Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized Phishing URLs Detection

Version 1 : Received: 13 January 2024 / Approved: 15 January 2024 / Online: 15 January 2024 (16:46:59 CET)

A peer-reviewed article of this Preprint also exists.

Aslam, S.; Aslam, H.; Manzoor, A.; Chen, H.; Rasool, A. AntiPhishStack: LSTM-Based Stacked Generalization Model for Optimized Phishing URL Detection. Symmetry 2024, 16, 248. Aslam, S.; Aslam, H.; Manzoor, A.; Chen, H.; Rasool, A. AntiPhishStack: LSTM-Based Stacked Generalization Model for Optimized Phishing URL Detection. Symmetry 2024, 16, 248.

Abstract

The escalating reliance on revolutionary online web services has introduced heightened security risks, with persistent challenges posed by phishing despite extensive security measures. Traditional phishing systems, reliant on machine learning and manual features, struggle with evolving tactics. Recent advances in deep learning offer promising avenues for tackling novel phishing challenges and malicious URLs. This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites. The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats. In Phase I, features are trained on a base machine learning classifier, employing K-fold cross-validation for robust mean prediction. Phase II employs a two-layered stacked-based LSTM network with five adaptive optimizers for dynamic compilation, ensuring premier prediction on these features. Additionally, the symmetrical predictions from both phases are optimized and integrated to train a meta-XGBoost classifier, contributing to a final robust prediction. This work's significance lies in advancing phishing detection with AntiPhishStack, operating without prior phishing-specific feature knowledge. Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy. This research adds value to the ongoing discourse on symmetry and asymmetry in information security and provides a forward-thinking solution for enhancing network security in the face of evolving cyber threats.

Keywords

Phishing Detection; Stack Generalization; LSTM Networks; Anti‐Phishing; Malicious URLs

Subject

Computer Science and Mathematics, Security Systems

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.