretov, J., Graham, P., & Li, Y. (2019). Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer, 19(1), 618. [CrossRef]
- Xia Y, Zhang Y-L, Yu C, Chang T, Fan H-Y. YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells. PLoS One [Internet]. 2014;9(11):e109575. Available from: http://dx.doi.org/10.1371/journal.pone.0109575. [CrossRef]
- Borneman RM, Gavin E, Musiyenko A, Richter W, Lee KJ, Crossman DK, et al. Phosphodiesterase 10A (PDE10A) as a novel target to suppress β-catenin and RAS signaling in epithelial ovarian cancer. J Ovarian Res [Internet]. 2022;15(1):120. Available from: http://dx.doi.org/10.1186/s13048-022-01050-9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
