Submitted:
17 October 2023
Posted:
31 October 2023
You are already at the latest version
Abstract
Keywords:
MSC: 26D10; 26D15; 34N05; 47B38; 39A12
1. Introduction
2. Basic Principles
- 1.
- If ℑ is differentiable at v, then ℑ is continuous at v.
- 2.
- If ℑ is continuous at v and v is right-scattered (i.e , then ℑ is differentiable at v with
- 3.
-
If v is right-dense (i.e , then ℑ is differentiable iff the limitexists as a finite number. In this case
- 1.
- 2.
- 3.
- 4.
- If then
- 5.
3. Main Results
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- R. P. Agarwal, D. O’Regan and S. H. Saker, Dynamic Inequalities on Time Scales, Springer Cham Heidlelberg New York Dordrechet London 2014.
- G. AlNemer, A. I. Saied, M. Zakarya, H. A. Abd El-Hamid, O. Bazighifan and H. M. Rezk, Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry, 13(12), 2431, (2021). [CrossRef]
- R. Bibi, M. Bohner, J. Pečarić and S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal 7(3) (2013), 299-312.
- M. Bohner and S. G. Georgiev, Multiple integration on time scales. Multivariable dynamic calculus on time scales. Springer, Cham (2016), 449-515.
- M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An introduction with applications. Birkhäuser, Boston, Mass, the USA, 2001.
- M. Bohner and G. S. Guseinov, Multiple integration on time scales. Dyn.Syst. Appl. 14, (2005), 579-606.
- Z. Chang-Jian, C. Lian-Ying and W. S. Cheung, On some new Hilbert-type inequalities. Mathematica Slovaca, 61(1), (2011), 15-28. [CrossRef]
- G. H. Hardy, Note on a theorem of Hilbert concerning series of positive term, Proc. London Math. Soc. 23, (1925), 45-46. [CrossRef]
- G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Cambridge university press, (1952).
- D. Hilbert, Grundzüge einer allgemeinen theorie der linearen intergraleichungen, Göttingen Nachr. (1906), 157-227.
- Y. H. Kim and B. I. Kim, An Analogue of Hilberts inequality and its extensions. Bull. Korean Math. Soc. (2002), 39, 377–388.
- J. A. Oguntuase and L. E. Persson, Time scales Hardy-type inequalities via superquadracity. Annals of Functional Analysis, 5(2) (2014), 61-73. [CrossRef]
- B. G. Pachpatte, A note on Hilbert type inequality. Tamkang J. Math. (1998), 29, 293–298.
- B. G. Pachpatte, Inequalities Similar to Certain Extensions of Hilbert’s Inequality. J. Math. Anal. Appl. (2000), 243, 217–227. [CrossRef]
- P. Řehak, Hardy inequality on time scales and its application to half-linear dynamic equations. Journal of Inequalities and Applications, 2005(5) (2005), 495-507. [CrossRef]
- H. M. Rezk, G. AlNemer, A. I. Saied, O. Bazighifan and M. Zakarya, Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry, 14(4), 750, (2022).
- I. Schur, Bernerkungen sur theorie der beschrankten Bilinearformen mit unendlich vielen veranderlichen, Journal of Mathematics 140, (1911), 1-28. [CrossRef]
- A. Tuna and S. Kutukcu, Some integral inequalities on time scales. Applied Mathematics and Mechanics, 29(1), (2008), 23-29. [CrossRef]
- M. Zakarya, G. AlNemer, A. I. Saied, R. Butush, O. Bazighifan and H. M. Rezk, Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus. Symmetry, 14(8), 1512, (2022). [CrossRef]
- M. Zakarya, A. I. Saied, G. ALNemer, H. A. Abd El-Hamid and H. M. Rezk, A study on some new generalizations of reversed dynamic inequalities of Hilbert-type via supermultiplicative functions. Journal of function spaces, 2022, (2022). [CrossRef]
- M. Zakarya, A. I. Saied, G. AlNemer and H. M. Rezk, A study on some new reverse Hilbert-type inequalities and its generalizations on time scales. Journal of mathematics, 2022, (2022). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
