Submitted:
14 October 2023
Posted:
17 October 2023
You are already at the latest version
Abstract
Keywords:
MSC: 47B47; 16W25; 46K15
1. Introduction
- a higher derivation on if for every for all
- a Lie higher derivation on if for every for all
- a triple higher derivation on if for every for all
2. Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- I. Z. Abdullaev, n-Lie derivations on von Neumann algebras, Uzbek. Mat. Zh. no. 5-6 (1992), 3-9.
- M. Ashraf and A. Jabeen, Characterizations of additive ζ-Lie derivations on unital algebras, Ukrainian Math. J. 73(2021), no. 4, 455-466. [CrossRef]
- M. Ashraf and A. Jabeen, Characterizations of Lie type derivations on von Neumann algebras, Bull. Korean Math. Soc. 58 (2021), no. 5, 455-466. [CrossRef]
- M. Ashraf, S. Ali and B. A. Wani, Nonlinear *-Lie higher derivations of standard operator algebras, Comm. Math. 26(2018), 15-29. [CrossRef]
- M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335(1993), no. 2, 525-546. [CrossRef]
- M. Bresar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math.45(1993), no.4, 695-708. [CrossRef]
- Bruno, henrique and feng wei, Multiplicative Lie type-derivations on alternative rings, communications in algebra,48(2020), no.12, 5396-5411. [CrossRef]
- P. Ji and W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl. 435 (2011), no.5, 1137-1146. [CrossRef]
- P. Ji, W. Qi, and X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear Algebra 61 (2013), no. 3, 417-428. [CrossRef]
- B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations. Math. Proc. Cambridge Philos. Soc. 120 (1996) 455-473.
- R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, 100, Academic Press, Inc., New York, 1983.
- L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc. 52 (2015), no.2, 581-591. [CrossRef]
- L. Liu, Lie triple derivations on von Neumann algebras, Chin. Ann. Math. Ser. B 39 (2018), no. 5, 817-828. [CrossRef]
- F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2010), no. 1, 89-99. [CrossRef]
- M. Mathieu, A.R. Villena, The structure of Lie derivations on C*-algebras. J. Funct. Anal. 202 (2003), no.2, 504-525. [CrossRef]
- C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735. http://projecteuclid.org/euclid.pjm/1102969919.
- A. Nowicki, Inner derivations of higher orders, Tsukuba J. Math. 8(1984), no.2, 219-225, https://doi.10.21099/tkbjm/1496160039.
- X. Qi, Characterization of (generalized) Lie derivations on J-subspace lattice algebras by local action, Aequationes Math. 87 (2014), no. 1-2, 53-69. [CrossRef]
- X. Qi and J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra Appl. 438(2013), no.1, 533-548. [CrossRef]
- X. F. Qi, J. C. Hou, Additive Lie (ζ-Lie) derivations and generalized Lie(ζ-Lie) derivationson nest algebras. Linear Algebra Appl. 431 (2009), 843-854.https://doi.10.1016/j.laa.2009.03.037.
- X. Qi and J. Ji, Characterizing derivations on von Neumann algebras by local actions, J. Funct. Spaces Appl. 2013 (2013), Art. ID 407427, 11 p. [CrossRef]
- P. Semrl, Additive derivations of some operator algebras, Illinois J. Math. 35(1991), no.2. [CrossRef]
- Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512-525. [CrossRef]
- Y. Wang and Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl. 438(2013), no.5, 2599-2616. [CrossRef]
- F. Wei, Z. K. Xiao, Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl. 435 (2011), no.5, 1034-1054. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
