The accumulation of microorganisms, plants, algae, or small animals on wet surfaces that have a mechanical function causes biofouling, which can result in structural or other functional deficiencies. The maritime shipping industry must constantly manage biofouling to optimize operational performance, which is a common and long-lasting problem. It can occur in any metal structure in contact or submerged in ocean water, which represents additional costs in terms of repairs and maintenance.
This study is focused on the production of antifouling coatings, made with nanoparticles of copper selenide (CuSe) modified with gum arabic, within a water-base acrylic polymeric matrix. During the curing of the acrylic resin, the CuSe NPs remain embedded in the resin but this does not prevent the release of ions.
The coatings presented to release copper and selenium ions for up to 80 days, selenium was the element that was released the most. The adhesion of film coatings to metallic substrates showed good adhesion, scale 5B (ASTM D3359 standard).
Antimicrobial activity tests show that the coatings have an inhibitory effect on Escherichia coli and Candida albicans. The effect being more noticeable when the coating is detached from the substrate and placed on a growing medium, than compared to the coating on a substrate.
Scanning electron microscopy (SEM) observations show that nanostructured CuSe coatings are made up of rod-shaped and spherical particles whose range ranges from 12 to 25 nm. The Energy Dispersive X-ray spectroscopy (EDS) studies showed that the ratio of selenium nanoparticles is greater than that of copper and that their distribution is homogeneous
Chemistry and Materials Science, Surfaces, Coatings and Films
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.