Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics

Version 1 : Received: 26 January 2024 / Approved: 26 January 2024 / Online: 26 January 2024 (11:55:29 CET)

A peer-reviewed article of this Preprint also exists.

Fathalian, M.; Postek, E.; Tahani, M.; Sadowski, T. A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics. Molecules 2024, 29, 1165. Fathalian, M.; Postek, E.; Tahani, M.; Sadowski, T. A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics. Molecules 2024, 29, 1165.

Abstract

This study comprehensively investigates Al2O3's mechanical properties, focusing on fracture toughness, surface energy, Young's modulus, and crack propagation. The density functional theory (DFT) is employed to model the vacancies in Al2O3, providing essential insights into this material’s structural stability and defect formation. The DFT simulations reveal a deep understanding of vacancy-related properties and their impact on mechanical behavior. In conjunction with molecular dynamics (MD) simulations, the fracture toughness and crack propagation in Al2O3 are explored, offering valuable information on material strength and durability. The surface energy of Al2O3 is also assessed using DFT, shedding light on its interactions with the surrounding environment. The combination of DFT and MD simulations provides a robust framework for a comprehensive understanding of Al2O3's mechanical properties, with implications for material science and engineering applications.

Keywords

Al2O3, Fracture Toughness, Density Functional Theory, Molecular Dynamics

Subject

Chemistry and Materials Science, Ceramics and Composites

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.