Submitted:
17 November 2023
Posted:
21 November 2023
You are already at the latest version
Abstract
Keywords:
Introduction
African Giant Snail (Archachatina Marginata)
Identification
Distribution
Lifespan of the Archachatina Marginata
Diet
Oryctes Rhinoceros
Larvae
Impacts
Diet
Distribution
Cellulase and Waste Management
Materials and Methods
Materials
Extraction of Enzyme
Assay Method
Actions of the Partially Purified Cellulase on Some Wastes
Results
Larva
| Purification step | Total Protein (mg) |
Total Activity (µmol/min) |
Specific Activity | % Yield | Purification fold |
| Crude Extract |
1031.05 | 712.63 | 0.69 | 100 | 1 |
| 65% Ammonium sulphate | 582.10 | 591.09 | 1.02 | 56.46 | 1.47 |
Archachatina Marginata Gut
Gut Cellulase
| Purification step | Total Protein (mg) |
Total Activity (µmol/min) |
Specific Activity | % Yield | Purification fold |
| Crude Extract |
1162.61 | 805.21 | 0.69 | 100 | 1 |
| 65% Ammonium sulphate | 538.26 | 637.24 | 1.18 | 46.32 | 1.72 |
Archachatina Marginata Heamolymph
| Purification step | Total Protein (mg) |
Total Activity (µmol/min) |
Specific Activity | % Yield | Purification fold |
| Crude Extract |
652.33 | 812.32 | 1.25 | 100 | 1 |
| 65% Ammonium sulphate | 241.12 | 629.11 | 2.61 | 37 | 2.09 |
Kinetic Parameters
| African giant Snail Gut |
African giant Snail Haemolymph |
Larvae | |
| KM | 3.43 | 23.76 | 11.63 |
| Vmax | 112.02 | 998.50 | 648.01 |
Action of Rhinoceros Larvae and the Gaint african snail cellulase on some wastes
Wood
| African giant Snail Gut |
African giant Snail Haemolymph |
Larvae |
|
| Fig tree | 15.02 | 18.22 | 33.69 |
| Oak tree | 11.84 | 16.27 | 116.24 |
| Palmplum tree | 13.36 | 17.62 | 108.47 |
| Kick tree | 25.35 | 173.09 | 189.11 |
| African balsam tree | 16.87 | 28.65 | 67.85 |
| Maple tree | 28.31 | 16.32 | 70.17 |
| Kapok tree | 17.41 | 53.56 | 102.42 |
| Mugwort tree | 19.88 | 14.37 | 45.70 |
| Kola tree | 15.81 | 14.17 | 98.84 |
| Ohugbo tree | 17.86 | 1.17 | 102.51 |
Paper
| African giant Snail Gut |
African giant Snail Haemolymph |
Larvae | |
| Carton paper | 177.43 | 353.96 | 567.01 |
| Brown paper | 109.84 | 133.10 | 175.29 |
| Tissue paper | 76.52 | 56.76 | 108.56 |
| Art paper | 142.30 | 259.36 | 353.37 |
| Jotter paper | 136.35 | 243.33 | 328.62 |
| News paper | 156.52 | 107.68 | 209.45 |
| Office file | 161.87 | 133.10 | 262.82 |
| Notebook | 196.08 | 108.58 | 183.81 |
Leaves
| African giant Snail Gut |
African giant Snail Haemolymph |
Larvae | |
| Orange Leaf |
113.09 | 180.87 | 163.33 |
| Mango Leaf |
148.14 | 348.32 | 301.40 |
| Kolanut Leaf |
117.41 | 218.62 | 436.76 |
| Cassava Leaf |
78.57 | 162.30 | 192.23 |
| Lemon | 84.79 | 148.02 | 169.57 |
Kitchen Waste
| African giant Snail Gut |
African giant Snail Haemolymph |
Larvae | |
| Garri | 57.16 | 137.89 | 97.91 |
| Egg shell | 82.73 | 61.85 | 63.38 |
| Yam flour | 74.76 | 49.97 | 100.47 |
| Yam peel | 65.42 | 91.16 | 94.09 |
| Orange peel | 179.95 | 452.37 | 457.05 |
| Pineapple peel | 129.10 | 94.90 | 138.72 |
| Onion peel | 175.41 | 428.0 |
382.60 |
| Beans peel | 90.98 | 122.06 | 174.36 |
Industrial Waste
| African giant Gut |
African giant Haemolymph |
Larvae | |
| Groundnut shell | 59.95 | 63.55 | 121.36 |
| Sorghum | 67.10 | 67.59 | 124.34 |
| Millet | 70.68 | 73.33 | 122.85 |
| Rice hulls | 68.19 | 101.39 | 120.47 |
| Wheat | 77.51 | 111.93 | 155.23 |
| Soluble starch | 76.50 | 107.63 | 117.26 |
Discussion
Conclusions
References
- Fagbohunka, B.S.; Okonji, R.E.; Ayinla, Z.A. Purification and Characterization of Cellulase from Termite Ametermes eveuncifer (Silverstri) Soldiers. Int. J. Biol. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Fagbohunka, B.S.; Edorh, S.E.; Adeyanju, M.M.; Ezima, E.N.; Alabi, M.A.; Ogunlabi, O.O. Activities of a Cellulase of the Termite, Ametermes eveuncifer (Silverstri) Soldier: Clue to Termites Salt Intolerance. J. Nat. Sci. Res. 2015, 5, 117–123. [Google Scholar]
- Ezima, E.N.; Adeyanju, M.M.; Odufuwa, K.T.; Aremu, T.A.; Acharya, B.S.; Anita, S.C. Bioprospecting Thermophiles for Cellulase Production: A Review. Braz. J. Microbiol. 2012, 844–856. [Google Scholar]
- Awosusi, A.O. Assessment of Environmental Problems and Methods of waste Management in Ado-Ekiti Nigeria. Afr. Res. Rev. 2010, 4, 331–343. [Google Scholar] [CrossRef]
- Bayer, E.A.; Lamed, R.; Himmel, M.E. The Potential of Cellulass and Cellulosomes for Cellulosic Waste Management. Curr. Opin. Biotechnnology 2007, 18, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, P.; Dhepe, P.L. Conversion of Biomass into Sugars. Biomass Sugars for Non-Fuel Applications. Green Chem. Series. R. Soc. Chem. 2015; 1–53. [Google Scholar]
- Bignell, D.E. Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & H. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 363–387). Dordrecht:kluwer Academic Publishers.
- Blumer-Schuette, S.E.; Lewis, D.L.; Kelly, R.M. Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus. Caldicellulosiruptor Appl. Environ. Microbiol. 2010, 76, 8084–8092. [Google Scholar] [CrossRef]
- Chandra, R.P.; Bura, R.; Mabee, W.E.; Berlin, A.; Pan, X.; Saddler, J.N. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv. Biochem. Eng. / Biotechnol. 2007, 108, 67–93. [Google Scholar] [PubMed]
- Deborah, P.D.; Yehudit, A. Cellulose Biosynthesis. Am. Soc. Plant Physiol. 1995, 7, 987–1000. [Google Scholar]
- Dustin Severtson (2006). A feasibility study of employing Australian subterranean termites in the Management of discarded paper (lignocellulosic waste). Bioconversion of waste paper by termites:1-60.
- Ebikapade Amasuomo & Jim Baird. The concept of waste and waste management. J. Manag. Sustain. 2016, 6, 88–96. [Google Scholar]
- Ebna, F.M.; Md Rokon, H.; Md Sayed, R.; Salma, A.; Sm Arifur, R.; Tanisa, T.S. Solid Waste Management Strategy & Improvement of Existing Scenario Based on Market Waste. Glob. J. Res. Eng. 2013, 13. [Google Scholar]
- Edward, A.B.; Henri, C.; Raphael, L.; Yuval, S. Cellulose, Cellulases and Cellulosomes. Curr. Opin. Struct. Biol. 1998, 8, 548–557. [Google Scholar]
- Eggleton, P. (2000). Global patterns of termite diversity. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 25–51). Dordrecht: Kluwer Academic Publisher.
- Eggleton, P. (2011). An introduction to termites: Biology taxonomy and functional morphology. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 1–26). Dordrecht: Springer.
- et al. Ezima et al. Biodegradation of wastes using cellulase from the termite, Amitermes eveuncifer (Silverstri) Workers: a clue to the application of termites cellulase in waste management. Sci. Focus 2014, 19, 93–98. [Google Scholar]
- FagbohunkaBiodegradation of wastes using cellulase from the termite Amitermes eveuncifer (Silverstri) Workers: A clue to the application of termites cellulase in waste management. Sci. Focus 2014, 19, 93–98.
- Fagbohunka, B.S.; Ezima, E.N.; Adeyanju, M.M.; Alabi, M.A.; Oyedele, D.E.; Adeneye, A.A. Inhibition Studies of Some Key Enzymes of the Termite, Amitermes Eveuncifer (Silverstri) Workers: Clue to Termites Salt Intolerance. Sci. Focus 2014, 19, 81–87. [Google Scholar]
- B.S. Fagbohunka, F. K. Agboola, A., Afolayan, Characterization of a cellulase from the haemolymph of the Giant African Snail (Archachatina marginata). Afr. J. Biotechnol. 2012, 11, 9254–9264.
- F.K. Agboola, B. S. Fagbohunka, G.A. Adenuga. Activities of Archachatina (Calachatina) marginata heamolymph enzymes: clues to terrestrial snails salt intolerance. Int. J. Biol. Chem. Sci. 2008, 2, 66–71.
- B.S. Fagbohunka., C.O. O. Babasanya, G. A. Adenuga, F. K. Agboola. Partial purification and characterization of cellulase I from the haemolymph and gut of the giant African snail, Archachatina marginata. Niger. J. Nutr. Sci. 1997, 18, 28–34.
- Agboola, F. K. Fagbohunka, B. S. and Adenuga, G.A. Activities of Archactina (Calachatina) marginata haemolymph enzymes: clue to terrestrial snails’ salt intolerance. Int. J. Biol. Chem. Sci. 2008, 2, 66–71. [Google Scholar]
- Agboola, F. K. Fagbohunka, B. S., Adenuga, G. A. Activities of Thiosulphate and 3- Mercaptopyruvate-cyanide-sulphurtransferases in Poultry Birds and the Fruit Bat. J. Biol. Sci. 2006, 6, 833–839. [Google Scholar]
- Agboola, F. K. Kuku, A. Okonji, R. E. and Fagbohunka, B.S. Tissue distribution of thiosulphate and mercaptopyruvate sulphur transferases in the human. Sci. Focus 2004, 7, 81–84. [Google Scholar]
- Alabi, M.A. and Daini, O.A. Enzymatic properties of purified serine protease from Aspergillus fumigatus grown on sabaraud dextrose agar. Int. J. Biol. Sci. 2009, 2, 51–59. [Google Scholar]
- Cleveland, L.R. The Ability of Termites to Live Perhaps Indefinitely on A Diet of Pure Cellulose. Biol. Bull. 1925, 48, 289–293. [Google Scholar] [CrossRef]
- Ezima, E. N. Fagbohunka, B. S. and Adeyanju, M.M. The Effects of Partially purified Cellulase from Worker Termite (Armetermes eveuncifer Silvestri) on some wastes. Int. J. Biochem. 2011, 3, 15–20. [Google Scholar]
- Fagbohunka, B. S. Okonji, R. E., Adenuga, G. A., Agboola, F. K. Properties of Rhodanese (thiosulphate sulphur transferase) from the hepatopancreas of giant snail, Archachatina marginata. Sci. Focus 2004, 7, 76–80. [Google Scholar]
- Fagbohunka, B. S. Edorh, S. E., Adeyanju, M. M., Ezima, E.N., Alabi, M. A. and Ogunlabi, O.O. (2014). Activities of a Cellulase of the Termite, Ametermes Eveuncifer (Silverstri) Soldier: Clue to Termites Salt Intolerance. IISTE-Journal of Natural Science Research. In Press Gay and Calaby (1970).
- Termites of the Australian region. in; Krishna K Weesner FM eds. Biology of Termites, Vol. II Academic Press NY, p. 401.
- Hurst, P.L.; Nielsen, J.; A Sullivan, P.; Shepherd, M.G. Purification and properties of a cellulase from. Aspergillus niger Biochem. J. 1977, 165, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Malik, K.A.; Kauser, F.; Azan, E. Effect of Sodium Chloride on the Cellulolytic Ability os some Aspergilli. Mycologia 1980, 72, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.D. Cyanogens. In Toxic Constitution of Plants Food Stuff, Liener, I.E. (Ed) 2nd Edn., New York, Academic Press: 1980; pp: 143-161.
- Nakashima, K.; Watanabe, H.; Saitoh, H.; Tokuda, G.; Azuma, J.-I. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Mol. Biol. 2001, 32, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Watanabe, H.; Azuma, J.-I. Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cell. Mol. Life Sci. 2002, 59, 1554–1560. [Google Scholar] [CrossRef]
- Smith, R. L. (2007). Termites. Arizona-Sonora Desert Museum. email: info@desertmuseum.org.
- Umezurike, G.M. The beta glucosidase in the gut content of the snail (Archatina achatina). Biochem. J. 1976, 157, 381–387. [Google Scholar] [CrossRef]
- White, A. , Handle, P., Smith, E. L., Hill, R. L., Lehman, I. R. Principles of Biochemistry, 6th ed.; Mcgraw Hill: Tokyo, Japan, 1981; pp. 391–734. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).