Submitted:
19 December 2023
Posted:
20 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Glucose oxidase (GOx)
1.2. Cellobiose dehydrogenase (CDH)
1.3. Horseradish peroxidase (HRP)
1.4. Laccase (LAC)
2. Heterologous expression
2.1. Saccharomyces cerevisiae
2.1.1. GOx
2.1.2. CDH
2.1.3. HRP
2.1.4. LAC
2.2. Pichia pastoris
2.2.1. GOx
2.2.2. CDH
2.2.3. HRP
2.2.4. LAC
3. State-of-the-art technologies for increasing recombinant protein expression
3.1. Directed evolution, protein and strain engineering
3.2. High-throughput screening methods
3.2.1. Flow cytometry
3.2.2. Microfluidics
3.2.3. In vitro compartmentalization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tikhonov, B.B.; Sulman, E.M.; Stadol’nikova, P.Yu.; Sulman, A.M.; Golikova, E.P.; Sidorov, A.I.; Matveeva, V.G. Immobilized Enzymes from the Class of Oxidoreductases in Technological Processes: A Review. Catal Ind 2019, 11, 251–263. [CrossRef]
- Robinson, P.K. Enzymes: Principles and Biotechnological Applications. Essays Biochem 2015, 59, 1–41. [CrossRef]
- Cárdenas-Moreno, Y.; González-Bacerio, J.; García Arellano, H.; del Monte-Martínez, A. Oxidoreductase Enzymes: Characteristics, Applications, and Challenges as a Biocatalyst. Biotechnol Appl Biochem 2023. [CrossRef]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on Their Way to Industrial Biotransformations. Biotechnol Adv 2017, 35, 815–831. [CrossRef]
- Cárdenas-Moreno, Y.; González-Bacerio, J.; García Arellano, H.; del Monte-Martínez, A. Oxidoreductase Enzymes: Characteristics, Applications, and Challenges as a Biocatalyst. Biotechnol Appl Biochem 2023. [CrossRef]
- Stanišić, M.D.; Popović Kokar, N.; Ristić, P.; Balaž, A.M.; Senćanski, M.; Ognjanović, M.; Đokić, V.R.; Prodanović, R.; Todorović, T.R. Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. Polymers (Basel) 2021, 13, 3875. [CrossRef]
- Bankar, S.B.; Bule, M. V.; Singhal, R.S.; Ananthanarayan, L. Glucose Oxidase — An Overview. Biotechnol Adv 2009, 27, 489–501. [CrossRef]
- Wang, F.; Chen, X.; Wang, Y.; Li, X.; Wan, M.; Zhang, G.; Leng, F.; Zhang, H. Insights into the Structures, Inhibitors, and Improvement Strategies of Glucose Oxidase. Int J Mol Sci 2022, 23, 9841. [CrossRef]
- Bauer, J.A.; Zámocká, M.; Majtán, J.; Bauerová-Hlinková, V. Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022, 12, 472. [CrossRef]
- Khatami, S.H.; Vakili, O.; Ahmadi, N.; Soltani Fard, E.; Mousavi, P.; Khalvati, B.; Maleksabet, A.; Savardashtaki, A.; Taheri-Anganeh, M.; Movahedpour, A. Glucose Oxidase: Applications, Sources, and Recombinant Production. Biotechnol Appl Biochem 2022, 69, 939–950. [CrossRef]
- Csarman, F.; Wohlschlager, L.; Ludwig, R. Cellobiose Dehydrogenase. In; 2020; pp. 457–489. [CrossRef]
- Scheiblbrandner, S.; Csarman, F.; Ludwig, R. Cellobiose Dehydrogenase in Biofuel Cells. Curr Opin Biotechnol 2022, 73, 205–212. [CrossRef]
- Kracher, D.; Ludwig, R. Cellobiose Dehydrogenase: An Essential Enzyme for Lignocellulose Degradation in Nature – A Review / Cellobiosedehydrogenase: Ein Essentielles Enzym Für Den Lignozelluloseabbau in Der Natur – Eine Übersicht. Die Bodenkultur: Journal of Land Management, Food and Environment 2016, 67, 145–163. [CrossRef]
- Balaz, A.; Blazic, M.; Popovic, N.; Prodanovic, O.; Ostafe, R.; Fischer, R.; Prodanovic, R. Expression, Purification and Characterization of Cellobiose Dehydrogenase Mutants from Phanerochaete Chrysosporium in Pichia Pastoris KM71H Strain. Journal of the Serbian Chemical Society 2020, 85, 25–35. [CrossRef]
- Sulej, J.; Jaszek, M.; Osińska-Jaroszuk, M.; Matuszewska, A.; Bancerz, R.; Janczarek, M. Natural Microbial Polysaccharides as Effective Factors for Modification of the Catalytic Properties of Fungal Cellobiose Dehydrogenase. Arch Microbiol 2021, 203, 4433–4448. [CrossRef]
- Stanišić, M.D.; Popović Kokar, N.; Ristić, P.; Balaž, A.M.; Ognjanović, M.; Đokić, V.R.; Prodanović, R.; Todorović, T.R. The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. Polymers (Basel) 2022, 14, 4834. [CrossRef]
- Grigorenko, V.; Chubar, T.; Kapeliuch, Y.; Börchers, T.; Spener, F.; Egorova, A. New Approaches for Functional Expression of Recombinant Horseradish Peroxidase C In Escherichia Coli. Biocatal Biotransformation 1999, 17, 359–379. [CrossRef]
- Spadiut, O.; Herwig, C. Production and Purification of the Multifunctional Enzyme Horseradish Peroxidase. Pharm Bioprocess 2013, 1, 283–295. [CrossRef]
- Pantić, N.; Spasojević, M.; Stojanović, Ž.; Veljović, Đ.; Krstić, J.; Balaž, A.M.; Prodanović, R.; Prodanović, O. Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. J Polym Environ 2022, 30, 3005–3020. [CrossRef]
- Veitch, N.C. Horseradish Peroxidase: A Modern View of a Classic Enzyme. Phytochemistry 2004, 65, 249–259. [CrossRef]
- Piscitelli, A.; Pezzella, C.; Giardina, P.; Faraco, V.; Sannia, G. Heterologous Laccase Production and Its Role in Industrial Applications. Bioeng Bugs 2010, 1, 254–264. [CrossRef]
- Bourbonnais, R.; Paice, MichaelG. Demethylation and Delignification of Kraft Pulp by Trametes Versicolor Laccase in the Presence of 2,2?-Azinobis-(3-Ethylbenzthiazoline-6-Sulphonate). Appl Microbiol Biotechnol 1992, 36. [CrossRef]
- Kawai, S.; Umezawa, T.; Higuchi, T. Degradation Mechanisms of Phenolic β-1 Lignin Substructure Model Compounds by Laccase of Coriolus Versicolor. Arch Biochem Biophys 1988, 262, 99–110. [CrossRef]
- Eggert, C.; Temp, U.; Dean, J.F.D.; Eriksson, K.-E.L. A Fungal Metabolite Mediates Degradation of Non-phenolic Lignin Structures and Synthetic Lignin by Laccase. FEBS Lett 1996, 391, 144–148. [CrossRef]
- Necochea, R.; Valderrama, B.; Díaz-Sandoval, S.; Folch-Mallol, J.L.; Vázquez-Duhalt, R.; Iturriaga, G. Phylogenetic and Biochemical Characterisation of a Recombinant Laccase from Trametes Versicolor. FEMS Microbiol Lett 2005, 244, 235–241. [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020, 21, 966. [CrossRef]
- Khatami, S.H.; Vakili, O.; Movahedpour, A.; Ghesmati, Z.; Ghasemi, H.; Taheri-Anganeh, M. Laccase: Various Types and Applications. Biotechnol Appl Biochem 2022, 69, 2658–2672. [CrossRef]
- Baghban, R.; Farajnia, S.; Rajabibazl, M.; Ghasemi, Y.; Mafi, A.; Hoseinpoor, R.; Rahbarnia, L.; Aria, M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019, 61, 365–384. [CrossRef]
- Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia Pastoris : A Highly Successful Expression System for Optimal Synthesis of Heterologous Proteins. J Cell Physiol 2020, 235, 5867–5881. [CrossRef]
- Gündüz Ergün, B.; Hüccetoğulları, D.; Öztürk, S.; Çelik, E.; Çalık, P. Established and Upcoming Yeast Expression Systems. In; 2019; pp. 1–74. [CrossRef]
- Huang, C.-J.; Lowe, A.J.; Batt, C.A. Recombinant Immunotherapeutics: Current State and Perspectives Regarding the Feasibility and Market. Appl Microbiol Biotechnol 2010, 87, 401–410. [CrossRef]
- Hasunuma, T.; Ishii, J.; Kondo, A. Rational Design and Evolutional Fine Tuning of Saccharomyces Cerevisiae for Biomass Breakdown. Curr Opin Chem Biol 2015, 29, 1–9. [CrossRef]
- Partow, S.; Siewers, V.; Bjørn, S.; Nielsen, J.; Maury, J. Characterization of Different Promoters for Designing a New Expression Vector in Saccharomyces Cerevisiae. Yeast 2010, 27, 955–964. [CrossRef]
- Kulagina, N.; Besseau, S.; Godon, C.; Goldman, G.H.; Papon, N.; Courdavault, V. Yeasts as Biopharmaceutical Production Platforms. Frontiers in Fungal Biology 2021, 2. [CrossRef]
- Kingsman, S.M.; Kingsman, A.J.; Dobson, M.J.; Mellor, J.; Roberts, N.A. Heterologous Gene Expression in Saccharomyces Cerevisiae. Biotechnol Genet Eng Rev 1985, 3, 377–416. [CrossRef]
- Karaoğlan, M.; Erden-Karaoğlan, F. Effect of Codon Optimization and Promoter Choice on Recombinant Endo-Polygalacturonase Production in Pichia Pastoris. Enzyme Microb Technol 2020, 139, 109589. [CrossRef]
- Park, E.-H.; Shin, Y.-M.; Lim, Y.-Y.; Kwon, T.-H.; Kim, D.-H.; Yang, M.-S. Expression of Glucose Oxidase by Using Recombinant Yeast. J Biotechnol 2000, 81, 35–44. [CrossRef]
- Kapat, A.; Jung, J.-K.; Park, Y.-H. Enhancement of Extracellular Glucose Oxidase Production in PH-Stat Feed-Back Controlled Fed-Batch Culture of Recombinant Saccharomyces Cerevisiae. Biotechnol Lett 1998, 20, 683–686. [CrossRef]
- Banerjee, S.; Roy, A. Molecular Cloning, Characterisation and Expression of a Gene Encoding Cellobiose Dehydrogenase from Termitomyces Clypeatus. Gene Rep 2021, 23, 101063. [CrossRef]
- Sygmund, C.; Santner, P.; Krondorfer, I.; Peterbauer, C.K.; Alcalde, M.; Nyanhongo, G.S.; Guebitz, G.M.; Ludwig, R. Semi-Rational Engineering of Cellobiose Dehydrogenase for Improved Hydrogen Peroxide Production. Microb Cell Fact 2013, 12, 38. [CrossRef]
- Blažić, M.; Balaž, A.M.; Tadić, V.; Draganić, B.; Ostafe, R.; Fischer, R.; Prodanović, R. Protein Engineering of Cellobiose Dehydrogenase from Phanerochaete Chrysosporium in Yeast Saccharomyces Cerevisiae InvSc1 for Increased Activity and Stability. Biochem Eng J 2019, 146, 179–185. [CrossRef]
- Zhao, X.; Yu, H.; Liang, Q.; Zhou, J.; Li, J.; Du, G.; Chen, J. Stepwise Optimization of Inducible Expression System for the Functional Secretion of Horseradish Peroxidase in Saccharomyces Cerevisiae. J Agric Food Chem 2023, 71, 4059–4068. [CrossRef]
- Morawski, B.; Lin, Z.; Cirino, P.; Joo, H.; Bandara, G.; Arnold, F.H. Functional Expression of Horseradish Peroxidase in Saccharomyces Cerevisiae and Pichia Pastoris. Protein Engineering, Design and Selection 2000, 13, 377–384. [CrossRef]
- Klonowska, A.; Gaudin, C.; Asso, M.; Fournel, A.; Réglier, M.; Tron, T. LAC3, a New Low Redox Potential Laccase from Trametes Sp. Strain C30 Obtained as a Recombinant Protein in Yeast. Enzyme Microb Technol 2005, 36, 34–41. [CrossRef]
- Bulter, T.; Alcalde, M.; Sieber, V.; Meinhold, P.; Schlachtbauer, C.; Arnold, F.H. Functional Expression of a Fungal Laccase in Saccharomyces Cerevisiae by Directed Evolution. Appl Environ Microbiol 2003, 69, 987–995. [CrossRef]
- Iimura, Y.; Sonoki, T.; Habe, H. Heterologous Expression of Trametes Versicolor Laccase in Saccharomyces Cerevisiae. Protein Expr Purif 2018, 141, 39–43. [CrossRef]
- Kurose, T.; Saito, Y.; Kimata, K.; Nakagawa, Y.; Yano, A.; Ito, K.; Kawarasaki, Y. Secretory Expression of Lentinula Edodes Intracellular Laccase by Yeast High-Cell-Density System: Sub-Milligram Production of Difficult-to-Express Secretory Protein. J Biosci Bioeng 2014, 117, 659–663. [CrossRef]
- Aza, P.; Molpeceres, G.; Ruiz-Dueñas, F.J.; Camarero, S. Heterologous Expression, Engineering and Characterization of a Novel Laccase of Agrocybe Pediades with Promising Properties as Biocatalyst. Journal of Fungi 2021, 7, 359. [CrossRef]
- Antošová, Z.; Herkommerová, K.; Pichová, I.; Sychrová, H. Efficient Secretion of Three Fungal Laccases from Saccharomyces Cerevisiae and Their Potential for Decolorization of Textile Industry Effluent—A Comparative Study. Biotechnol Prog 2018, 34, 69–80. [CrossRef]
- De Baetselier, A. A New Production Method for Glucose Oxidase. J Biotechnol 1992, 24, 141–148. [CrossRef]
- Kojima, Y.; Tsukuda, Y.; Kawai, Y.; Tsukamoto, A.; Sugiura, J.; Sakaino, M.; Kita, Y. Cloning, Sequence Analysis, and Expression of Ligninolytic Phenoloxidase Genes of the White-Rot Basidiomycete Coriolus Hirsutus. Journal of Biological Chemistry 1990, 265, 15224–15230. [CrossRef]
- Cassland, P.; Jönsson, L.J. Characterization of a Gene Encoding Trametes Versicolor Laccase A and Improved Heterologous Expression in Saccharomyces Cerevisiae by Decreased Cultivation Temperature. Appl Microbiol Biotechnol 1999, 52, 393–400. [CrossRef]
- Iimura, Y.; Sonoki, T.; Habe, H. Heterologous Expression of Trametes Versicolor Laccase in Saccharomyces Cerevisiae. Protein Expr Purif 2018, 141, 39–43. [CrossRef]
- Aza, P.; Molpeceres, G.; de Salas, F.; Camarero, S. Design of an Improved Universal Signal Peptide Based on the α-Factor Mating Secretion Signal for Enzyme Production in Yeast. Cellular and Molecular Life Sciences 2021, 78, 3691–3707. [CrossRef]
- Ogata, K.; Nishikawa, H.; Ohsugi, M. A Yeast Capable of Utilizing Methanol. Agric Biol Chem 1969, 33, 1519–1520. [CrossRef]
- Vijayakumar, V.E.; Venkataraman, K. A Systematic Review of the Potential of Pichia Pastoris (Komagataella Phaffii) as an Alternative Host for Biologics Production. Mol Biotechnol 2023. [CrossRef]
- Çalık, P.; Ata, Ö.; Güneş, H.; Massahi, A.; Boy, E.; Keskin, A.; Öztürk, S.; Zerze, G.H.; Özdamar, T.H. Recombinant Protein Production in Pichia Pastoris under Glyceraldehyde-3-Phosphate Dehydrogenase Promoter: From Carbon Source Metabolism to Bioreactor Operation Parameters. Biochem Eng J 2015, 95, 20–36. [CrossRef]
- Walsh, G.; Walsh, E. Biopharmaceutical Benchmarks 2022. Nat Biotechnol 2022, 40, 1722–1760. [CrossRef]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein Expression in Pichia Pastoris: Recent Achievements and Perspectives for Heterologous Protein Production. Appl Microbiol Biotechnol 2014, 98, 5301–5317. [CrossRef]
- Juturu, V.; Wu, J.C. Heterologous Protein Expression in Pichia Pastoris : Latest Research Progress and Applications. ChemBioChem 2018, 19, 7–21. [CrossRef]
- Qiu, Z.; Guo, Y.; Bao, X.; Hao, J.; Sun, G.; Peng, B.; Bi, W. Expression of Aspergillus Niger Glucose Oxidase in Yeast Pichia Pastoris SMD1168. Biotechnology & Biotechnological Equipment 2016, 30, 998–1005. [CrossRef]
- Martínez-Mora, E.; González-González, M.D.R.; Zarate, X.; Carranza-Rosales, P.; Ramírez-Cabrera, M.A.; Balderas-Rentería, I.; Arredondo-Espinoza, E. Enhanced in Vitro Anticancer Activity of Yeast Expressed Recombinant Glucose Oxidase versus Commercial Enzyme. Appl Microbiol Biotechnol 2021, 105, 2377–2384. [CrossRef]
- Belyad, F.; Karkhanei, A.A.; Raheb, J. Expression, Characterization and One Step Purification of Heterologous Glucose Oxidase Gene from Aspergillus Niger ATCC 9029 in Pichia Pastoris. EuPA Open Proteom 2018, 19, 1–5. [CrossRef]
- Kovačević, G.; Blažić, M.; Draganić, B.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus Niger Glucose Oxidase in Yeast Pichia Pastoris KM71H. Mol Biotechnol 2014, 56, 305–311. [CrossRef]
- Bey, M.; Berrin, J.-G.; Poidevin, L.; Sigoillot, J.-C. Heterologous Expression of Pycnoporus Cinnabarinus Cellobiose Dehydrogenase in Pichia Pastoris and Involvement in Saccharification Processes. Microb Cell Fact 2011, 10, 113. [CrossRef]
- Zhang, R.; Fan, Z.; Kasuga, T. Expression of Cellobiose Dehydrogenase from Neurospora Crassa in Pichia Pastoris and Its Purification and Characterization. Protein Expr Purif 2011, 75, 63–69. [CrossRef]
- Acar, M.; Abul, N.; Yildiz, S.; Taskesenligil, E.D.; Gerni, S.; Unver, Y.; Kalin, R.; Ozdemir, H. Affinity-Based and in a Single Step Purification of Recombinant Horseradish Peroxidase A2A Isoenzyme Produced by Pichia Pastoris. Bioprocess Biosyst Eng 2023, 46, 523–534. [CrossRef]
- Krainer, F.W.; Darnhofer, B.; Birner-Gruenberger, R.; Glieder, A. Recombinant Production of a Peroxidase-Protein G Fusion Protein in Pichia Pastoris. J Biotechnol 2016, 219, 24–27. [CrossRef]
- Hong, F.; Meinander, N.Q.; Jönsson, L.J. Fermentation Strategies for Improved Heterologous Expression of Laccase in Pichia Pastoris. Biotechnol Bioeng 2002, 79, 438–449. [CrossRef]
- O’Callaghan, J.; O’Brien, M.; McClean, K.; Dobson, A. Optimisation of the Expression of a Trametes Versicolor Laccase Gene in Pichia Pastoris. J Ind Microbiol Biotechnol 2002, 29, 55–59. [CrossRef]
- Li, Q.; Pei, J.; Zhao, L.; Xie, J.; Cao, F.; Wang, G. Overexpression and Characterization of Laccase from Trametes Versicolor in Pichia Pastoris. Appl Biochem Microbiol 2014, 50, 140–147. [CrossRef]
- Avelar, M.; Olvera, C.; Aceves-Zamudio, D.; Folch, J.L.; Ayala, M. Recombinant Expression of a Laccase from Coriolopsis Gallica in Pichia Pastoris Using a Modified α-Factor Preproleader. Protein Expr Purif 2017, 136, 14–19. [CrossRef]
- Fan, F.; Zhuo, R.; Sun, S.; Wan, X.; Jiang, M.; Zhang, X.; Yang, Y. Cloning and Functional Analysis of a New Laccase Gene from Trametes Sp. 48424 Which Had the High Yield of Laccase and Strong Ability for Decolorizing Different Dyes. Bioresour Technol 2011, 102, 3126–3137. [CrossRef]
- Xu, G.; Wang, J.; Yin, Q.; Fang, W.; Xiao, Y.; Fang, Z. Expression of a Thermo- and Alkali-Philic Fungal Laccase in Pichia Pastoris and Its Application. Protein Expr Purif 2019, 154, 16–24. [CrossRef]
- Kontro, J.; Lyra, C.; Koponen, M.; Kuuskeri, J.; Kähkönen, M.A.; Wallenius, J.; Wan, X.; Sipilä, J.; Mäkelä, M.R.; Nousiainen, P.; et al. Production of Recombinant Laccase From Coprinopsis Cinerea and Its Effect in Mediator Promoted Lignin Oxidation at Neutral PH. Front Bioeng Biotechnol 2021, 9. [CrossRef]
- Ardila-Leal, L.D.; Albarracín-Pardo, D.A.; Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Cardozo-Bernal, A.M.; Quevedo-Hidalgo, B.E.; Pedroza-Rodríguez, A.M.; Díaz-Rincón, D.J.; Rodríguez-López, A.; et al. Media Improvement for 10 L Bioreactor Production of RPOXA 1B Laccase by P. Pastoris. 3 Biotech 2019, 9, 447. [CrossRef]
- Yang, Z.; Zhang, Z. Engineering Strategies for Enhanced Production of Protein and Bio-Products in Pichia Pastoris: A Review. Biotechnol Adv 2018, 36, 182–195. [CrossRef]
- Gao, Z.; Li, Z.; Zhang, Y.; Huang, H.; Li, M.; Zhou, L.; Tang, Y.; Yao, B.; Zhang, W. High-Level Expression of the Penicillium Notatum Glucose Oxidase Gene in Pichia Pastoris Using Codon Optimization. Biotechnol Lett 2012, 34, 507–514. [CrossRef]
- Yu, S.; Miao, L.; Huang, H.; Li, Y.; Zhu, T. High-Level Production of Glucose Oxidase in Pichia Pastoris: Effects of Hac1p Overexpression on Cell Physiology and Enzyme Expression. Enzyme Microb Technol 2020, 141, 109671. [CrossRef]
- Dietzsch, C.; Spadiut, O.; Herwig, C. A Dynamic Method Based on the Specific Substrate Uptake Rate to Set up a Feeding Strategy for Pichia Pastoris. Microb Cell Fact 2011, 10, 14. [CrossRef]
- Dietzsch, C.; Spadiut, O.; Herwig, C. A Fast Approach to Determine a Fed Batch Feeding Profile for Recombinant Pichia Pastoris Strains. Microb Cell Fact 2011, 10, 85. [CrossRef]
- Antošová, Z.; Sychrová, H. Yeast Hosts for the Production of Recombinant Laccases: A Review. Mol Biotechnol 2016, 58, 93–116. [CrossRef]
- Jönsson, L.J.; Saloheimo, M.; Penttilä, M. Laccase from the White-Rot Fungus Trametes Versicolor: CDNA Cloning of Lcc1 and Expression in Pichia Pastoris. Curr Genet 1997, 32, 425–430. [CrossRef]
- Markova, E.A.; Shaw, R.E.; Reynolds, C.R. Prediction of Strain Engineerings That Amplify Recombinant Protein Secretion through the Machine Learning Approach MaLPHAS. Engineering Biology 2022, 6, 82–90. [CrossRef]
- Waltenspühl, Y.; Jeliazkov, J.R.; Kummer, L.; Plückthun, A. Directed Evolution for High Functional Production and Stability of a Challenging G Protein-Coupled Receptor. Sci Rep 2021, 11, 8630. [CrossRef]
- Wang, Y.; Yu, L.; Shao, J.; Zhu, Z.; Zhang, L. Structure-Driven Protein Engineering for Production of Valuable Natural Products. Trends Plant Sci 2023, 28, 460–470. [CrossRef]
- Iizuka, R.; Tahara, K.; Matsueda, A.; Tsuda, S.; Yoon, D.H.; Sekiguchi, T.; Shoji, S.; Funatsu, T. Selection of Green Fluorescent Proteins by in Vitro Compartmentalization Using Microbead-Display Libraries. Biochem Eng J 2022, 187, 108627. [CrossRef]
- Hillson, N.; Caddick, M.; Cai, Y.; Carrasco, J.A.; Chang, M.W.; Curach, N.C.; Bell, D.J.; Le Feuvre, R.; Friedman, D.C.; Fu, X.; et al. Building a Global Alliance of Biofoundries. Nat Commun 2019, 10, 2040. [CrossRef]
- Zrimec, J.; Börlin, C.S.; Buric, F.; Muhammad, A.S.; Chen, R.; Siewers, V.; Verendel, V.; Nielsen, J.; Töpel, M.; Zelezniak, A. Deep Learning Suggests That Gene Expression Is Encoded in All Parts of a Co-Evolving Interacting Gene Regulatory Structure. Nat Commun 2020, 11, 6141. [CrossRef]
- Avsec, Ž.; Agarwal, V.; Visentin, D.; Ledsam, J.R.; Grabska-Barwinska, A.; Taylor, K.R.; Assael, Y.; Jumper, J.; Kohli, P.; Kelley, D.R. Effective Gene Expression Prediction from Sequence by Integrating Long-Range Interactions. Nat Methods 2021, 18, 1196–1203. [CrossRef]
- Ji, Y.; Zhou, Z.; Liu, H.; Davuluri, R. V DNABERT: Pre-Trained Bidirectional Encoder Representations from Transformers Model for DNA-Language in Genome. Bioinformatics 2021, 37, 2112–2120. [CrossRef]
- Lu, H.; Li, F.; Sánchez, B.J.; Zhu, Z.; Li, G.; Domenzain, I.; Marcišauskas, S.; Anton, P.M.; Lappa, D.; Lieven, C.; et al. A Consensus S. Cerevisiae Metabolic Model Yeast8 and Its Ecosystem for Comprehensively Probing Cellular Metabolism. Nat Commun 2019, 10, 3586. [CrossRef]
- Ito, Y.; Ishigami, M.; Terai, G.; Nakamura, Y.; Hashiba, N.; Nishi, T.; Nakazawa, H.; Hasunuma, T.; Asai, K.; Umetsu, M.; et al. A Streamlined Strain Engineering Workflow with Genome-Wide Screening Detects Enhanced Protein Secretion in Komagataella Phaffii. Commun Biol 2022, 5, 561. [CrossRef]
- Munro, L.J.; Kell, D.B. Intelligent Host Engineering for Metabolic Flux Optimisation in Biotechnology. Biochemical Journal 2021, 478, 3685–3721. [CrossRef]
- Sandberg, T.E.; Salazar, M.J.; Weng, L.L.; Palsson, B.O.; Feist, A.M. The Emergence of Adaptive Laboratory Evolution as an Efficient Tool for Biological Discovery and Industrial Biotechnology. Metab Eng 2019, 56, 1–16. [CrossRef]
- Aza, P.; De Salas, F.; Molpeceres, G.; Rodríguez-Escribano, D.; De La Fuente, I.; Camarero, S. Protein Engineering Approaches to Enhance Fungal Laccase Production in S. Cerevisiae. Int J Mol Sci 2021, 22. [CrossRef]
- Aza, P.; Molpeceres, G.; de Salas, F.; Camarero, S. Design of an Improved Universal Signal Peptide Based on the A-Factor Mating Secretion Signal for Enzyme Production in Yeast. Cellular and Molecular Life Sciences 2021, 78. [CrossRef]
- Zhou, H.; Zhang, W.; Qian, J. Hypersecretory Production of Glucose Oxidase in Pichia Pastoris through Combinatorial Engineering of Protein Properties, Synthesis, and Secretion. Biotechnol Bioeng 2023. [CrossRef]
- Shen, Q.; Wu, M.; Wang, H.-B.; Naranmandura, H.; Chen, S.-Q. The Effect of Gene Copy Number and Co-Expression of Chaperone on Production of Albumin Fusion Proteins in Pichia Pastoris. Appl Microbiol Biotechnol 2012, 96, 763–772. [CrossRef]
- Duan, G.; Ding, L.; Wei, D.; Zhou, H.; Chu, J.; Zhang, S.; Qian, J. Screening Endogenous Signal Peptides and Protein Folding Factors to Promote the Secretory Expression of Heterologous Proteins in Pichia Pastoris. J Biotechnol 2019, 306, 193–202. [CrossRef]
- Ito, Y.; Terai, G.; Ishigami, M.; Hashiba, N.; Nakamura, Y.; Bamba, T.; Kumokita, R.; Hasunuma, T.; Asai, K.; Ishii, J.; et al. Exchange of Endogenous and Heterogeneous Yeast Terminators in Pichia Pastoris to Tune MRNA Stability and Gene Expression. Nucleic Acids Res 2020, 48, 13000–13012. [CrossRef]
- Wang, G.; Björk, S.M.; Huang, M.; Liu, Q.; Campbell, K.; Nielsen, J.; Joensson, H.N.; Petranovic, D. RNAi Expression Tuning, Microfluidic Screening, and Genome Recombineering for Improved Protein Production in Saccharomyces Cerevisiae. Proceedings of the National Academy of Sciences 2019, 116, 9324–9332. [CrossRef]
- Pekarsky, A.; Veiter, L.; Rajamanickam, V.; Herwig, C.; Grünwald-Gruber, C.; Altmann, F.; Spadiut, O. Production of a Recombinant Peroxidase in Different Glyco-Engineered Pichia Pastoris Strains: A Morphological and Physiological Comparison. Microb Cell Fact 2018, 17, 183. [CrossRef]
- Hyka, P.; Züllig, T.; Ruth, C.; Looser, V.; Meier, C.; Klein, J.; Melzoch, K.; Meyer, H.-P.; Glieder, A.; Kovar, K. Combined Use of Fluorescent Dyes and Flow Cytometry To Quantify the Physiological State of Pichia Pastoris during the Production of Heterologous Proteins in High-Cell-Density Fed-Batch Cultures. Appl Environ Microbiol 2010, 76, 4486–4496. [CrossRef]
- Alfasi, S.; Sevastsyanovich, Y.; Zaffaroni, L.; Griffiths, L.; Hall, R.; Cole, J. Use of GFP Fusions for the Isolation of Escherichia Coli Strains for Improved Production of Different Target Recombinant Proteins. J Biotechnol 2011, 156, 11–21. [CrossRef]
- Totaro, D.; Radoman, B.; Schmelzer, B.; Rothbauer, M.; Steiger, M.G.; Mayr, T.; Sauer, M.; Ertl, P.; Mattanovich, D. Microscale Perfusion-Based Cultivation for Pichia Pastoris Clone Screening Enables Accelerated and Optimized Recombinant Protein Production Processes. Biotechnol J 2021, 16. [CrossRef]
- Li, Q.; Lu, J.; Liu, J.; Li, J.; Zhang, G.; Du, G.; Chen, J. High-Throughput Droplet Microfluidics Screening and Genome Sequencing Analysis for Improved Amylase-Producing Aspergillus Oryzae. Biotechnology for Biofuels and Bioproducts 2023, 16, 185. [CrossRef]
- Scheele, R.A.; Lindenburg, L.H.; Petek, M.; Schober, M.; Dalby, K.N.; Hollfelder, F. Droplet-Based Screening of Phosphate Transfer Catalysis Reveals How Epistasis Shapes MAP Kinase Interactions with Substrates. Nat Commun 2022, 13, 844. [CrossRef]
- Femmer, C.; Bechtold, M.; Panke, S. Semi-rational Engineering of an Amino Acid Racemase That Is Stabilized in Aqueous/Organic Solvent Mixtures. Biotechnol Bioeng 2020, 117, 2683–2693. [CrossRef]
- Napiorkowska, M.; Pestalozzi, L.; Panke, S.; Held, M.; Schmitt, S. High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads. Small 2021, 17. [CrossRef]
- Ito, Y.; Sasaki, R.; Asari, S.; Yasuda, T.; Ueda, H.; Kitaguchi, T. Efficient Microfluidic Screening Method Using a Fluorescent Immunosensor for Recombinant Protein Secretions. Small 2023, 19. [CrossRef]
| Source | Oxidoreductase | Host strain; Vector | Promoter | Inducer | Signal sequence | Additional information | Enzyme yield | Ref. |
|---|---|---|---|---|---|---|---|---|
| GOx | ||||||||
| A. niger | 2805; YEp352 | GAL1 | 1% galactose | ss of α-factor | NR | 32a U/mL | [37] | |
| A. niger | 2805; Yep352 | Hybrid ADH2-GPD | 2% glucose | ss of α-factor | 1.5 % EtOH | 260a U/mL | [37] | |
| A. oryzae | 2805 | GAL-10 | NR | α-amylase signal sequence | 30 OC, 150 rpm, feed-back controlled fed-batch | NR | [38] | |
| CDH | ||||||||
| T. clypeatus | GAFV01008428.1 | BY4742; pFL61 | PGK | No | No | NR type of cultivation; Czapek medium, 3 days; | 0.039b U/mg | [39] |
| M. thermophilum | Wild type | BJ5465; pJRoC30 | GAL1 | 2% galactose | Native | Deep-well plate (500 µL of medium); 30 OC; 5 days; | 50b U/L | [40] |
| M. thermophilum | Wild type | BJ5465; pJRoC30 | GAL1 | 2% galactose | Ss of α factor | Deep-well plate (500 µL of medium); 30 OC; 5 days; | 16b U/L | [40] |
| P. chrysosporium | U46081.1 | InvSC1; pYES2 | GAL1 | Galactose | Native | Shake flask; 30 OC; 16 h | NR | [41] |
| HRP | ||||||||
| Horseradish | Wild type | SIP-Ost1 (Δ44-70); modified pESC-URA | TDH3 | pre-Ost1 | Fermentor 5 L (batch fermentation) | 13506c U/L | [42] | |
| Horseradish | HRP 3-17E12 | BJ5465; pYEX-S1 | PGK1 | No | NR | Expression time 25 h | about 250c U/L | [43] |
| LAC | ||||||||
| Trametes sp. C30 | Clac1, 2, 3 | W303-1A; YIp351 | PGK1 | No | Ss of SUC2 gene product | Fermentor 3 L; 1 mM CuSO4; 28 OC; 3 days | 1200d U/L | [44] |
| M. thermophila | MtL | BJ5465; pJRoC3 | NR | NR | NR | Shake flask 2.8 L; 0.005 mM CuSO4 30 OC; 1 day | 0.6d U/L | [45] |
| M. thermophila | T2 mutant | BJ5465; pJRoC3 | NR | NR | NR | Shake flask 2.8 L; 0.005 mM CuSO4; 30 OC; 1 day | 102d U/L | [45] |
| T. versicolor | Cvl3 | BY2777; pYES2 | GAL1 | 4% Galactose | Native | Shake flask 0.3 L; 0.5 mM CuSO4; 20 OC; 6 days | 45e U/L | [46] |
| L. edodes | Lcc4 | FGY217; pBG13 | GAL1 | 4% Galactose | Native | Fermentor 4 L; 0.5 mM CuSO4; 20 OC; 7 days | 10e U/L | [47] |
| A. pediades | ApL | BJ5465; pJRoC30 | GAL1 | 2.2% Galactose | α9H2 signal peptide | Shake flask 0.1 L; 0.4 mM CuSO4; 20 ⁰C; 4 days | 280e U/L | [48] |
| M. thermophila | T2 mutant | BW31a; pVT-100U | ADH1 | No | Native | Shake flask 0.25 L; 0.6 mM CuSO4; 30 ⁰C; 1 day; 0.8% alanine | 6.52e U/L | [49] |
| T. versicolor | Lcc1 | BW31a; pVT-100U | ADH1 | No | Native | Shake flask 0.25 L; 0.6 mM CuSO4; 30 OC; 1 day; 0.8% alanine | 0.45e U/L | [49] |
| T. trogii | Lcc1 | BW31a; pVT-100U | ADH1 | No | Native | Shake flask 0.25 L; 0.6 mM CuSO4; 20 OC; 14 days; 0.8% alanine | 14.12e U/L | [49] |
| Source | Oxidoreductase | Host strain; Vector | Promoter | Inducer | Signal sequence | Additional information | Enzyme yield | Ref. |
|---|---|---|---|---|---|---|---|---|
| GOx | ||||||||
| A. niger | GOx accc30161 | SMD1168;pGAPZαA | GAP | NR | ss of α-factor | 30 oC; pH 6 | 107.18a U/mL | [61] |
| A. niger | GOxM | SMD1168; pPIC3.5 | AOX1 | 1% MeOH | 30 oC; 3 days, 220rpm | 26.93a U/mL | [62] | |
| A. niger ATCC 9029 | - | GS115; pPIC9 | AOX1 | 1% MeOH | 28 oC; 225 rpm; | NR | [63] | |
| A. niger | M12 mutant | KM71H; pPICZαA | AOX | 0.5% MeOH | Proalpha sequence | Nine days of fermentation | 17.5b U/mL | [64] |
| CDH | ||||||||
| M. thermophilum | N700S mutant | X33; pPICZαA | AOX1 | 0.5% MeOH | Ss of α-factor & propeptide | Fermentor 7 L; 30 ⁰C; 5 days; | 1800c U/L | [40] |
| P. cinnabarinus | Wild type | X33; pPICZαA | AOX1 | 3% MeOH | Ss of α-factor | Fermentor 1 L; 4 days; | 7800c U/L | [65] |
| N. crassa strain FGSC 2489 | NC-cdh1 | X33; pPICZαB | AOX1 | 1% MeOH | Ss of α-factor | Shake flask 0.25 L; 30 ⁰C; 1 day | 7451c U/L | [66] |
| P. chrysosporium | Mutant | KM71H; pPICZαA | AOX1 | 0.5% MeOH | Ss of α-factor | Shake flask; 28 ⁰C; 6 days | 950c U/L | [66] |
| HRP | ||||||||
| Horseradish | wild type | X-33; pPICZαB | AOX1 | 0.5% MeOH | ss α-factor | 30 oC; BMGY medium supplemented with 1% casamino acids; BMMY medium supplemented with 1.0 mM vitamin B1, 1.0 mM δ-ALA and trace element mix;the highest yield in 80-90 h post-induction; | 377d U/mg | [43] |
| Horseradish | mutant HRP 2-13A10 | X-33; pPICZαB | AOX1 | 0.5% MeOH | ss α-factor | same as for wild-type | 2053d U/mg | [43] |
| Horseradish | mutant HRP 3-17E12 | X-33; pPICZαB | AOX1 | 0.5% MeOH | ss α-factor | same as for wild-type | 1049d U/mg | [43] |
| Horseradish | A2A isoenzyme | X-33; pPICZαC | AOX1 | 0.5% MeOH | α-MF-pre-pro signal peptide | BMMY medium supplemented with 1% casamino acids and 1% sorbitol | 25.63a U/mg | [67] |
| Horseradish | HRP-SpG | PpFWK3; pPpT4_alpha_S | MeOH | nr | 136 h of methanol induction | 113d mg/L | [68] | |
| LAC | ||||||||
| T. versicolor | Lcc1 | SMD 1168; pHIL-D2 | AOX1 | 0.5% MeOH | Shake flasks 1 L; 0.1 mM CuSO4; 20⁰C; 3 days of induction | 11500f U/L | [69] | |
| T. versicolor | Lcc1 | SMD 1168; pHIL-D2 | AOX1 | 0.5% MeOH | BioFlo III fermentor; 0.1 mM CuSO4; 20⁰C; 8.5 days | 140f U/L | [69] | |
| T. versicolor | Lcc1 | GS115; pPIC3.5 | AOX1 | 1% MeOH | Shake flasks (0.1 L; 0.2 mM CuSO4; 22⁰C ; Initial pH 6; 0.8% alanine: | 23.9f U/L | [70] | |
| T. versicolor | LccA | X33; pPICZαB | AOX | 0.6% | ss of α-factor | Shake flask (0.05 L of medium); 0.5 mM CuSO4; 28⁰C; 16 days; Initial pH 7; | 11.972f U/L | [71] |
| T. versicolor | LccA | X33; X33; pPICZαB | AOX | 0.6% | ss of α-factor | 5 L fermenter; 0.5 mM CuSO4; 28⁰C; 4.2 days; Initial pH 7; | 18.123f U/L | [71] |
| C. gallica | LcCg | X33; pPICZB | AOX | 1% | Modified α-factor preproleader | Fernbach flask; 0.5 mM CuSO4; 28⁰C; 12 days; Initial pH 6; 0.8% alanine | 250e U/L | [72] |
| Trameters sp. 48424 | Lac48424-1 | GS115; pPIC3.5K | AOX | 0.5% | Native | Shake flasks; 0.3 mM CuSO4; 20⁰C; 7 days; Initial pH 6; 0.8% alanine | 104.45f U/L | [73] |
| C. cinerea | Lcc9 | GS115; pPIC9K | AOX | 0.5% | Native | Shake flasks 0.5 L; 0.3 mM CuSO4; 28⁰C; 10 days; Initial pH 6.5; 0.8% alanine | 3138 ± 62f U/L | [74] |
| C. cinerea | Lcc9 | X33; pPICZαA | AOX | 0.5% MeOH | ss of α-factor | Shake flasks 0.25 L; 0.3 mM CuSO4; 20⁰C; 7 days; 0.8% alanine | 9.3f µkat/L | [75] |
| C. cinerea | Lcc9 | X33; pGAPZαA | GAP | *regulation by 0.5% glucose | ss of α-factor | Shake flasks 0.25 L; 0.3 mM CuSO4; 20⁰C; 4 days; 0.8% alanine | 12.8f µkat/L | [75] |
| P. ostreatus | rPOXA 1B | X33; pGAPZαA | GAP | *regulation by 0.5% glucose | ss of α-factor | Bioreactor 10 L; 1mM CuSO4; 2% peptone; 1.5% yeast extract; 170h; geometry of flask | 3159.93 f U/L | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
