Submitted:
28 February 2024
Posted:
29 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Case Description
3. Discussion
4. Conclusion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Lin, J.N.; Lai, C.H.; Yang, C.H.; Huang, Y.H. Elizabethkingia infections in humans: From genomics to clinics. Microorganisms. 2019, 7, 295. [Google Scholar] [CrossRef] [PubMed]
- Dziuban, E.J.; Franks, J.L.; So, M.; Peacock, G.; Blaney, D.D. Elizabethkingia in children: A comprehensive review of symptomatic cases reported from 1944 to 2017. Clin Infect Dis. 2018, 67, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Perrin, A.; Larsonneur, E.; Nicholson, A.C.; Edwards, D.J.; Gundlach, K.M.; Whitney, A.M.; Gulvik, C.A.; Bell, M.E.; Rendueles, O.; Cury, J., et al.; et al. Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat. Commun. 2017, 8, 15483. [Google Scholar] [CrossRef]
- Guerpillon, B.; Fangous, M.S.; Le Breton, E.; Artus, M.; le Gall, F.; Khatchatourian, L.; Talarmin, J.P.; Plesiat, P.; Jeannot, K.; Saidani, N.; Rolland-Jacob, G. Elizabethkingia anophelis outbreak in France. Infect. Dis. Now. 2022, 52, 299–303. [Google Scholar] [CrossRef]
- Lau, S.K.; Chow, W.N.; Foo, C.H.; Curreem, S.O.; Lo, G.C.; Teng, J.L.; Chen, J.H.; Ng, R.H.; Wu, A.K.; Cheung, I.Y.; Chau, S.K.; Lung, D.C.; Lee, R.A.; Tse, C.W.; Fung, K.S.; Que, T.L.; Woo, P.C. Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality. Sci. Rep. 2016, 6, 26045. [Google Scholar] [CrossRef]
- Kämpfer, P.; Matthews, H.; Glaeser, S.P.; Martin, K.; Lodders, N.; Faye, I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int. J. Syst. Evol. Microbiol 2011, 61 Pt 11, 2670–2675. [Google Scholar] [CrossRef]
- Frank, T.; Gody, J.C.; Nguyen, L.B.; Berthet, N.; Le Fleche-Mateos, A.; Bata, P.; Rafaï, C.; Kazanji, M.; Breurec, S. First case of Elizabethkingia anophelis meningitis in the Central African Republic. Lancet. 2013, 381, 1876. [Google Scholar] [CrossRef]
- Auffret, N.; Anghel, R.; Brisse, S.; Rey, B.; Schenesse, D.; Moquet, O. Elizabethkingia anophelis meningitis in a traveler returning from the Americas. Infect. Dis. Now. 2021, 51, 503–505. [Google Scholar] [CrossRef]
- Nielsen, H.L.; Tarpgaard, I.H.; Fuglsang-Damgaard, D.; Thomsen, P.K.; Brisse, S.; Dalager-Pedersen, M. Rare Elizabethkingia anophelis meningitis case in a Danish male. JMM. Case. Rep 2018, 5, e005163. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, R.; Feng, Y.; Guo, Y.; Kan, Q.; Qian, A.; Zhao, L. Elizabethkingia anophelis: An important emerging cause of neonatal sepsis and meningitis in China. Pediatr. Infect. Dis. J. 2022, 41, e228–e232. [Google Scholar] [CrossRef]
- Lau, S.K.; Wu, A.K.; Teng, J.L.; Tse, H.; Curreem, S.O.; Tsui, S.K.; Huang, Y.; Chen, J.H.; Lee, R.A.; Yuen, K.Y.; Woo, P.C. Evidence for Elizabethkingia anophelis transmission from mother to infant, Hong Kong. Emerg. Infect. Dis. 2015, 21, 232–241. [Google Scholar] [CrossRef]
- Reed, T.A.N.; Watson, G.; Kheng, C.; Tan, P.; Roberts, T.; Ling, C.L.; Miliya, T.; Turner, P. Elizabethkingia anophelis infection in infants, Cambodia, 2012-2018. Emerg. Infect. Dis. 2020, 26, 320–322. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Sahoo, S.; Das, A.; Gaur, M.; Bhanjadeo, D.; Panda, P.; Subudhi, E. A phylogenetic study of Elizabethkingia anophelis bloodstream isolates obtained from inpatients at a single medical center. Infect. Control. Hosp. Epidemiol. 2019, 40, 1202–1204. [Google Scholar] [CrossRef]
- Baruah, F.K.; Borkakoty, B.; Ahmed, A.; Bora, P. Neonatal meningitis and septicemia caused by multidrug-resistant Elizabethkingia anophelis identified by 16s ribosomal RNA: An emerging threat. J. Glob. Infect. Dis. 2020, 12, 225–227. [Google Scholar] [CrossRef]
- Honavar, A.G.; David, A.; Amladi, A.; Thomas, L. Multidrug-resistant Elizabethkingia anophelis septicemia, meningitis, ventriculitis, and hydrocephalus in a preterm neonate: A rare complication of an emerging pathogen. J. Pediatr. Neurosci. 2021, 16, 79–81. [Google Scholar]
- Mantoo, M.R.; Ghimire, J.J.; Mahopatra, S.; Sankar, J. Elizabethkingia anophelis infection in an infant: an unusual presentation. BMJ. Case. Rep. 2021, 14, e243078. [Google Scholar] [CrossRef]
- Kadi, H.; Tanriverdi Cayci, Y.; Yener, N.; Gur Vural, D.; Bilgin, K.; Birinci, A. 16s rRNA-based phylogenetic analyses of Elizabethkingia anophelis: Detection of Elizabethkingia anophelis, a rare infectious agent from blood and determination of antibiotic susceptibility in Turkey. Indian. J. Med. Microbiol. 2022, 40, 557–559. [Google Scholar] [CrossRef]
- Snesrud, E.; McGann, P.; Walsh, E.; Ong, A.; Maybank, R.; Kwak, Y.; Campbell, J.; Jones, A.; Vore, K.; Hinkle, M.; Lesho, E. Clinical and genomic features of the first cases of Elizabethkingia anophelis infection in New York, including the first case in a healthy infant without previous nosocomial exposure. J. Pediatr. Infect. Dis. Soc. 2019, 8, 269–271. [Google Scholar] [CrossRef]
- Hartley, C.; Morrisette, T.; Malloy, K.; Steed, L.L.; Dixon, T.; Garner, S.S. Successful eradication of a highly resistant Elizabethkingia anophelis species in a premature neonate with bacteremia and meningitis. Pediatr. Infect. Dis J. 2023, 42, e461–e465. [Google Scholar] [CrossRef]
- Hu, S.; Lv, Y.; Xu, H.; Zheng, B.; Xiao, Y. Biofilm formation and antibiotic sensitivity in Elizabethkingia anophelis. Front. Cell. Infect. Microbiol. 2022, 12, 953780. [Google Scholar] [CrossRef]
- Han, M.S.; Kim, H.; Lee, Y.; Kim, M.; Ku, N.S.; Choi, J.Y.; Yong, D.; Jeong, S.H.; Lee, K.; Chong, Y. Relative prevalence and antimicrobial susceptibility of clinical isolates of Elizabethkingia species based on 16S rRNA gene sequencing. J. Clin. Microbiol. 2016, 55, 274–280. [Google Scholar] [CrossRef]
- Jian, M.J.; Cheng, Y.H.; Chun, H.Y.; Cheng, Y.H.; Yang, H.Y.; Hsu, C.S.; Perng, C.L.; Shang, H.S. Fluoroquinolone resistance in carbapenem-resistant Elizabethkingia anophelis: phenotypic and genotypic characteristics of clinical isolates with topoisomerase mutations and comparative genomic analysis. J. Antimicrob. Chemother. 2019, 74, 1503–1510. [Google Scholar] [CrossRef]
| Antimicrobial agents | MIC Breakpoints (μg/ml) | MIC (μg/ml) | Interpretation* | ||
|---|---|---|---|---|---|
| Piperacillin | ≤16 | 32-64 | ≥128 | ≥256 | R |
| Piperacillin/tazobactam | ≤16/4 | 32/4-64/4 | ≥128/4 | 12 | S |
| Ceftazidime | ≤8 | 16 | ≥32 | ≥256 | R |
| Ceftriaxone | ≤8 | 16-32 | ≥64 | 64 | R |
| Cefepime | ≤8 | 16 | ≥32 | 16 | I |
| Imipenem | ≤4 | 8 | ≥16 | ≥32 | R |
| Meropenem | ≤4 | 8 | ≥16 | ≥32 | R |
| Ceftazidime/avibactam | ≤8/4 | - | ≥16/4 | 12 | R |
| Imipenem/relebactam | ≤1/4 | 2/4 | ≥4/4 | ≥32 | R |
| Meropenem/vaborbactam | ≤4/8 | 8/8 | ≥16/8 | ≥64 | R |
| Gentamicin | ≤4 | 8 | ≥16 | 6 | I |
| Amikacin | ≤16 | 32 | ≥64 | 12 | S |
| Plazomicin | ≤2 | 4 | ≥8 | 64 | R |
| Tetracycline | ≤4 | 8 | ≥16 | 48 | R |
| Doxycycline | ≤4 | 8 | ≥16 | 3 | S |
| Minocycline | ≤4 | 8 | ≥16 | 0.75 | S |
| Eravacycline | ≤0.5 | - | >0.5 | 0.75 | R |
| Tigecycline | ≤2 | 4 | ≥8 | 0.75 | S |
| Ciprofloxacin | ≤1 | 2 | ≥4 | 0.25 | S |
| Levofloxacin | ≤2 | 4 | ≥8 | 0.25 | S |
| TMP/SXT | ≤2/38 | - | ≥4/76 | 0.19 | S |
| Vancomycin | ≤4 | 8-16 | ≥32 | 12 | I |
| Rifampicin | ≤1 | 2 | ≥4 | 0.5 | S |
| Ref. | Country of origin | Age | Sex | Diagnosis | Underlying conditions | Specimen type | Antibiotic treatment | Outcome |
|---|---|---|---|---|---|---|---|---|
| 7 | Central African Republic | 8 d | F* | Meningitis | Asphyxia at birth | CSF | Gentamicin, ampicillin | Death |
| 10 | China | 22 d | M | Meningitis | Prematurity | Blood, CSF | Vancomycin, piperacillin/tazobactam | Survival (hydrocephalus) |
| 10 | China | 18 d | F | Meningitis | None | CSF | Vancomycin, piperacillin/tazobactam | Survival (hydrocephalus) |
| 11 | Hong Kong | 21 d | M | Meningitis | None | Blood, CSF | Vancomycin, piperacillin, rifampicin | Survival (without neurologic sequelae) |
| 11 | Hong Kong | 1 d | F | Meningitis | Prematurity | Blood, CSF | Vancomycin, piperacillin/tazobactam, rifampicin | Survival (without neurologic sequelae) |
| 5 | Hong Kong | 1 mo | F | Catheter-related bacteremia | Prematurity, RDS, PDA | Blood | Vancomycin, cefoperazone/sulbactam | Death |
| 5 | Hong Kong | 8 d | F | Meningitis | Imperforated anus, rectovaginal fistula | Blood, CSF | Vancomycin, rifampicin | Survival |
| 12 | Cambodia | 1 d | M | Sepsis | Prematurity | Blood | Imipenem | Survival |
| 12 | Cambodia | 51 d | F | VAP | Ventricular septal defect | Respiratory secretion | Ciprofloxacin | Death |
| 12 | Cambodia | 1 d | M | Sepsis | Prematurity | Blood | Ampicillin, gentamicin | Death |
| 12 | Cambodia | 15 wk | F | Meningitis | Failure to thrive | Blood | Ceftriaxone | Unknown |
| 12 | Cambodia | 8 mo | M | VAP | Duodenal atresia | Respiratory secretion | Meropenem | Death |
| 12 | Cambodia | 7 d | F | Meningitis | Prematurity | Blood | Ciprofloxacin, vancomycin | Survival (hydrocephalus) |
| 12 | Thailand | 1 d | F | Sepsis | Prematurity | Blood | Ampicillin, gentamicin | Death |
| 13 | India | 2 y | F | Bronchopneumonia | NR | Blood | Pipercillin/tazobactam, levofloxacin, colistin, ceftriaxone/sulbactam, imipenem | Survival |
| 14 | India | 11 d | M | Meningitis, sepsis | Prematurity | Blood, CSF | Pipercillin/tazobactam, vancomycin, ciprofloxacin | Survival (without neurologic sequelae) |
| 15 | India | 12 d | M | Meningitis, sepsis | Prematurity | Blood, CSF | Cefoperazone/sulbactam, vancomycin, TMP/SMX, rifampicin, ciprofloxacin | Survival (hydrocephalus) |
| 16 | India | 7 mo | M | Bacteremia | NR | Blood | Vancomycin, piperacillin/tazobactam | Survival |
| 17 | Turkey | 11y | M | Bacteremia | congenital tracheomalacia, cerebral palsy, SARS-CoV-2 past infection | Blood | Colistin, ciprofloxacin | Death |
| 18 | New York | 17 mo | F | Sepsis, pneumonia | None | Blood | Ampicillin, ceftriaxone, amoxicillin/clavulanate | Survival |
| 19 | South Carolina | 11 d | M | Meningitis, bacteremia | Prematurity | Blood, CSF | Vancomycin, rifampicin, ciprofloxacin, TMP/SMX | Survival (hearing loss, hydrocephalus) |
| Present case | Greece | 2.5 y | F | CLABSI | ALL | Blood | pipercillin/tazobactam, amikacin | Survival |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
