Submitted:
24 December 2023
Posted:
25 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Research Methods
3. Results and Discussion
3.1. Search Results Based on the "Methodi Ordinatio" Approach
3.2. Application of MnOx/TiO2 Catalysts in the SCR-NH3 Reaction
4. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosch, H., F. J. J. G. Janssen, F. M. G. van den Kerkhof, J. Oldenziel, J. G. van Ommen and J. R. H. Ross. The activity of supported vanadium oxide catalysts for the selective reduction of no with ammonia. Appl. Catal. 1986, 25, 239-248. [CrossRef]
- Borillo, G. C., Y. S. Tadano, A. F. L. Godoi, T. Pauliquevis, H. Sarmiento, D. Rempel, C. I. Yamamoto, M. R. R. Marchi and R. H. M. Potgieter-Vermaak. Polycyclic aromatic hydrocarbons (pahs) and nitrated analogs associated to particulate matter emission from a euro v-scr engine fuelled with diesel/biodiesel blends. Sci. Total Environ. 2018, 644, 675-682. [CrossRef]
- Alves, L., L. I. V. Holz, C. Fernandes, P. Ribeirinha, D. Mendes, D. P. Fagg and A. Mendes. A comprehensive review of nox and n2o mitigation from industrial streams. Renewable Sustainable Energy Rev. 2022, 155, 111916. [CrossRef]
- Burwell, R.L. Manual of symbols and terminology for physicochemical quantities and units—appendix ii heterogeneous catalysis. Advances in Catalysis 1977, 26, 351–392. [Google Scholar] [CrossRef]
- Yan, R., S. Lin, Y. Li, W. Liu and Y. Mi. Novel shielding and synergy effects of mn-ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of nox with enhanced so2/h2o tolerance. J. Hazard. Mater. 2020, 396, 122592. [CrossRef]
- Shen, Q., S. Dong, S. Li, G. Yang and X. Pan. A review on the catalytic decomposition of no by perovskite-type oxides. Catalysts 2021, 11, 1-12. [CrossRef]
- Zhao, W., S. Dou, K. Zhang, L. Wu, Q. Wang, D. Shang and Q. Zhong. Promotion effect of s and n co-addition on the catalytic performance of v2o5/tio2 for nh3-scr of nox. Chem. Eng. J. 2019, 364, 401-409. [CrossRef]
- Nova, I., L. Lietti, L. Casagrande, L. Dall’Acqua, E. Giamello and P. Forzatti. Characterization and reactivity of tio2-supported moo3 de-nox scr catalysts. Appl. Catal., B 1998, 17, 245-258. [CrossRef]
- Casagrande, L., L. Lietti, I. Nova, P. Forzatti and A. Baiker. Scr of no by nh3 over tio2-supported v2o5–moo3 catalysts: Reactivity and redox behavior. Appl. Catal., B 1999, 22, 63-77. [CrossRef]
- Cheng, X.; Bi, X.T. A review of recent advances in selective catalytic nox reduction reactor technologies. Particuology 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Zhang, W., J. Chen, L. Guo, W. Zheng, G. Wang, S. Zheng and X. Wu. Research progress on nh3-scr mechanism of metal-supported zeolite catalysts. J. Fuel Chem. Technol. 2021, 49, 1294-1315. [CrossRef]
- Huang, J., H. Huang, H. Jiang and L. Liu. The promotional role of nd on mn/tio2 catalyst for the low-temperature nh3scr of nox. Catal. Today 2019, 332, 49-58. [CrossRef]
- Wang, A.; Olsson, L. The impact of automotive catalysis on the united nations sustainable development goals. Nat. Catal. 2019, 2, 566–570. [Google Scholar] [CrossRef]
- Mohan, S. and P. Dinesha. Global kinetic modeling of low-temperature nh3-scr for nox removal using cu-bea catalyst. Mater. Today: Proc. 2022, 52, 1321-1325. [CrossRef]
- Kim, H. J., S. Jo, S. Kwon, J.-T. Lee and S. Park. Nox emission analysis according to after-treatment devices (scr, lnt + scr, sdpf), and control strategies in euro-6 light-duty diesel vehicles. Fuel 2022, 310, 122297. [CrossRef]
- Shahir, V. K., C. P. Jawahar and P. R. Suresh. Comparative study of diesel and biodiesel on ci engine with emphasis to emissions—a review. Renewable Sustainable Energy Rev. 2015, 45, 686-697. [CrossRef]
- Jankowska, A., J. Ciuba, A. Kowalczyk, M. Rutkowska, Z. Piwowarska, M. Michalik and L. Chmielarz. Mesoporous silicas of mcm-41 type modified with iron species by template ion-exchange method as catalysts for the high-temperature nh3-scr process – role of iron species aggregation, silica morphology and associated reactions. Catal. Today 2022, 390-391, 281-294. [CrossRef]
- Kim, Y. J., H. J. Kwon, I. Nam, J. W. Choung and J. K. Kil. High denox performance of mn/tio2 catalyst by nh3. Catal. Today 2010, 151, 244-250. [CrossRef]
- Huang, H. Y. and R. T. Yang. Removal of no by reversible adsorption on fe−mn based transition metal oxides. Langmuir 2001, 17, 4997-5003. [CrossRef]
- Kim, H., S. Kasipandi, J. Kim, S. Kang, J. Kim, J. Ryu and J. Bae. Current catalyst technology of selective catalytic reduction (scr) for nox removal in south korea. Catalysts 2020, 10, 1-36. [CrossRef]
- Kapteijn, F., L. Singoredjo, A. Andreini and J. A. Moulijn. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal., B 1994, 3, 173-189. [CrossRef]
- Xie, S., L. Li, L. Jin, Y. Wu, H. Liu and Q. Qin. Low temperature high activity of m (m = ce, fe, co, ni) doped m-mn/tio2 catalysts for nh3-scr and in situ drifts for investigating the reaction mechanism. Appl. Surf. Sci. 2020, 515, 146014. [CrossRef]
- Xu, G., X. Guo, X. Cheng, J. Yu and B. Fang. A review of mn-based catalysts for low-temperature nh 3-scr: No x removal and h 2 o/so 2 resistance. Nanoscale 2021, 13, 7052-7080. [CrossRef]
- Pagani, R. N., J. L. Kovaleski and L. M. Resende. Methodi ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics 2015, 105, 2109-2135. [CrossRef]
- Thirupathi, B. and P. G. Smirniotis. Co-doping a metal (cr, fe, co, ni, cu, zn, ce, and zr) on mn/tio2 catalyst and its effect on the selective reduction of no with nh3 at low-temperatures. Appl. Catal., B 2011, 110, 195-206. [CrossRef]
- Thirupathi, B. and P. G. Smirniotis. Nickel-doped mn/tio2 as an efficient catalyst for the low-temperature scr of no with nh3: Catalytic evaluation and characterizations. J. Catal. 2012, 288, 74-83. [CrossRef]
- Li, J., J. Chen, R. Ke, C. Luo and J. Hao. Effects of precursors on the surface mn species and the activities for no reduction over mnox/tio2 catalysts. Catal. Commun. 2007, 8, 1896-1900. [CrossRef]
- Li, W., R. Guo, S. Wang, W. Pan, Q. Chen and M. Li. The enhanced zn resistance of mn/tio2 catalyst for nh3-scr reaction by the modification with nb. Fuel Process. Technol. 2016, 154, 235-242. [CrossRef]
- Gao, C., J. Shi, Z. Fan, B. Wang, Y. Wang and C. He. "Fast scr" reaction over sm-modified mnox-tio2 for promoting reduction of nox with nh3. Appl. Catal., A 2018, 564, 102-112. [CrossRef]
- Ye, B., M. Lee, B. Jeong, J. Kim, D. H. Lee, J. M. Baik and H. Kim. Partially reduced graphene oxide as a support of mn-ce/tio2 catalyst for selective catalytic reduction of nox with nh3. Catal. Today 2019, 328, 300-306. [CrossRef]
- Hao, C., C. Zhang, J. Zhang, J. Wu, Y. Yue and G. Qian. An efficient strategy to screen an effective catalyst for nox-scr by deducing surface species using drifts. J. Colloid Interface Sci. 2022, 606, 677-687. [CrossRef]
- Li, Q., X. Li, W. Li, L. Zhong, C. Zhang, Q. Fang and G. Chen. Effect of preferential exposure of anatase tio2 {001} facets on the performance of mn-ce/tio2 catalysts for low-temperature selective catalytic reduction of nox with nh3. Chem. Eng. J. 2019, 369, 26-34. [CrossRef]
- Niu, C., B. Wang, Y. Xing, W. Su, C. He and L. Xiao. Thulium modified mnox/tio2 catalyst for the low-temperature selective catalytic reduction of no with ammonia. J. Cleaner Prod. 2021, 290, 125858. [CrossRef]
- Sun, X., R. Guo, J. Liu, Z. Fu and S. Liu. The enhanced scr performance of mn/tio2 catalyst by mo modification: Identification of the promotion mechanism. Int. J. Hydrogen Energy 2018, 43, 16038-16048. [CrossRef]
- Jiang, B., B. Lin, Z. Li, S. Zhao and Z. Chen. Mn/tio2 catalysts prepared by ultrasonic spray pyrolysis method for nox removal in low-temperature scr reaction. Colloids Surf., A 2020, 586, 124210. [CrossRef]
- Jia, B., J. Guo, H. Luo, S. Shu, N. Fang and J. Li. Study of no removal and resistance to so2 and h2o of mnox/tio2, mnox/zro2 and mnox/zro2–tio2. Appl. Catal., A 2018, 553, 82-90. [CrossRef]
- Wei, L., S. Cui, H. Guo and L. Zhang. The effect of alkali metal over mn/tio2 for low-temperature scr of no with nh3 through drift and dft. Comput. Mater. Sci. 2018, 144, 216-222. [CrossRef]
- Fang, D., D. Li, F. He, J. Xie, C. Xiong and Y. Chen. Experimental and dft study of the adsorption and activation of nh3 and no on mn-based spinels supported on tio2 catalysts for scr of nox. Comput. Mater. Sci. 2019, 160, 374-381. [CrossRef]
- Huang, C., R. Guo, W. Pan, X. Sun and S. Liu. Scr of nox by nh3 over mnfeox@tio2 catalyst with a core-shell structure: The improved k resistance. J. Energy Inst. 2019, 92, 1364-1378. [CrossRef]
- Shi, J., Z. Zhang, M. Chen, Z. Zhang and W. Shangguan. Promotion effect of tungsten and iron co-addition on the catalytic performance of mnox/tio2 for nh3-scr of nox. Fuel 2017, 210, 783-789. [CrossRef]
| The types of articles | Number |
|---|---|
| Review articles | 16 |
| Research articles | 194 |
| Chapters of books | 8 |
| Conference abstracts | 24 |
| Discussions | 1 |
| Short communications | 11 |
| Others | 31 |
| Total | 285 |
| Author and Title | Impact Factor | Number of citations | Year of publication | InOrdinatio |
|---|---|---|---|---|
| Thirupathi B & Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. | 7.3 | 408 | 2012 | 405 |
| Thirupathi B, Smirniotis P G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. | 22.1 | 379 | 2011 | 381 |
| Xie S, Li L, Jin L, et al. Low temperature high activity of M (M= Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. | 6.7 | 118 | 2020 | 195 |
| Gao C, Shi J W, Fan Z, et al. " Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3. | 5.5 | 122 | 2018 | 178 |
| Li J, Chen J, Ke R, et al. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. | 3.7 | 220 | 2007 | 164 |
| Li Q, Li X, Li W, et al. Effect of preferential exposure of anatase TiO2 {0 0 1} facets on the performance of Mn-Ce/TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3. | 15.1 | 75 | 2019 | 150 |
| Li W, Guo R, Wang S, et al. The enhanced Zn resistance of Mn/TiO2 catalyst for NH3-SCR reaction by the modification with Nb. | 7.5 | 102 | 2016 | 140 |
| Niu C, Wang B, Xing Y, et al. Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia | 11.1 | 45 | 2021 | 136 |
| Ye B, Lee M, Jeong B, et al. Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. | 5.3 | 67 | 2019 | 132 |
| Kim Y J, Kwon H J, Nam I S, et al. High deNOx performance of Mn/TiO2 catalyst by NH3. | 5.3 | 143 | 2010 | 118 |
| Huang J, Huang H, Jiang H, et al. The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3-SCR of NOx. | 5.3 | 45 | 2019 | 110 |
| Hao C, Zhang C, Zhang J, et al. An efficient strategy to screen an effective catalyst for NOx-SCR by deducing surface species using DRIFTS. | 9.9 | 8 | 2022 | 108 |
| Sun X, Guo R, Liu J, et al. The enhanced SCR performance of Mn/TiO2 catalyst by Mo modification: Identification of the promotion mechanism. | 7.2 | 51 | 2018 | 108 |
| Jia B, Guo J, Luo H, et al. Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2–TiO2. | 5.5 | 42 | 2018 | 98 |
| Wei L, Cui S, Guo H, et al. The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT | 3.3 | 44 | 2018 | 97 |
| Fang D, Li D, He F, et al. Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. | 3.3 | 33 | 2019 | 96 |
| Jiang B, Lin B, Li Z, et al. Mn/TiO2 catalysts prepared by ultrasonic spray pyrolysis method for NOx removal in low-temperature SCR reaction. | 5.2 | 21 | 2020 | 96 |
| Huang C, Guo R, Pan W, et al. SCR of NOx by NH3 over MnFeOx@ TiO2 catalyst with a core-shell structure: The improved K resistance. | 5.7 | 25 | 2019 | 91 |
| Shi J, Zhang Z, Chen M, et al. Promotion effect of tungsten and iron co-addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx. | 7.4 | 38 | 2017 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
