Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Temporal Dynamics of Citizen-Reported Urban Challenges: A Comprehensive Time Series Analysis

Version 1 : Received: 31 January 2024 / Approved: 31 January 2024 / Online: 31 January 2024 (15:05:03 CET)

A peer-reviewed article of this Preprint also exists.

Gkontzis, A.F.; Kotsiantis, S.; Feretzakis, G.; Verykios, V.S. Temporal Dynamics of Citizen-Reported Urban Challenges: A Comprehensive Time Series Analysis. Big Data Cogn. Comput. 2024, 8, 27. Gkontzis, A.F.; Kotsiantis, S.; Feretzakis, G.; Verykios, V.S. Temporal Dynamics of Citizen-Reported Urban Challenges: A Comprehensive Time Series Analysis. Big Data Cogn. Comput. 2024, 8, 27.

Abstract

In an epoch characterized by the swift pace of digitalization and urbanization, the essence of community well-being hinges on the efficacy of urban management. As cities burgeon and transform, the need for astute strategies to navigate the complexities of urban life becomes in-creasingly paramount. This study employs time series analysis to scrutinize citizen interactions with the coordinate-based problem mapping platform in the Municipality of Patras in Greece. The research explores the temporal dynamics of reported urban issues, with a specific focus on identifying recurring patterns through the lens of seasonality. The analysis, employing the sea-sonal decomposition technique, dissects time series data to expose trends in reported issues and areas of the city that might be obscured in raw big data. It accentuates a distinct seasonal pattern, with concentrations peaking during the summer months. The study extends its approach to forecasting, providing insights into the anticipated evolution of urban issues over time. Projec-tions for the coming years show a consistent upward trend in both overall city issues and those reported in specific areas, with distinct seasonal variations. This comprehensive exploration of time series analysis and seasonality provides valuable insights for city stakeholders, enabling informed decision-making and predictions regarding future urban challenges.

Keywords

Smart Cities; Predictive Analytics; Urban Resilience; Sustainable Urban Development; Geodata; Python; Time Series Analysis; Seasonal Decomposition; Citizens Reports; Big Data

Subject

Computer Science and Mathematics, Data Structures, Algorithms and Complexity

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.