Submitted:
30 October 2023
Posted:
31 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Cheese samples
2.2. Reagents
2.3. Instruments and Apparatus
2.4. Methods of Analysis
2.4.1. Cheese Extract Preparation
2.4.2. Antioxidant Activity Assays
2.4.3. Peptide assays
2.4.4. Anti-inflammatory Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Feta Cheese and Other Ripened Brined Cheeses
3.2. Metsovone Cheese and Other Ripened Smoked Cheeses
3.3. Anti-inflammatory Activity of Cheeses
4. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Fox, P.E. Cheese: An Overview. In Cheese: Chemistry, Physics and Microbiology, 2nd ed.; Springer: New York, USA, 1993; Volume 1, pp. 1–36. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. In Fundamentals of Cheese Science, 2nd ed.; Springer: New York, USA, 2017; pp. 715–723. [Google Scholar]
- Moatsou, G.; Govaris, A. ; White brined cheeses: A diachronic exploitation of small ruminants milk in Greece. Small Rumin. Res. 2011, 101, 113–121. [Google Scholar] [CrossRef]
- Anifantakis, E. ; Greek Cheeses: A Tradition of Centuries, 1st ed; National Dairy Committee of Greece: Athens, Greece, 1991; pp. 27–42. [Google Scholar]
- Ledesma, E. Smoked Food. In Current Developments in Biotechnology and Bioengineering, 1nd ed.; Tarafdar, A., Pandey, A., Sirohi, R., Soccol, C.R., Dussap, C.G., Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 201–243. [Google Scholar]
- McSweeney, P.L. H, Fox P.F. Chemical methods for the characterization of proteolysis in cheese during ripening. Lait 1997, 77, 41–76. [Google Scholar] [CrossRef]
- Erkaya, T.; Şengul, M. ; Bioactivity of water soluble extracts and some characteristics of white cheese during the ripening period as effected by packaging type and probiotic adjunct cultures. J. Dairy Res. 2015, 82, 47–55. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, P.H. ; Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. ; Bioactive peptides: A review. FQS 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Öztürk, H.I.; N. Akin, N. Effect of ripening time on peptide dynamics and bioactive peptide composition in Tulum cheese. J. Dairy Sci. 2021, 104, 3832–3852. [Google Scholar] [CrossRef] [PubMed]
- Helal, A.; Cattivelli, A. ; Conte, A; Tagliazucchi, D; Effect of Ripening and In Vitro Digestion on Bioactive Peptides Profile in Ras Cheese and Their Biological Activities. Biology 2023, 12, 948. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Revilla, I.; González-Martín, M.I.; Vivar-Quintana, A.M.; Blanco-López, M.A.; Lobos-Ortega, I.A.; Hernández-Hierro, J.M. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy. J.Dairy Sci. 2016, 99, 5074–5082. [Google Scholar] [CrossRef]
- Stobiecka, M.; Król, J.; Brodziak, A. ; Antioxidant Activity of Milk and Dairy Products. Animals 2022, 12, 245. [Google Scholar] [CrossRef]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R. ; Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Miralles, B.; Amigo, L.; Ramos, M.; Recio, I. ; Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J. Sci. Food Agric. 2005, 85, 1041–1048. [Google Scholar] [CrossRef]
- Bottesini, C.; Paolella, S.; Lambertini, F.; Galaverna, G.; Tedeschi, T.; Dossena, A.; Marchelli, R.; Sforza, S. ; Antioxidant capacity of water soluble extracts from Parmigiano-Reggiano cheese. Int. J. Food Sci. Nutr. 2013, 64, 953–958. [Google Scholar] [CrossRef]
- Soler, J.; Saura, P.; García-López, D.; Masgrau, L.; Lluch, J. M.; González-Lafont, À. ; How Can Linoleic Acid Be the Preferential Substrate of the Enzyme 15-Lipoxygenase-1? A QM/MM Approach. J. Phys. Chem. 2015, 120, 1950–1960. [Google Scholar] [CrossRef]
- Laakso, S.; Lilius, E. M. ; Milk casein: inhibitor of lipoxygenase-catalyzed lipid peroxidation. J. Agric. Food Chem. 1982, 30, 913–916. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. ; Short communication: Effect of genetic type on antioxidant activity of Caciocavallo cheese during ripening. J. Dairy Sci. 2015, 98, 3690–3694. [Google Scholar] [CrossRef]
- Torres-Llanez, M.J.; González-Córdova, A.F.; Hernandez-Mendoza, A.; Garcia, H.S.; Vallejo-Cordoba, B. ; Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. J. Dairy Sci. 2011, 94, 3794–3800. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. ; Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Munir, M.; Nadeem, M.; Qureshi, T.M.; Gamlath, C. J.; Martin, G. J. O.; Hemar, Y.; Ashokkumar, M. ; Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrason. Sonochem. 2020, 67. [Google Scholar] [CrossRef]
- Benzie, I. F. F.; Strain, J.J. ; The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Bradford, M. ; A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lowry, O. H.; Rosebrough, N. J.; Farr, A.L.; Randall, R.J. ; PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT. J. Biol. Chem. 1951, 193. [Google Scholar] [CrossRef]
- Ong, L.; Henriksson, A.; Shah, N.P. ; Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Lait 2007, 87, 149–165. [Google Scholar] [CrossRef]
- Katsiari, M.C.; Alichanidis, E.; Voutsinas, L.P.; Roussis, I.G. ; Proteolysis in reduced sodium Feta cheese made by partialsubstitution of NaCl by KCl. Int. Dairy J. 2000, 10, 635–646. [Google Scholar] [CrossRef]
- Pierro, P. D.; Mariniello, L.; Sorrentino, A.; Giosafatto, C.V.L.; Chianese, L.; Porta, R. ; Transglutaminase-Induced Chemical and Rheological Properties of Cheese. Food Biotechnol. 2010, 24, 107–120. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Morales-de la Peña, M.; Rojas-Graü, A.; Martín-Belloso, O. ; Changes in Water-Soluble Vitamins and Antioxidant Capacity of Fruit Juice–Milk Beverages As Affected by High-Intensity Pulsed Electric Fields (HIPEF) or Heat during Chilled Storage. J. Agric. Food Chem. 2011, 59. [Google Scholar] [CrossRef]
- Gałecki, A.; Burzykowski, T. Linear mixed-effects model. Springer: New York, USA, 2013; pp. 245-273.
- Kenward, M. G.; Roger, J. H. ; Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 983–997. [Google Scholar] [CrossRef]
- Moatsou, G.; Massouras, T.; Kandarakis, I.; Anifantakis, E. ; Evolution of proteolysis during the ripening of traditional Feta cheese. Lait 2002, 82, 601–611. [Google Scholar] [CrossRef]
- Kocak, A.; Sanli, T.; Anli, E.; Ayse, H.; Ali, A. ; Role of using adjunct cultures in release of bioactive peptides in white-brined goat-milk cheese. LWT 2020, 123. [Google Scholar] [CrossRef]
- Sahingil, D.; Hayaloglu, A.A.; Kirmaci, H.A.; Özer, B.; Simsek, O. ; Changes of proteolysis and angiotensin-I converting enzyme-inhibitory activity in white-brined cheese as affected by adjunct culture and ripening temperature. J. Dairy Res. 2014, 81, 394–402. [Google Scholar] [CrossRef]
- Gandhi, A.; Shah, N.P. ; Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells. J. Food Sci. 2016, 81. [Google Scholar] [CrossRef] [PubMed]
- Shaibanl, M.; AL-Mamary, M.; AL-Habori, M. ; Total Antioxidant Activity and Total Phenolic Contents in Yemeni Smoked Cheese. Mal.J. Nutr. 2006, 12, 87–92. [Google Scholar]
- Vosgan, Z.; Mihali, C.; Marian, M.; Dumuta, A.; Pop, F.; Mihalescu, L. ; Evaluation of the Microbial Quality and Total Phenolic Content of a Local Smoked Cheese. Bulletin UASVM Food Sci. Technol. 2020, 77. [Google Scholar]




| Region | Folin (mg gallic acid/L WSE) |
FRAP (mg gallic acid/L WSE) |
Bradford (mg BSA/L WSE) |
Lowry (mg BSA/L WSE) |
|---|---|---|---|---|
| Epirus 1 | 179±7 | 3.72±0.02 | 1627±28 | 3777±114 |
| Epirus 2 | 130±3 | 3.55±0.08 | 1487±55 | 2994±74 |
| Thessaly | 201±2 | 3.97±0.06 | 2468±81 | 4890±123 |
| Western Greece | 162±4 | 3.49±0.06 | 1220±31 | 3204±96 |
| Region | Folin (mg gallic acid/L WSE) |
FRAP (mg gallic acid/L WSE) |
Bradford (mg BSA/L WSE) |
Lowry (mg BSA/L WSE) |
|---|---|---|---|---|
| Epirus 1 | 110±3 | 1.75±0.01 | 782±28 | 2200±67 |
| Epirus 2 | 129±3 | 2.77±0.05 | 808±30 | 2662±75 |
| Thessaly | 118±1 | 2.78±0.08 | 805±25 | 3007±72 |
| Western Greece | 148±4 | 2.86±0.07 | 900±35 | 2974±51 |
| Region | Folin (mg gallic acid/L WSE) |
FRAP (mg gallic acid/L WSE) |
Bradford (mg BSA/L WSE) |
Lowry (mg BSA/L WSE) |
|---|---|---|---|---|
| Epirus | 100±3 | 1.98±0.05 | 1617±34 | 2277±70 |
| Thessaly | 184±6 | 2.90±0.06 | 2542±46 | 4520±65 |
| Central Macedonia | 133±3 | 2.77±0.06 | 1418±49 | 3190±81 |
| Cheeses | Folin (mg gallic acid/L WSE) |
FRAP (mg gallic acid/L WSE) |
Bradford (mg BSA/L WSE) |
Lowry (mg BSA/L WSE) |
|---|---|---|---|---|
| Feta–Cow |
30.42 (11.37) 0.01 |
1.16 (0.14) 0.00 |
-194 (139.06) 0.17 |
546.5 (235.81) 0.06 |
| Feta–Goat |
42.08 (8.81) 0.00 |
1.14 (0.11) 0.00 |
876.67 (105.46) 0.00 |
1005.25 (178.87) 0.03 |
| Cow–Goat |
11.65 (11.37) 0.31 |
-0.02 (0.14) 0.89 |
1070.66 (139.06) 0.00 |
458.75 (235.81) 0.06 |
| Age, Days |
Folin (mg gallic acid/L WSE) |
FRAP (mg gallic acid/L WSE) |
Bradford (mg BSA/L WSE) |
Lowry (mg BSA/L WSE) |
|---|---|---|---|---|
| 2 | 120±3 | 3,27±0,15 | 2212±43 | 2204±62 |
| 16 | 142±5 | 3,56±0,06 | 1245±72 | 2577±63 |
| 60 | 179±7 | 3,72±0,02 | 1627±28 | 3777±114 |
| 120 | 217±3 | 3,41±0,06 | 1767±64 | 4247±113 |
| Region | Folin (mg gallic acid/L WSE) |
FRAP (mg gallic acid/L WSE) |
Bradford (mg BSA/L WSE) |
Lowry (mg BSA/L WSE) |
|---|---|---|---|---|
| Metsovone, 3 months | 291±12 | 7.45±0.18 | 3277±99 | 5850±153 |
| Metsovone, 6 months | 437±5 | 9,40±0,26 | 3478±70 | 7664±103 |
| Epirus, 3 months | 230±8 | 5.11±0.20 | 2550±114 | 5110±151 |
| Central Macedonia, 3 months | 294±5 | 9.33±0.08 | 2872±111 | 6677±96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
