Submitted:
27 December 2023
Posted:
28 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Heavy metals toxicity
1.2. Traditional methods of heavy metals removal
2. Modification of the agriculture by-product waste
3. Adsorption mechanism
4. Adsorption kinetics
4.1. kinetic models
4.2. Isotherm models
4.3. Adsorption thermodynamics
5. The adsorption properties of the rich cellulose agriculture by-products
6. Heavy metal removal efficiency of some significant agriculture by-products
Conclusion
Recommendations for future work
- Future studies to convert agricultural waste into bio-sorbent should focus on searching for the most appropriate treatment methods and optimal conditions for such treatment, as various studies confirm that these factors mainly affect the adsorption efficiency.
- The conversion of these agro-waste wastes into advanced materials such as bio-adsorbent surfaces is considered a promising field that must be paid attention to
- usage of these wastes has to be developed based on its renewability and abundance, especially in light of the environmental challenges and the resources shortage.
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declarations
References
- Mahmood, Q.; Rashid, A.; Ahmad, S.S.; Azim, M.R.; Bilal, M.J.T.p.f.B.c.t.p. Current status of toxic metals addition to environment and its consequences. 2012, 35-69.
- Bahiru, D.B.J.A.J.o.E.P. Assessment of some heavy metals contamination in some vegetables (tomato, cabbage, lettuce and onion) in Ethiopia: A review. 2021, 10, 53-58.
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C.J.J.o.h.m. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. 2010, 174, 1-8.
- Song, S.; Li, Y.; Liu, Q.S.; Wang, H.; Li, P.; Shi, J.; Hu, L.; Zhang, H.; Liu, Y.; Li, K. Interaction of mercury ion (Hg2+) with blood and cytotoxicity attenuation by serum albumin binding. Journal of Hazardous Materials 2021, 412, 125158. [Google Scholar] [CrossRef] [PubMed]
- Gujre, N.; Rangan, L.; Mitra, S. Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes. Chemosphere 2021, 271, 129573. [Google Scholar] [CrossRef]
- Buha, A.; Baralić, K.; Djukic-Cosic, D.; Bulat, Z.; Tinkov, A.; Panieri, E.; Saso, L. The role of toxic metals and metalloids in nrf2 signaling. Antioxidants 2021, 10, 630. [Google Scholar] [CrossRef]
- Kastury, F.; Tang, W.; Herde, C.; Noerpel, M.R.; Scheckel, K.G.; Juhasz, A.L. Plumbojarosite formation in contaminated soil to mitigate childhood exposure to lead, arsenic and antimony. Journal of Hazardous Materials 2021, 126312. [Google Scholar] [CrossRef]
- Bose, S.; Datta, R.; Kirlin, W.G. Toxicity Studies Related to Medicinal Plants. In Evidence Based Validation of Traditional Medicines; Springer: 2021; pp. 621-647.
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Xu, Y.-N.; Chen, Y. Advances in heavy metal removal by sulfate-reducing bacteria. Water Science and Technology 2020, 81, 1797–1827. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J.J.R.a. Adsorption of heavy metal onto biomass-derived activated carbon. 2023, 13, 4275-4302.
- Ramirez, A.P.J.B.L.T.J. Carbon nanotubes for science and technology. 2005, 10, 171-185.
- Gómez-Pastora, J.; Bringas, E.; Ortiz, I.J.C.E.J. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. 2014, 256, 187-204.
- Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A.J.S.; Technology, P. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. 2016, 157, 141-161.
- Pasinszki, T.; Krebsz, M.J.N. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. 2020, 10, 917.
- Punia, P.; Bharti, M.K.; Chalia, S.; Dhar, R.; Ravelo, B.; Thakur, P.; Thakur, A.J.C.I. Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment-a review. 2021, 47, 1526-1550.
- Abourriche, A.; Hannache, H.; Oumam, M. Elaboration of novel adsorbent from Moroccan oil shale using Plackett–Burman design. Chem. Int 2018, 4, 7–14. [Google Scholar]
- Osman, H.E.; Badwy, R.K.; Ahmad, H.F. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. journal of Phytology 2010, 2, 51–62. [Google Scholar]
- Kumar, U. Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater: A review. Scientific research and essays 2006, 1, 033–037. [Google Scholar]
- Turan, N.G.; Mesci, B. Adsorption of copper (II) and zinc (II) ions by various agricultural by-products. Experimental studies and modelling. Environ. Prot. Eng 2011, 37, 143. [Google Scholar]
- Pellera, F.-M.; Giannis, A.; Kalderis, D.; Anastasiadou, K.; Stegmann, R.; Wang, J.-Y.; Gidarakos, E. Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management 2012, 96, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Vilar, V.J.; Botelho, C.M.; Boaventura, R.A. Coconut-based biosorbents for water treatment—a review of the recent literature. Advances in colloid and interface science 2010, 160, 1–15. [Google Scholar] [CrossRef]
- Marín, A.P.; Ortuno, J.; Aguilar, M.; Meseguer, V.; Sáez, J.; Lloréns, M. Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr (III) ions by orange waste. Biochemical Engineering Journal 2010, 53, 2–6. [Google Scholar] [CrossRef]
- Singh, K.; Singh, A.; Hasan, S. Low cost bio-sorbent ‘wheat bran’for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresource technology 2006, 97, 994–1001. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Yahya, M.A.; Al-Shannag, M. On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: a review. Desalin Water Treat 2017, 85, 339–357. [Google Scholar] [CrossRef]
- Islam, M.M.; Mohana, A.A.; Rahman, M.A.; Rahman, M.; Naidu, R.; Rahman, M.M. A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics 2023, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Purkait, M.K. Sustainable Utilization of Tea Waste. In Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production; Springer: 2023; pp. 245-275.
- Dar, M.A.; Anas, M.; Kajal, K.; Kumar, S.; Kaushik, G. Adsorptive removal of crystal violet dye by Azadirachta indica (neem) sawdust: A low-cost bio-sorbent. Acta Ecologica Sinica 2023. [Google Scholar] [CrossRef]
- Enache, A.-C.; Samoila, P.; Cojocaru, C.; Apolzan, R.; Predeanu, G.; Harabagiu, V. An eco-friendly modification of a walnut shell biosorbent for increased efficiency in wastewater treatment. Sustainability 2023, 15, 2704. [Google Scholar] [CrossRef]
- Chai, N.; Gao, L.; Li, S.; Cao, Y.; Ma, Z.; Li, L.; Hu, M. In-suit ion-imprinted bio-sorbent with superior adsorption performance for gallium (Ⅲ) capture. Journal of Cleaner Production 2023, 135861. [Google Scholar] [CrossRef]
- Mahato, N.; Agarwal, P.; Mohapatra, D.; Sinha, M.; Dhyani, A.; Pathak, B.; Tripathi, M.K.; Angaiah, S. Biotransformation of citrus waste-II: bio-sorbent materials for removal of dyes, heavy metals and toxic chemicals from polluted water. Processes 2021, 9, 1544. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Shannag, M.; Amro, A.; Bob, M.; Bani-Melhem, K.; Alkasrawi, M. Impact of surface modification of green algal biomass by phosphorylation on the removal of copper (II) ions from water. Turkish Journal of Chemistry 2017, 41, 190–208. [Google Scholar] [CrossRef]
- Temesgen Abeto, A.; Surafel Mustafa, B.; Abreham Bekele, B.; Worku Firomsa, K. Optimization and Modeling of Cr (VI) Removal from Tannery Wastewater onto Activated Carbon Prepared from Coffee Husk and Sulfuric Acid (H 2 SO 4) as Activating Agent by Using Central Composite Design (CCD). Journal of Environmental and Public Health 2023, 2023. [Google Scholar] [CrossRef]
- Martín-Lara, M.Á.; Rico, I.L.R.; Vicente, I.d.l.C.A.; García, G.B.; de Hoces, M.C. Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 2010, 256, 58–63. [Google Scholar] [CrossRef]
- Habib, M.; Alshammari, A. Valorization of the Agriculture By-product of Palm Date Trees: Preparation of Activated Carbon for Organic Dyes Removal from Tanneries Waste Water. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES 2018, 9, 326–331. [Google Scholar]
- El-sayed, M.E.; Ayoub, H.A.; Abdelhafeez, I.A. Agricultural Applications of Activated Carbon. In Activated Carbon: Progress and Applications; The Royal Society of Chemistry: 2023; pp. 134-151.
- Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Adsorption of heavy metal onto biomass-derived activated carbon. RSC advances 2023, 13, 4275–4302. [Google Scholar] [CrossRef] [PubMed]
- Rios, R.D.; Bueno, P.J.; Terra, J.C.; Moura, F.C. Influence of the surface modification of granular-activated carbon synthesized from macauba on heavy metal sorption. Environmental Science and Pollution Research 2023, 30, 31881–31894. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, A.G.; Ogunniyi, S.; Iwuozor, K.O.; Emenike, E.C. Thermochemical conversion of African balsam leaves-cow dung hybrid wastes into biochar. Biofuels, Bioproducts and Biorefining 2023, 17, 510–522. [Google Scholar] [CrossRef]
- Shrestha, B.; Kour, J.; Homagai, P.L.; Pokhrel, M.R.; Ghimire, K.N. Surface modification of the biowaste for purification of wastewater contaminated with toxic heavy metals—lead and cadmium. 2013.
- Tsade, H.; Murthy, H.A.; Muniswamy, D. Bio-sorbents from agricultural wastes for eradication of heavy metals: a review. J Mater Environ Sci 2020, 11, 1719–1735. [Google Scholar]
- Gul, A.; Khaligh, N.G.; Julkapli, N.M. Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment. Journal of Molecular Structure 2021, 1235, 130148. [Google Scholar] [CrossRef]
- Tran, H.N. Applying Linear Forms of Pseudo-Second-Order Kinetic Model for Feasibly Identifying Errors in the Initial Periods of Time-Dependent Adsorption Datasets. Water 2023, 15, 1231. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Shawaqfeh, A.; Lafi, W. Two-resistance mass transfer model for the adsorption of the pesticide deltamethrin using acid treated oil shale ash. Adsorption 2007, 13, 73–82. [Google Scholar] [CrossRef]
- Azizian, S. Kinetic models of sorption: a theoretical analysis. Journal of colloid and Interface Science 2004, 276, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology 2020, 1, 100032. [Google Scholar] [CrossRef]
- Saha, B.; Orvig, C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews 2010, 254, 2959–2972. [Google Scholar] [CrossRef]
- Demirbas, E.; Dizge, N.; Sulak, M.; Kobya, M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal 2009, 148, 480–487. [Google Scholar] [CrossRef]
- Ofomaja, A.; Naidoo, E.; Modise, S. Removal of copper (II) from aqueous solution by pine and base modified pine cone powder as biosorbent. Journal of Hazardous Materials 2009, 168, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Cerino-Córdova, F.d.; García-León, A.; Soto-Regalado, E.; Sánchez-González, M.; Lozano-Ramírez, T.; García-Avalos, B.; Loredo-Medrano, J. Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus. Journal of environmental management 2012, 95, S77–S82. [Google Scholar] [CrossRef] [PubMed]
- Miretzky, P.; Cirelli, A.F. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of hazardous materials 2010, 180, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Khrapunov, S. The enthalpy-entropy compensation phenomenon. Limitations for the use of some basic thermodynamic equations. Current Protein and Peptide Science 2018, 19, 1088–1091. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, S.; Shan, X.-q. Adsorption of metal ions on lignin. Journal of hazardous materials 2008, 151, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Fouda-Mbanga, B.; Prabakaran, E.; Pillay, K.J.B.R. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: a review. 2021, 30, e00609.
- Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.A.; Haque, S.; Rashid, T.U.; Kabir, S. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Ibrahim, B.M. Heavy metal ions removal from wastewater using various low-cost agricultural wastes as adsorbents: a survey. Zanco Journal of Pure and Applied Sciences 2021, 33, 76–91. [Google Scholar]
- Bayuo, J. An extensive review on chromium (vi) removal using natural and agricultural wastes materials as alternative biosorbents. Journal of Environmental Health Science and Engineering 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yakout, S.; Rizk, M. Adsorption of uranium by low-cost adsorbent derived from agricultural wastes in multi-component system. Desalination and Water Treatment 2015, 53, 1917–1922. [Google Scholar] [CrossRef]
- Çoban, S.A.; Safarik, I.; Denizli, A. Heavy metal removal with magnetic coffee grain. Turkish Journal of Chemistry 2021, 45, 157–166. [Google Scholar] [CrossRef]
- Blagojev, N.; Vasić, V.; Kukić, D.; Šćiban, M.; Prodanović, J.; Bera, O. Modelling and efficiency evaluation of the continuous biosorption of Cu (II) and Cr (VI) from water by agricultural waste materials. Journal of Environmental Management 2021, 281, 111876. [Google Scholar] [CrossRef]
- Lodh, B.K. Biosorbents for heavy metal removal. In Microbial Ecology of Wastewater Treatment Plants; Elsevier: 2021; pp. 377-394.
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustainable Energy Technologies and Assessments 2021, 43, 100951. [Google Scholar] [CrossRef]
- Janyasuthiwong, S.; Phiri, S.M.; Kijjanapanich, P.; Rene, E.R.; Esposito, G.; Lens, P.N. Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes. Environmental technology 2015, 36, 3071–3083. [Google Scholar] [CrossRef]
- Hussain, A.; Madan, S.; Madan, R.J.H.M.T.E.I.; Mitigation. Removal of heavy metals from wastewater by adsorption. 2021.
- Kumar, V.; Dwivedi, S.J.J.o.C.P. A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook. 2021, 295, 126229.
- Jiménez-Cedillo, M.; Olguín, M.; Fall, C.; Colin-Cruz, A.J.J.o.e.m. As (III) and As (V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). 2013, 117, 242-252.
- Manzoor, Q.; Nadeem, R.; Iqbal, M.; Saeed, R.; Ansari, T.M.J.B.t. Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. 2013, 132, 446-452.
- Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H.J.J.o.W.S.R.; Technology-Aqua. Removal of heavy metals from wastewater using agricultural byproducts. 2020, 69, 99-112.
- Humelnicu, D.; Ignat, M.; Doroftei, F.J.E.M. ; Assessment. Agricultural by-products as low-cost sorbents for the removal of heavy metals from dilute wastewaters. 2015, 187, 1–11. [Google Scholar]
- Razafsha, A.; Ziarati, P.J.B.; Journal, P. Removal of heavy metals from Oryza sativa rice by sour lemon peel as bio-sorbent. 2016, 9, 543-553.
- Daifullah, A.; Girgis, B.; Gad, H.J.M.l. Utilization of agro-residues (rice husk) in small waste water treatment plans. 2003, 57, 1723-1731.
- Wong, K.; Lee, C.; Low, K.; Haron, M.J.C. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. 2003, 50, 23-28.
- Munaf, E.; Zein, R.J.E.t. The use of rice husk for removal of toxic metals from waste water. 1997, 18, 359-362.
- Mangood, A.H.; Abdelfattah, I.; El-Saied, F.A.; Mansour, M.Z.J.I.J.o.E.A.C. Removal of heavy metals from polluted aqueous media using berry leaf. 2021, 1-17.
- Magaji, M.; Saleh, M.J.C.J. Aqueous Phase Removal of Heavy Metals from Contaminated Wastewater using Agricultural Wastes. 2021, 12, 153-161.
- Afolabi, F.O.; Musonge, P.; Bakare, B.F.J.C.E. Bio-sorption of copper and lead ions in single and binary systems onto banana peels. 2021, 8, 1886730.
- Mariana, M.; Mulana, F.; Juniar, L.; Fathira, D.; Safitri, R.; Muchtar, S.; Bilad, M.R.; Shariff, A.H.M.; Huda, N.J.S. Development of biosorbent derived from the endocarp waste of Gayo coffee for lead removal in liquid wastewater—effects of chemical activators. 2021, 13, 3050.
- do Carmo Ramos, S.N.; Xavier, A.L.P.; Teodoro, F.S.; Gil, L.F.; Gurgel, L.V.A.J.I.C.; Products. Removal of cobalt (II), copper (II), and nickel (II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: mono-and multicomponent adsorption in batch mode. 2016, 79, 116-130.
- Peternele, W.S.; Winkler-Hechenleitner, A.A.; Pineda, E.A.G.J.B.T. Adsorption of Cd (II) and Pb (II) onto functionalized formic lignin from sugar cane bagasse. 1999, 68, 95-100.
- Homagai, P.L.; Ghimire, K.N.; Inoue, K.J.B.T. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. 2010, 101, 2067-2069.
- Weng, C.-H.; Lin, Y.-T.; Hong, D.-Y.; Sharma, Y.C.; Chen, S.-C.; Tripathi, K.J.E.e. Effective removal of copper ions from aqueous solution using base treated black tea waste. 2014, 67, 127-133.
- Nie, L.; Chang, P.; Liang, S.; Hu, K.; Hua, D.; Liu, S.; Sun, J.; Sun, M.; Wang, T.; Okoro, O.V.J.C.E.; et al. Polyphenol rich green tea waste hydrogel for removal of copper and chromium ions from aqueous solution. 2021, 4, 100167.
- Pehlivan, E.; Altun, T.; Parlayici, Ş.J.F.c. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. 2012, 135, 2229-2234.
- Taha, G.; Arifien, A.; El-Nahas, S.J.T.J.o.S.W.T.; Management. Removal efficiency of potato peels as a new biosorbent material for uptake of Pb (II) Cd (II) and Zn (II) from their aqueous solutions. 2011, 37, 128-140.
- Marshall, W.E.; Wartelle, L.; Boler, D.; Johns, M.; Toles, C.J.B.T. Enhanced metal adsorption by soybean hulls modified with citric acid. 1999, 69, 263-268.
- Witek-Krowiak, A.; Reddy, D.H.K.J.B.t. Removal of microelemental Cr (III) and Cu (II) by using soybean meal waste–unusual isotherms and insights of binding mechanism. 2013, 127, 350-357.
- Wang, H.; Yu, Y.-F.; Chen, Q.-W.; Cheng, K.J.D.T. Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution. 2011, 40, 559-563.
- Saad, H.; Charrier-El Bouhtoury, F.; Pizzi, A.; Rode, K.; Charrier, B.; Ayed, N.J.I.c.; Products. Characterization of pomegranate peels tannin extractives. 2012, 40, 239-246.
- Ay, Ç.Ö.; Özcan, A.S.; Erdoğan, Y.; Özcan, A.J.C.; Biointerfaces, S.B. Characterization of Punica granatum L. peels and quantitatively determination of its biosorption behavior towards lead (II) ions and Acid Blue 40. 2012, 100, 197-204. 2012, 100, 197–204. [Google Scholar]
- Schiewer, S.; Patil, S.B.J.B.T. Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. 2008, 99, 1896-1903.
- Ricordel, S.; Taha, S.; Cisse, I.; Dorange, G.J.S.; Technology, p. Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. 2001, 24, 389-401.
- Netzahuatl-Muñoz, A.R.; Cristiani-Urbina, M.d.C.; Cristiani-Urbina, E.J.P.O. Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies. 2015, 10, e0137086.
- Feng, N.; Guo, X.; Liang, S.J.J.o.H.M. Adsorption study of copper (II) by chemically modified orange peel. 2009, 164, 1286-1292.
- Jain, R.N.; Patil, S.; Lal, D.J.I.J.o.R.i.E.; Technology. Adsorption of Cr-(VI) from aqueous environment using neem leaves powder. 2014, 3, 25-28.
- Guo, Y.; Qi, J.; Yang, S.; Yu, K.; Wang, Z.; Xu, H.J.M.C.; Physics. Adsorption of Cr (VI) on micro-and mesoporous rice husk-based active carbon. 2003, 78, 132-137.
- Chand, S.; Majumder, C.; Kumar, V.J.I.J.o.E.H. Removal/Recovery of acetic acid from waste water by adsorption on bagasse and coconut jute carbon. 1999, 41, 170-175.
- Janković, P.; Spinosi, R.; Bacardit, A.J.J.o.t.A.L.C.A. Bioaccumulation of chromium (III) from aqueous solutions of a leather wastewater treatment plant by Saccharomyces cerevisiae yeast. 2020, 115, 413-417.
- Kalak, T.; Dudczak-Hałabuda, J.; Tachibana, Y.; Cierpiszewski, R.J.P.J.o.E.S. Surface activation of elderberry, gooseberry and paprika residues with acetic acid to improve quality of biosorption processes of Cu (II), Cd (II), Fe (III). 2021, 30, 2561-2572.
- Hardani, P.T.; Sugijanto, N.E.N.; Kartosentono, S.J.R.J.o.P.; Technology. Heavy metals bioremediation by shells dust and chitosan derived from Belamya javanica Snail, an Eco-friendly biosorbent. 2021, 14, 1555-1560.
- Pangestu, M.A.; Pracesa, Y.A.Y.; Perwitasari, D.S.J.N.S.; Proceedings, T. Biosorption of total chrome metals on leather tannery liquid waste using tofu dregs. 2020, 200-204.
- Leal, M.F.C.; Catarino, R.I.; Pimenta, A.M.; Souto, M.R.S. The influence of the biometals Cu, Fe, and Zn and the toxic metals Cd and Pb on human health and disease. Trace Elements and Electrolytes 2023, 40, 1. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chemico-biological interactions, 2022; 110173. [Google Scholar]
- Oster, O. The diagnosis of disease by element analysis. In Proceedings of the Trace Elements in Environmental History: Proceedings of the Symposium held from June 24th to 26th, 1987, at Göttingen, 1988; Springer.
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M.; Fiorim, J.; Rossi de Batista, P.; Fioresi, M.; Rossoni, L. Toxic effects of mercury on the cardiovascular and central nervous systems. BioMed Research International 2012, 2012. [Google Scholar] [CrossRef]
- Kazantzis, G. Mercury exposure and early effects: an overview. Medicina del Lavoro 2002, 93, 139–147. [Google Scholar] [PubMed]
- Ozuah, P.O. Mercury poisoning. Current problems in pediatrics 2000, 30, 91–99. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. International journal of environmental research and public health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, K.S.; Salnikow, K. Nickel toxicity and carcinogenesis. Nickel and its surprising impact in nature 2007, 2, 619–660. [Google Scholar]
- Cameron, K.S.; Buchner, V.; Tchounwou, P.B. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. 2011.
- Nordberg, G.F.; Bernard, A.; Diamond, G.L.; Duffus, J.H.; Illing, P.; Nordberg, M.; Bergdahl, I.A.; Jin, T.; Skerfving, S. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure and Applied Chemistry 2018, 90, 755–808. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. Cadmium Toxicity and Health Effects—A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef]
- Satarug, S. Dietary cadmium intake and its effects on kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef]
- Pandey, G. Heavy Metals Toxicity in Domestic Animal. In Proceedings of the International E-Publication, International Science Congress Association; 2013. [Google Scholar]
- Ungureanu, E.L.; Mustatea, G. Toxicity of Heavy Metals. In Environmental Impact and Remediation of Heavy Metals; IntechOpen: 2022.
- Bandyopadhyay, D.; Ghosh, D.; Chattopadhyay, A.; Firdaus, S.B.; Ghosh, A.K.; Paul, S.; Bhowmik, D.; Mishra, S.; Dalui, K. Lead induced oxidative stress: a health issue of global concern. Journal of Pharmacy Research 2014, 8, 1198–1207. [Google Scholar]
- Baruthio, F. Toxic effects of chromium and its compounds. Biological trace element research 1992, 32, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Hossini, H.; Shafie, B.; Niri, A.D.; Nazari, M.; Esfahlan, A.J.; Ahmadpour, M.; Nazmara, Z.; Ahmadimanesh, M.; Makhdoumi, P.; Mirzaei, N. A comprehensive review on human health effects of chromium: Insights on induced toxicity. Environmental Science and Pollution Research 2022, 29, 70686–70705. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, H.; Gu, Y.; Song, X.; Zhao, J. Carcinogenicity of chromium and chemoprevention: a brief update. OncoTargets and therapy 2017, 4065–4079. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, L. Production and characterization of tea waste–based biochar and its application in treatment of Cd-containing wastewater. Biomass Conversion and Biorefinery 2019, 1–14. [Google Scholar] [CrossRef]
- Sreenivas, K.á.; Inarkar, M.á.; Gokhale, S.; Lele, S. Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering 2014, 2, 455–462. [Google Scholar] [CrossRef]
- Pehlivan, E.; Altun, T.; Parlayici, Ş. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food chemistry 2012, 135, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Ramalingam, S.; Kirupha, S.D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S. Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal 2011, 167, 122–131. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.; Liang, S. Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials 2009, 164, 1286–1292. [Google Scholar] [CrossRef]
- Lu, D.; Cao, Q.; Cao, X.; Luo, F. Removal of Pb (II) using the modified lawny grass: Mechanism, kinetics, equilibrium and thermodynamic studies. Journal of hazardous materials 2009, 166, 239–247. [Google Scholar] [CrossRef]
- Zou, W.; Zhao, L.; Zhu, L. Efficient uranium (VI) biosorption on grapefruit peel: kinetic study and thermodynamic parameters. Journal of Radioanalytical and Nuclear Chemistry 2012, 292, 1303–1315. [Google Scholar] [CrossRef]
- Al-Othman, Z.A.; Ali, R.; Naushad, M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical engineering journal 2012, 184, 238–247. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Li, J. Removal of Pb (II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers 2016, 61, 367–375. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Kalim, I. Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Separation Science and Technology 2009, 44, 3770–3791. [Google Scholar] [CrossRef]
- Basci, N.; Kocadagistan, E.; Kocadagistan, B. Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination 2004, 164, 135–140. [Google Scholar] [CrossRef]
- Yu, W.; Hu, J.; Yu, Y.; Ma, D.; Gong, W.; Qiu, H.; Hu, Z.; Gao, H.-w. Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb (II) and Cd (II) from wastewater. Science of The Total Environment 2021, 750, 141545. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. Journal of Analytical and Applied Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Yoon, S.-Y.; Han, S.-H.; Shin, S.-J. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy 2014, 77, 19–24. [Google Scholar] [CrossRef]
- Balarak, D.; Bazrafshan, E.; Mahdavi, Y.; Lee, S. Kinetic, isotherms and thermodynamic studies in the removal of 2-chlorophenol from aqueous solution using modified rice straw. Desalination and water treatment 2017, 63, 203–211. [Google Scholar] [CrossRef]
- Yanyan, L.; Kurniawan, T.A.; Zhu, M.; Ouyang, T.; Avtar, R.; Othman, M.H.D.; Mohammad, B.T.; Albadarin, A.B. Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO3, ozone, and/or chitosan. Journal of environmental management 2018, 226, 365–376. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water research 2016, 91, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Gao, Z.; Feng, H.; Wang, S.; Wang, Q. Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications. Journal of Controlled Release 2019, 316, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Li, Q.; Li, X.; Su, Y.; Yue, Q.; Zhou, W.; Gao, B. Removal of copper ions from aqueous solutions by adsorption onto wheat straw cellulose-based polymeric composites. Journal of Applied Polymer Science 2018, 135, 46680. [Google Scholar] [CrossRef]
- Hafshejani, L.D.; Hooshmand, A.; Naseri, A.A.; Mohammadi, A.S.; Abbasi, F.; Bhatnagar, A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering 2016, 95, 101–111. [Google Scholar] [CrossRef]
- Jung, K.-W.; Hwang, M.-J.; Ahn, K.-H.; Ok, Y.-S. Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International journal of environmental science and technology 2015, 12, 3363–3372. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal 2019, 366, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Soldatkina, L.; Zavrichko, M. Equilibrium, kinetic, and thermodynamic studies of anionic dyes adsorption on corn stalks modified by cetylpyridinium bromide. Colloids and Interfaces 2018, 3, 4. [Google Scholar] [CrossRef]
- Soldatkina, L.M.; Zavrichko, M. Adsorption of anionic dyes on corn stalks modified by polyaniline: Kinetics and thermodynamic studies. Хімія, фізика та технoлoгія пoверхні, 2017; 44–55. [Google Scholar]
- Dai, J.; He, J.; Xie, A.; Gao, L.; Pan, J.; Chen, X.; Zhou, Z.; Wei, X.; Yan, Y. Novel pitaya-inspired well-defined core–shell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal. Chemical Engineering Journal 2016, 284, 812–822. [Google Scholar] [CrossRef]
- Shao, Y.; Gao, Y.; Yue, Q.; Kong, W.; Gao, B.; Wang, W.; Jiang, W. Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron. Chemical Engineering Journal 2020, 379, 122384. [Google Scholar] [CrossRef]
- Amen, R.; Bashir, H.; Bibi, I.; Shaheen, S.M.; Niazi, N.K.; Shahid, M.; Hussain, M.M.; Antoniadis, V.; Shakoor, M.B.; Al-Solaimani, S.G. A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chemical Engineering Journal 2020, 396, 125195. [Google Scholar] [CrossRef]



| The industry or activity | Generated Heavy metal |
|---|---|
| Electroplating | Chromium, lead, nickel, cadmium |
| Leather tanning | Chromium, arsenic, lead |
| Pesticide manufacture | Lead, cadmium, arsenic, mercury |
| Paints manufacture | Chromium, lead, nickel |
| Paper industry | mercury |
| Bleaching processes | Cadmium, arsenic, mercury |
| Batteries industry | Lead, cadmium |
| Heavy metal | Disease | References |
|---|---|---|
| Lead and zinc ions | Brain, bone, and Genetic damage Stomach problems, Skin agitation Puke, Sickness, Anemia. |
[104,105,106] |
| Mercury ions | Nervous system damage. Bad effect of lung and kidney |
[107,108,109] |
| Nickel ions | Lung and kidney diseases, Gastrointestinal distress, Lung fibrosis, Skin diseases, Human carcinogen | [110,111,112] |
| Cadmium ions | Human carcinogen Severe dangers to human health. Kidney dysfunction, High-level doses of exposure cause death |
[113,114,115] |
| Lead ions | Damage the central nervous system kidney, and the liver disease, Muscles weakness, Insomnia, Anemia, Dizziness, Renal damages | [116,117,118] |
| Chromium Cr+6 | Classified as more toxic Disturbance of physiology of humans, Lung carcinoma, Causes of cancer, Serious skin diseases |
[119,120,121] |
| S. No. | Type of waste -water | Type of adsorbent | Adsorbent Dosage )g/L) |
Metal ion | Amount of adsorbent )mg/g) | Time (Min.) |
Temperature (°C) |
pH | references |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Hospital waste water | Cassava peels | 10 | Pb+2 Cu+2 |
5.80 8.00 |
20-120 | 39.85 | 8.0 | [122] |
| 2 | Aqueous solutions | Ash Gound peel | 6.0 | Cr+6 | 18.70 | 40-60 | 28.0 | 1.0 | [123] |
| 3 | Aqueous solution | Barly straw | 1.0 | Cu+2 | 4.64 | 12 | 25.0 | 6.0-7.0 | [124] |
| 4 | Aqueous solutioin | Cashew Nut | 3.0 | Ni+2 | 18.86 | 30 | 30.0 | 5.0 | [125] |
| 5 | Electroplating wash water | Chemically modified orangepeel | 2.0 | Cu+2 | 289.0 | 180 | 30.0 | 5.0 | [126] |
| 6 | Aqueous solution | Modified Lawny Grass | 0.5 | Pb+2 | 137.12 | 400 | 29.85 | 6.0 | [127] |
| 7 | Aqueous solution | Grapefruites peel | 2.0 | U+6 | 140.79 | 60-80 | 30.0 | 4.0-6.0 | [128] |
| 8 | Aqueous solutioin | Peaunt Shell | 1.0 | Cr+6 | 4.32 | 360 | 30.0 | 2.0 | [129] |
| 9 | Aqueous solution | Sugar can and orange peel | 1.0 | Pb+2 | 68.69 and 27.86 | 30 | 25.0 | 5.0 | [130] |
| 10 | Electroplating waste water | Mango peel | 5.0 5.0 5.0 |
Ni+2 Cu+2 Zn+2 |
39.75 46.09 28.21 |
120.0 | 25.0 | 6.0 | [131] |
| 11 | Aqueous solution | Whwat shell | 10 | Cu+2 | 17.42 | 60.0 | 25.0 | 7.0 | [132] |
| 12 | Aqueous solution | Sulfonated biochar | 2.0 | Pb+2 | 191.7 85.76 |
5.0 | 180.0 | 4.5 | [133] |
| The process | The reagent | Action | The effectiveness of removal | Reference |
|---|---|---|---|---|
| Alkylation | The treatment of the agro-wastes by base , the common bases are sodium hydroxide KOH or potassium hydroxide KOH. | The process involves enhance the surface area and exposing more function groups due to esters hydrolysis and the removal of amorphous fiber such as hemicellulose and lignin | The mechanical properties and thermal stability increase, exposing more function groups, accordingly the interaction between the metal ins and the modified surface is strongly enhanced leading to ease the adsorption of metal ions. | [134,135] |
| Acidification | Treatment the agro-waste with mineral acids such as HNO3, HCl, H3PO4, H2SO4 | Acidification promote the hydrolysis of the cellulose creating more function groups and opening the reticular shape of the cellulosic structure, the process involves increase the oxygen content of the product | Reduce the mineral content leading to increase the removal capacity, and create more adsorption sites. Therefore, the removal efficiency of the bio-sorbent increase, due to improvement of the acidic behavior and hydrophilicity of the surface | [136,137,138] |
| Esterification | The process involves the reaction of hydroxyl group in cellulose forming ester group. The common reagent used are EDTA (Ethylenediaminetetraacetic acid), citric acid and maleic anhydride anhydride | The process adds functional groups to the surface of the agro-wastes. It imparts carboxylic group to the surface. | Esterification enhances hydrophobicity and mechanical properties of the agro-wastes, accordingly the increase the rate of binding of the metal ions with the modified surface. | [139,140] |
| Etherification | The process involves replacing of the hydroxy group in the cellulose with other function groups, ethylene oxide, epoxides are the common reagents used in etherification Diethylenetriamine, ethylenediamine, triethyleneteramine are also utilized. | The process generates positive function groups yielding adsorption sites for holding of anions, such as phosphate, nitrate, and sulfate. |
The process involves the increase of functional groups and enhancement the efficiency of the interaction of metal ions with the surface. Functional groups such as -COO-, S-- and NH- are familiarized to the agro-wate surfaces | [139,141]. |
| Carbonization | Carbonization involves the thermal decomposition of agro-wastes producing a carbonaceous material, as a result, the bio-mass converted into biochar | The mineral constituents in biochar surfaces promote the construction of metal precipitates on the surface | Biochar has a great specific surface area leading to increase the removal efficiency of the bio-surface. The introduction of certain functional groups, heteroatoms into biochar can improve its surface properties and consequently the enhancement of the removal efficiency of the material. | [142,143,144] |
| Grafting | The process involves grafting of the agro - waste with the polymeric material, the backbone of a polymer is connected to a side chain of agro-wastes forming a branched co-polymer, grafting-from is the common treatment used and a appropriate initiator is utilized to introduce the modification process. |
The chemical initiator produces free radicals which react with hydroxyl groups on lignocellulose, it is extensively used owing to its low cost and simple processing. The linkage between backbone of the polymer and the side chain of the lignocellulose in agriculture wastes helps to form copolymer which increase the number of sites on the surface | Grafting change the physiochemical properties of the agro-waste which enhances the adsorption efficiency due to the extra added function groups through forming the copolymer. | [139,145,146] |
| Magnetization | The process involves introducing transition metal or transition metal oxide into the agro-wastes such as FeCl2, FeCl3, Fe2O3 and zero-valent nano metals | Grafting promotes the electrostatic attraction and complex formation between the toxic metal ions and grafted functional. Introducing metal oxides in the surface of agro-waste enhance particular functionalities to increase. Adsorption properties, for example, modification of lignocellulose with magnetic materials enhancing adsorption the efficiency of the surface permitting facile recovery of the agro-wastes | Transition metal and grafted metal-agro-waste displays good adsorption properties for the removal of toxic heavy metals compared with raw agro-wastes | [147,148,149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
