Submitted:
28 December 2023
Posted:
29 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
The role of TP53 in AML
Current treatment options for TP53-mutated AML
Currently available combination strategies
Novel therapeutic agents
A. Targeted treatments
B. TP53 targeting agents
C. Immunotherapeutic approaches
D. Other agents
E. Novel treatments in TP53mut AML: does a promising future await?
Novel agents in preclinical studies
2. Conclusions
Funding
Conflicts of Interest
References
- Lakin, N.D.; Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene. 1999, 18, 7644–7655. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Kadia, T.M.; Jain, P.; Ravandi, F.; et al. TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016, 122, 3484–3491. [Google Scholar] [CrossRef]
- Bowen, D.; Groves, M.J.; Burnett, A.K.; et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009, 23, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Rücker, F.G.; Schlenk, R.F.; Bullinger, L.; et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012, 119, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Kantarjian, H.; Baran, N.; et al. TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci. 2021, 22, 10782. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.M.; Sallman, D.A. Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol 2019, 32, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Della Porta, M.G.; Gallì, A.; Bacigalupo, A.; et al. Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol. 2016, 34, 3627–3637. [Google Scholar] [CrossRef] [PubMed]
- Madarász, K.; Mótyán, J.A.; Bedekovics, J.; et al. Deep Molecular and In Silico Protein Analysis of p53 Alteration in Myelodysplastic Neoplasia and Acute Myeloid Leukemia. Cells. 2022, 11, 3475. [Google Scholar] [CrossRef]
- Tavor, S.; Rothman, R.; Golan, T.; et al. Predictive value of TP53 fluorescence in situ hybridization in cytogenetic subgroups of acute myeloid leukemia. Leuk Lymphoma. 2011, 52, 642–647. [Google Scholar] [CrossRef]
- Levine, A.J. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer 2020, 20, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.G.; Tolis, C.; Giaccone, G. p53 and chemosensitivity. Ann Oncol. 1999, 10, 1011–1021. [Google Scholar] [CrossRef]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature. 2000, 408, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Hainaut, P.; Hernandez, T.; Robinson, A.; et al. IARC database of p53gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998, 26, 205–213. [Google Scholar] [CrossRef]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010, 2, a001008. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Zou, Z.; Pirollo, K.; et al. Germline transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990, 348, 747–749. [Google Scholar] [CrossRef] [PubMed]
- Ley, T.J.; Ding, L.; Raphael, B.J.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia the cancer genome atlas research network. N Engl J Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, K.; Li, S.; Adams, P.D.; Deshpande, A.J. The role of TP53 in acute myeloid leukemia: challenges and opportunities. Genes Chromosomes Cancer 2019, 58, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Brosh, R.; Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009, 9, 701–713. [Google Scholar] [CrossRef]
- Shetzer, Y.; Molchadsky, A.; Rotter, V. Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell formation. Cold Spring Harb Perspect Med. 2016, 6, a026203. [Google Scholar] [CrossRef]
- Zhu, J.; Sammons, M.A.; Donahue, G.; et al. Gain-of-function p53mutants co-opt chromatin pathways to drive cancer growth. Nature. 2015, 525, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Nannya, Y.; Hasserjian, R.P.; et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med 2020, 26, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Sill, H.; Zebisch, A.; Haase, D. Acute myeloid leukemia and myelodysplastic syndromes with TP53 aberrations: a distinct stem cell disorder. Clin Cancer Res 2020, 26, 5304–5309. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Montalban-Bravo, G.; Hwang, H.; et al. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020, 4, 5681–5689. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Shallis, R.M.; Gowda, L.; et al. Clinical outcomes and characteristics of patients with TP53-mutated acute myeloid leukemia or myelodysplastic syndromes: a single center experience. Leuk Lymphoma. 2020, 61, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Seymour, J.F.; Butrym, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015, 126, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Dolnik, A.; Tang, L.; et al. Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia. 2018, 32, 2546–2557. [Google Scholar] [CrossRef] [PubMed]
- Boddu, P.; Kantarjian, H.; Ravandi, F.; et al. Outcomes with lower intensity therapy in TP53-mutated acute myeloid leukemia. Leuk Lymphoma. 2018, 59, 2238–2241. [Google Scholar] [CrossRef] [PubMed]
- Middeke, J.M.; Teipel, R.; Röllig, C.; et al. Decitabine treatment in 311 patients with acute myeloid leukemia: outcome and impact of TP53 mutations - a registry based analysis. Leuk Lymphoma. 2021, 62, 1432–1440. [Google Scholar] [CrossRef]
- Welch, J.S.; Petti, A.A.; Miller, C.A.; et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016, 375, 2023–2036. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N Engl J Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Pollyea, D.A.; Pratz, K.W.; Wei, A.H.; et al. Outcomes in Patients with Poor-Risk Cytogenetics with or without TP53 Mutations Treated with Venetoclax and Azacitidine. Clin Cancer Res. 2022, 28, 5272–5279. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Maiti, A.; Loghavi, S.; et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer. 2021, 127, 3772–3781. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, R.; Diepstraten, S.T.; Moujalled, D.; et al. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood. 2021, 137, 2721–2735. [Google Scholar] [CrossRef] [PubMed]
- Nechiporuk, T.; Kurtz, S.E.; Nikolova, O.; et al. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discov. 2019, 9, 910–925. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Sun, Q.; Cao, L.; et al. Efficacy and safety of decitabine combined with low-dose cytarabine, aclarubicin, and granulocyte colony-stimulating factor compared with standard therapy in acute myeloid leukemia patients with TP53 mutation. Chin Med J (Engl). 2020, 134, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Zhu, Y.; et al. Efficacy and safety of decitabine in combination with G-CSF, low-dose cytarabine and aclarubicin in newly diagnosed elderly patients with acute myeloid leukemia. Oncotarget. 2015, 6, 6448–6458. [Google Scholar] [CrossRef]
- Kadia, T.M.; Faderl, S.; Ravandi, F.; et al. Final results of a phase 2 trial of clofarabine and low-dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. Cancer. 2015, 121, 2375–2382. [Google Scholar] [CrossRef]
- Kadia, T.M.; Cortes, J.; Ravandi, F.; et al. Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematol. 2018, 5, e411–e421. [Google Scholar] [CrossRef]
- Kadia, T.M.; Ravandi, F.; Borthakur, G.; et al. Long-term results of low-intensity chemotherapy with clofarabine or cladribine combined with low-dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. Am J Hematol. 2021, 96, 914–924. [Google Scholar] [CrossRef]
- Cahill, K.E.; Karimi, Y.H.; Karrison, T.G.; et al. A phase 1 study of azacitidine with high-dose cytarabine and mitoxantrone in high-risk acute myeloid leukemia. Blood Adv. 2020, 4, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pei, Z.; Wang, H.; et al. Chidamide and Decitabine in Combination with a HAG Priming Regimen for Acute Myeloid Leukemia with TP53 Mutation. Acta Med Okayama. 2022, 76, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Chiche, E.; Rahmé, R.; Bertoli, S.; et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: a multicentric French cohort. Blood Adv. 2021, 5, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Aaron DGoldberg Chetasi Talati Pinkal Desai, e. t al. TP53 Mutations Predict Poorer Responses to CPX-351 in Acute Myeloid Leukemia. Blood 2018, 132 (Suppl. 1), 1433. [Google Scholar] [CrossRef]
- Cortes, J.E.; Lin, T.L.; Asubonteng, K.; Faderl, S.; Lancet, J.E.; Prebet, T. Efficacy and safety of CPX-351 versus 7 + 3 chemotherapy by European LeukemiaNet 2017 risk subgroups in older adults with newly diagnosed, high-risk/secondary AML: post hoc analysis of a randomized, phase 3 trial. J Hematol Oncol. 2022, 15, 155. [Google Scholar] [CrossRef]
- Rautenberg, C.; Stölzel, F.; Röllig, C.; et al. Real-world experience of CPX-351 as first-line treatment for patients with acute myeloid leukemia. Blood Cancer J. 2021, 11, 164. [Google Scholar] [CrossRef]
- Swords, R.T.; Coutre, S.; Maris, M.B.; et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood. 2018, 131, 1415–1424. [Google Scholar] [CrossRef]
- Saliba, A.N.; Kaufmann, S.H.; Stein, E.M.; et al. Pevonedistat with azacitidine in older patients with TP53-mutated AML: a phase 2 study with laboratory correlates. Blood Adv. 2023, 7, 2360–2363. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Muftuoglu, M.; Ong, F.; et al. A phase 1/2 study of azacitidine, venetoclax and pevonedistat in newly diagnosed secondary AML and in MDS or CMML after failure of hypomethylating agents. J Hematol Oncol. 2023, 16, 73. [Google Scholar] [CrossRef]
- Rushworth, S.A.; Murray, M.Y.; Zaitseva, L.; et al. Identification of Bruton’s tyrosine kinase as a therapeutic target in acute myeloid leukemia. Blood. 2014, 123, 1229–1238. [Google Scholar] [CrossRef]
- Huls, G.; Chitu, D.A.; Pabst, T.; et al. Ibrutinib added to 10-day decitabine for older patients with, A. M.L.; higher risk, M.D.S. Blood Adv. 2020, 4, 4267–4277. [Google Scholar] [CrossRef]
- Roboz, G.J.; Mandrekar, S.J.; Desai, P.; et al. Randomized trial of 10 days of decitabine ± bortezomib in untreated older patients with AML: CALGB 11002 (Alliance). Blood Adv. 2018, 2, 3608–3617. [Google Scholar] [CrossRef]
- Zhang, Q.; Bykov, V.J.N.; Wiman, K.G.; et al. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277 [published correction appears in Cell Death Dis. 2019 Oct 10;10(10):769]. Cell Death Dis. 2018, 9, 439. [Google Scholar] [CrossRef]
- Ali, D.; Jönsson-Videsäter, K.; Deneberg, S.; et al. APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells. Eur J Haematol. 2011, 86, 206–215. [Google Scholar] [CrossRef]
- Maslah, N.; Salomao, N.; Drevon, L.; et al. Synergistic effects of PRIMA-1Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2020, 105, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, K.M.; Zhang, B.Z.; Jackson, T.D.; et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci Adv. 2022, 8, eabm9427. [Google Scholar] [CrossRef]
- Birsen, R.; Larrue, C.; Decroocq, J.; et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 2022, 107, 403–416. [Google Scholar] [CrossRef]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J Clin Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Cluzeau, T.; Sebert, M.; Rahmé, R.; et al. Eprenetapopt Plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myélodysplasies (GFM). J Clin Oncol. 2021, 39, 1575–1583. [Google Scholar] [CrossRef]
- Mishra, A.; Tamari, R.; DeZern, A.E.; et al. Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. J Clin Oncol. 2022, 40, 3985–3993. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Goldberg, A.D.; Winer, E.S.; et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: a phase 1, dose-finding and expansion study. Lancet Haematol. 2023, 10, e272–e283. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Jamieson, C.H.; Pang, W.W.; et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009, 138, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Majeti, R.; Chao, M.P.; Alizadeh, A.A.; et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009, 138, 286–299. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Zhao, F.; et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One. 2015, 10, e0137345. [Google Scholar] [CrossRef]
- Daver, N.; Vyas, P.; Kambhampati, S.; et al. Tolerability and Efficacy of the Anticluster of Differentiation 47 Antibody Magrolimab Combined With Azacitidine in Patients With Previously Untreated AML: Phase Ib Results. J Clin Oncol. 2023, 41, 4893–4904. [Google Scholar] [CrossRef]
- Daver, N.; Senapati, J.; Maiti, A.; et al. Phase I/II Study of Azacitidine (AZA) with Venetoclax (VEN) and Magrolimab (Magro) in Patients (pts) with Newly Diagnosed (ND) Older/Unfit or High-Risk Acute Myeloid Leukemia (AML) and Relapsed/Refractory (R/R) AML. Blood 2022, 140 (Suppl. 1), 141–144. [Google Scholar] [CrossRef]
- Gilead statement on the discontinuation of magrolimab study in AML with TP53 mutations. News release. September 26, 2023. Available online: https://www.gilead.com/news-and-press/company-statements/gilead-statement-on-the-discontinuation-of-magrolimab-study-in-aml-with-tp53-mutations. Accessed December 04, 2023.
- Petrova, P.S.; Viller, N.N.; Wong, M.; et al. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding. Clin Cancer Res. 2017, 23, 1068–1079. [Google Scholar] [CrossRef]
- Miao, M.; Qingliang, T.; Depei, W. AK117 (anti-CD47 monoclonal antibody) in Combination with Azacitidine for Newly Diagnosed Higher Risk Myelodysplastic Syndrome (HR-MDS): AK117-103 Phase 1b Results. Blood 2023, 142 (Suppl. 1), 1865. [Google Scholar] [CrossRef]
- Chen, A.; Harrabi, O.; Fong, A.P.; et al. Alx148 enhances the depth and durability of response to multiple aml therapies. Blood 2020, 136, 15–16. [Google Scholar] [CrossRef]
- ALX Oncology Reports Second Quarter 2023 Financial Results and Provides Clinical Program Update. August 10, 2023. Available online: https://ir.alxoncology.com/news-releases/news-release-details/alx-oncology-reports-second-quarter-2023-financial-results-and/. Accessed December 05, 2023.
- Asayama, T.; Tamura, H.; Ishibashi, M.; et al. Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget. 2017, 8, 88904–88917. [Google Scholar] [CrossRef]
- Kikushige, Y.; Miyamoto, T.; Yuda, J.; et al. A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression. Cell Stem Cell. 2015, 17, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.M.; Esteve, J.; Porkka, K.; et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood 2021, 138, 244. [Google Scholar] [CrossRef]
- Al-Hussaini, M.; Rettig, M.P.; Ritchey, J.K.; et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood. 2016, 127, 122–131. [Google Scholar] [CrossRef]
- Testa, U.; Riccioni, R.; Militi, S.; et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002, 100, 2980–2988. [Google Scholar] [CrossRef]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021, 137, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Vadakekolathu, J.; Lai, C.; Reeder, S.; et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020, 4, 5011–5024. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Montesinos, P.; Aribi, A.; et al. Broad Activity for the Pivekimab Sunirine (PVEK, IMGN632), Azacitidine, and Venetoclax Triplet in High-Risk Patients with Relapsed/Refractory Acute Myeloid Leukemia (AML). Blood 2022, 140 (Suppl. 1), 145–149. [Google Scholar] [CrossRef]
- Daver, N.; Montesinos, P.; Montesinos, P.; Aribi, A.; et al. A phase 1b/2 study of pivekimab sunirine (PVEK, IMGN632) in combination with venetoclax/azacitidine or magrolimab for patients with CD123-positive acute myeloid leukemia (AML). Journal of Clinical Oncology 2023, 41, TPS7073. [Google Scholar] [CrossRef]
- Daver, N.; Montesinos, P.; Altman, J. Pivekimab Sunirine (PVEK, IMGN632), a CD123-Targeting Antibody-Drug Conjugate, in Combination with Azacitidine and Venetoclax in Patients with Newly Diagnosed Acute Myeloid Leukemia. Blood 2023, 142 (Suppl. 1), 2906. [Google Scholar] [CrossRef]
- Frankel, A.; Liu, J.S.; Rizzieri, D.; et al. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk. Lymphoma 2008, 49, 543–553. [Google Scholar] [CrossRef]
- Togami, K.; Pastika, T.; Stephansky, J.; et al. DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. J Clin Invest. 2019, 129, 5005–5019. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.; Garcia, J.; Raulston, E.; et al. Tagraxofusp in Combination with Azacitidine and Venetoclax in Newly Diagnosed CD123+ Acute Myeloid Leukemia, Expansion Cohort of a Phase 1b Multicenter Trial. Blood 2023, 142, 4277. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashey, A.; Foran, J.; et al. Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 2023, 7, 6492–6505. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, E.; Castelli, G.; Testa, U. CD123 a Therapeutic Target for Acute Myeloid Leukemia and Blastic Plasmocytoid Dendritic Neoplasm. Int J Mol Sci. 2023, 24, 2718. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Kim, H.T.; Bachireddy, P.; et al. Ipilimumab for Patients with Relapse after Allogeneic Transplantation. N Engl J Med. 2016, 375, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Assi, R.; Daver, N.; et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019, 6, e480–e488. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Garcia-Manero, G.; Basu, S.; et al. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discov. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Zeidner, J.F.; Vincent, B.G.; Ivanova, A.; et al. Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Blood Cancer Discov. 2021, 2, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Boss, I.; Beach, C.L.; et al. A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for older patients with AML. Blood Adv. 2022, 6, 2219–2229. [Google Scholar] [CrossRef]
- Lovewell, R.R.; Hong, J.; Kundu, S.; et al. LAIR-1 agonism as a therapy for acute myeloid leukemia. J Clin Invest. 2023, 133, e169519. [Google Scholar] [CrossRef]
- Tovar, C.; Rosinski, J.; Filipovic, Z.; et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006, 103, 1888–1893. [Google Scholar] [CrossRef]
- Yee, K.; Papayannidis, C.; Vey, N.; et al. Murine double minute 2 inhibition alone or with cytarabine in acute myeloid leukemia: Results from an idasanutlin phase 1/1b study small star, filled. Leuk. Res. 2021, 100, 106489. [Google Scholar] [CrossRef] [PubMed]
- Konopleva, M.Y.; Röllig, C.; Cavenagh, J.; et al. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial. Blood Adv. 2022, 6, 4147–4156. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Ruvolo, V.; Mu, H. Synthetic Lethality of Combined Bcl-2 Inhibition and p53 Activation in AML: Mechanisms and Superior Antileukemic Efficacy. Cancer Cell. 2017, 32, 748–760.e6. [Google Scholar] [CrossRef] [PubMed]
- Senapati, J.; Muftuoglu, M.; Ishizawa, J.; et al. A Phase I study of Milademetan (DS3032b) in combination with low dose cytarabine with or without venetoclax in acute myeloid leukemia: Clinical safety, efficacy, and correlative analysis. Blood Cancer J. 2023, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Dail, M.; Garcia, J.S.; et al. Venetoclax and idasanutlin in relapsed/refractory AML: a nonrandomized, open-label phase 1b trial. Blood. 2023, 141, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, J.L.; Liang, Y. Arsenic Trioxide Rescues Structural p53 Mutations through a Cryptic Allosteric Site. Cancer Cell. 2021, 39, 225–239.e8. [Google Scholar] [CrossRef] [PubMed]
- Parrales, A.; Ranjan, A.; Iyer, S.V.; et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016, 18, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, E.D.; Stromatt, J.C.; Fobare, S.; et al. TP-0903 Is Active in Preclinical Models of Acute Myeloid Leukemia with TP53 Mutation/Deletion. Cancers (Basel). 2022, 15, 29. [Google Scholar] [CrossRef]
- Semba, Y.; Yamauchi, T.; Nakao, F. CRISPR-Cas9 Screen Identifies XPO7 As a Potential Therapeutic Target for TP53-Mutated AML. Blood 2019, 134 (Suppl. 1), 3784. [Google Scholar] [CrossRef]
- Kravchenko, J.E.; Ilyinskaya, G.V.; Komarov, P.G.; et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 2008, 105, 6302–6307. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Xu, Z.; et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016, 531, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Boeckler, F.M.; Joerger, A.C.; Jaggi, G.; Rutherford, T.J.; Veprintsev, D.B.; Fersht, A.R. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 2008, 105, 10360–10365. [Google Scholar] [CrossRef] [PubMed]
- Blanden, A.R.; Yu, X.; Loh, S.N.; Levine, A.J.; Carpizo, D.R. Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer [published correction appears in Drug Discov Today. 2016 Oct;21(10):1728]. Drug Discov Today. 2015, 20, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Budhraja, A.; Cheng, S.; et al. Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways. Cell Death Dis. 2011, 2, e140. [Google Scholar] [CrossRef]
- Carter, B.Z.; Mak, P.Y.; Muftuoglu, M.; et al. Epichaperome inhibition targets TP53-mutant AML and AML stem/progenitor cells. Blood. 2023, 142, 1056–1070. [Google Scholar] [CrossRef]
- Lindemann, A.; Patel, A.A.; Silver, N.L.; et al. COTI-2, A Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-dependent and -independent Mechanisms. Clin Cancer Res. 2019, 25, 5650–5662. [Google Scholar] [CrossRef]
- Bosc, C.; Saland, E.; Bousard, A.; et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat Cancer. 2021, 2, 1204–1223. [Google Scholar] [CrossRef]
| Agent | Study type | Regimen | Population | TP53mut patients (n) | Response | OS (months) | Ref |
|---|---|---|---|---|---|---|---|
| Pevonedistat | Open-label, phase 1B, multicenter | PEVO + AZA | Unfit, untreated AML patients | 8 | CR/CRi/PR 75% | NR | 47 |
| Open-label, phase 2, multicenter | PEVO + AZA | ≥ 60y, untreated, TP53mut AML patients | 10 | CR/CRi 0% | mOS 6.2m | 48 | |
| Phase 1/2 single-center | PEVO + AZA + VEN | Unfit ND secondary AML patients, MDS and CMML patients after failure of HMAs | 11 | CR/CRi 64% | mOS 8.1m | 49 | |
| Ibrutinib | Randomized, phase 2, multicenter | Ibrutinib + DEC10 vs. DEC10 monotherapy | Elderly, unfit, untreated AML patients | 27 | CR/CRi 56% in both arms | Inferior OS compared to TP53wt patients | 51 |
| Bortezomib | Randomized, phase 2, multicenter | Bortezomib + DEC10 vs. DEC10 monotherapy | Elderly, ND AML patients | 12 in combination arm and 14 in DEC10 arm | CR 17% in combination arm vs. 21% in DEC10 arm | 1-year OS 17% in combination vs. 21% in DEC10 arm | 52 |
| Eprenetapopt (APR-246) |
Open-label, phase 1b/2, multicenter | APR-246 + AZA | ≥ 18y, TP53mut, HMA-naïve MDS, MDS/MPN, CMML, oligoblastic (20-30% blasts) AML patients | 11 | ORR 64% CR 36% |
mOS 10.8m | 58 |
| Open-label, phase 2, multicenter | APR-246 + AZA | ≥ 18y, TP53mut, HMA-naïve MDS, CMML, oligoblastic and > 30% blasts AML patients | 18 | ORR 33% CR 17% CR 27% in oligoblastic AML CR 0% in AML with >30% blasts |
mOS 10.4m mOS 13.4m in oligoblastic AML mOS 3m in AML with >30% blasts |
59 | |
| Open-label, phase 2, multicenter | APR-246 + AZA as maintenance treatment after HCT | ≥ 18y, TP53mut, MDS or AML patients post-HCT | 14 | NA | mRFS 12.5m mOS 20.6m (for all patients) |
60 | |
| Open-label, phase 1, multicenter | APR-246 + AZA + VEN | ≥ 18y, TP53mut, untreated AML patients | 43 | ORR 64% CR 38% CR/CRi 56% |
mOS 7.3m | 61 | |
| Magrolimab | Open-label, phase 1b, multicenter | MAG + AZA | ≥ 18y, unfit, untreated AML patients | 72 | ORR 47% CR 32% |
mOS 9.8m | 65 |
| Open-label, phase 1b/2, multicenter | MAG + AZA + VEN | ≥ 18y, unfit, ND or untreated secondary and VEN-naïve or VEN-exposed R/R AML patients | 27 in the ND and untreated secondary AML cohort |
ORR 74% CR 86% CR/CRi 63% |
1-year OS 53% | 66 | |
| Sabatolimab (MBG453) |
Open-label, phase 1b, multicenter | SAB + HMA | Unfit, ND or R/R HMA-naïve AML, high risk HMA-naïve MDS and CMML patients | NR | ORR 53.8% in ND AML patients with at least 1 ELN adverse-risk mutation, including TP53 | NR | 74 |
| Flotetuzumab | Open-label, phase 1/2, multicenter | FLOT monotherapy | R/R AML/MDS patients | 15 in the R/R AML cohort | ORR 60% CR 47% |
mOS 10.3m | 78 |
| Pivekimab sunirine (IMGN632) |
Open-label, phase 1b/2, multicenter | PVEK + AZA + VEN | ND, CD123+ AML patients | 19 | CR 13% coCR 47% |
NR | 81 |
| Tagraxofusp | Open-label, phase 1b, multicenter | TAG + AZA +/- VEN | Unfit, ND, CD123+ AML patients | 13 | CR 31% CR/CRi/MLFS 54% |
mOS 9.5m mPFS 5.1m |
84 |
| Nivolumab | Open-label, phase 1/2, single-center | NIVO + idarubicin + AraC | Fit for IC, ND AML patients | 8 | CR/CRi/CRp 50% for TP53mut patients CR 67% for patients with poor-risk mutation profile, TP53 included |
NR | 88 |
| Open-label, phase 2, single-center | NIVO + AZA | R/R AML patients | 16 | ORR 28% | NR | 89 | |
| Pembrolizumab | Open-label, phase 2, two-center | PEMBRO + HiDAC | R/R AML patients | 5 | CR 40% | NR | 90 |
| Durvalumab | Randomized, open-label, phase 2, multicenter | DURV + AZA vs. AZA monotherapy | Elderly, unfit, ND AML patients | 21 in the combination arm, 17 in the monotherapy arm | ORR 34% in TP53mut AML vs. ORR 33% in TP53wt AML for both treatment arms | NR | 91 |
| Idasanutlin | Open-label, phase 1, multicenter | IDASA + VEN | Unfit, ND sAML or R/R AML patients | 10 | CR/CRi/CRp 20% | mOS 3.7m | 98 |
| Compound | Target | Model | Mechanism of action | Combination with other therapy | Ref |
|---|---|---|---|---|---|
| Compounds that restore p53 wildtype function | |||||
| PK7088 | Y220C | Cell lines | Selective induction of caspase 3/7 in p53-Y220C cells and restoration of p53wt conformation | NA | |
| PhiKan083 | Y220C | In silico | BAX nuclear export induction to the mitochondria, and restoration of p53 nontranscriptional apoptosis | NA | 105 |
| NSC319726 (ZMC1) | R175H, R172H | In silico | Zinc chelator, providing optimal zinc concentration for mut p53-R175H proper folding; induction of ROS formation Restoration of p53wt conformation and activity with MDM2-dependent degradation |
NA | 106 |
| PEITC | R175H | Cell lines | Sensitization of p53mut to proteasome-mediated degradation and further restoration of p53wt conformation and transactivation | NA | 107 |
| COTI-2 | R175H, R273H | Cell lines | Restoration of p53wt activity by targeting and binding to misfolded p53 mutant | NA | 109 |
| Compounds that induce degradation of mutant p53 | |||||
| PU-H71 (Zelavespib) | R248W | Molm13 and K562 cells | Induction of cell death in TP53wt, TP53-KO, and TP53mut cells |
VEN enhanced the killing of both TP53wt and TP53mut cells by PU-H71 | 108 |
| Compounds with miscellaneous targets | |||||
| TP-0903 (Dubermatinib) | Multikinase inhibitor | Cell lines | AURKA/B inhibition in TP53mut AML G2/M arrest and apoptosis in TP53mut AML cells Chk1/2 inhibition in TP53mut AML cells DNA damage response through upregulation of pH2AX |
Combination of TP-0903 and DEC is active in vitro demonstrating an additive effect TP-0903/DEC prolongs survival in vivo in a HL-60 xenograft model |
101 |
| XPO7 | Mouse cell lines |
Trp53-KO cells are vulnerable to XPO7 depletion, while XPO7 functions as a Trp53-dependent tumor suppressor in Trp53wt AML cells Synthetic lethal relationship between TP53 and XPO7 |
NA | 102 | |
| RETRA | mutp53-p73 binding | Mouse cell lines | Increase in the expression level of p73, and release of p73 from the blocking complex with p53mut, which produces tumor-suppressor effects similar to the functional reactivation of p53. RETRA is active against tumor cells expressing a variety of p53 mutants and does not affect normal cells. |
NA | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
