Submitted:
07 October 2023
Posted:
10 October 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Methodology
Role of Epicardial Adipose Tissue in Cardiac Physiology and Pathology
Paracrine Signaling and Cardioprotection:
Thermoregulatory Role:
Mechanical Cushioning:
Pathological Implications of EAT:
Inflammation and Fibrosis:
Coronary Artery Disease (CAD):
Arrhythmogenesis:
Cardiac Adiposity-Related Cardiomyopathy (CARC):
Epicardial Fat Tissue Changes with Age and in Pathological Conditions:
- Age-Related Changes:
- 2.
- Obesity:
- 3.
- Metabolic Syndrome and Insulin Resistance:
- 4.
- Cardiovascular Diseases:
Association between LA-EAT Thickness and Incidence of Atrial Fibrillation
- Imaging Techniques for LA-EAT Assessment:
- 2.
- Observational Studies on LA-EAT Thickness and AF Incidence:
- 3.
- Meta-analyses and Systematic Reviews on LA-EAT Thickness and AF Risk:
Impact of LA-EAT Thickness on AF Outcomes and Recurrence:
The potential mechanisms linking Epicardial Adipose Tissue to atrial fibrillation
Electrical Remodeling:
Impact of EAT on the Autonomic Nervous System and its Influence on Atrial Electrophysiology:
Therapeutic Implications and Effect of Cardiometabolic Drugs on Epicardial Fat Tissue:
Statin Therapy and EAT:
Impact of XBP1 Splicing and EAT Regulation:
Thiazolidinediones (TZDs) and EAT Modulation:
Bariatric Surgery and EAT Reduction:
Lifestyle Modifications and EAT:
Inflammation and EAT:
Novel Therapeutic Targets for EAT Modulation:
Meta-analysis and Efficacy of Cardiometabolic Drugs on EAT:
Limitations and Future Directions:
Standardization of LA-EAT Measurement:
6.2. Longitudinal Studies and Prospective Trials:
6.3. Integration of LA-EAT Thickness with Existing AF Risk Scores:
Conclusion:
References
- Mahajan, R., Lau, D. H., Brooks, A. G., Shipp, N. J., Manavis, J., Wood, J. P. M., Finnie, J. W., Samuel, C. S., Royce, S. G., Twomey, D. J., Thanigaimani, S., Kalman, J. M., Sanders, P. (2015). Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. [CrossRef] [PubMed]
- Couselo-Seijas, M., Couselo-Seijas, M., Rodríguez-Mañero, M., González-Juanatey, J. R., Eiras, S. (2021). Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obesity Reviews, 22(9), John Wiley & Sons, Ltd.
- Sha, R., Han, W., Lin, M., et al. (2021). Is Epicardial Adipose Tissue Associated with Atrial Fibrillation Following Cardiac Surgery? A Systematic Review and Meta-Analysis. Heart Surgery Forum, 24(5), Chinese Ministry of Education, Peking University, Shandong University.
- Gaibazzi, N., Martini, C., Benatti, G., Palumbo, A., Cacciola, G., Tuttolomondo, D. (2021). Atrial Fibrillation and Peri-Atrial Inflammation Measured through Adipose Tissue Attenuation on Cardiac Computed Tomography. Vol. 11, Iss: 11, pp. 2087.
- Lai, Y. H., Liu, L. Y. M., Sung, K. T., Tsai, J. P., Huang, W. H., Yun, C. H., Lin, J. L., Chen, Y. J., Su, C. H., Hung, T. C., Hung, C. L., Kuo, J. Y. (2021). Diverse Adiposity and Atrio-Ventricular Dysfunction across Obesity Phenotypes: Implication of Epicardial Fat Analysis. Vol. 11, Iss: 3, pp. 408.
- Iacobellis, G., Corradi, D., Sharma, A. M. (2005). Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. [CrossRef] [PubMed]
- Napoli, C., Stanley, W. C., Ignarro, L. J. (2007). Nutrition and cardiovascular disease: Putting a pathogenic framework into focus. Cardiovascular Research, Volume 73, Issue 2, Pages 253–256. [CrossRef]
- Ouwens DM, Sell H, Greulich S, et al. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med. 2010;14(9):2223-2234. [CrossRef]
- Nakazato R, Gransar H, Berman DS, et al. Statins use and coronary artery plaque composition: results from the International Multicenter CONFIRM Registry. Atherosclerosis. 2012;225(1):148-153. PMCID: PMC4277888. [Google Scholar] [CrossRef]
- Wong CX, Brown A, Lau DH, et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a meta-analysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015;1(2):139-152. [CrossRef]
- Krishnan, A., Nair, A., Kannan, A., Kurian, G. A., Balakrishnan, V. S., & Cherian, K. M. (2021). Are Interactions between Epicardial Adipose Tissue, Cardiac Fibroblasts and Cardiac Myocytes Instrumental in Atrial Fibrosis and Atrial Fibrillation? Cells, 10(5), 1182. [CrossRef]
- Tromp, J., Bryant, J., Jin, X., van Woerden, G., Asali, S., Yiying, H., Liew, O. W., Ching, J. C. P., Jaufeerally, F., Loh, S. Y., Sim, D., Lee, S., Soon, D., Tay, W. T., Packer, M., van Veldhuisen, D. J., Chin, C. W. L., Richards, A. M., Lam, C. S. P. (2021). Epicardial fat in heart failure with reduced versus preserved ejection fraction. European Journal of Heart Failure, Volume 23, Issue 5, Pages 835-838. Wiley. [CrossRef]
- Monti, C. B., Codari, M., De Cecco, C. N., et al. (2020). Novel imaging biomarkers: epicardial adipose tissue evaluation. British Journal of Radiology, Volume 93, Issue 1113, Pages 20190770-20190770. British Institute of Radiology. [CrossRef]
- Lacobellis, G. (2020). Physiology and Cardioprotection of the Epicardial Adipose Tissue. Part of the Contemporary Cardiology book series (CONCARD), pp. 9-17. [CrossRef]
- Camarena, V., Sant, D. W., Huff, T. C., et al. (2020). Transcriptomic and Proteomic Analysis of the Epicardial Adipose Tissue Part of the Contemporary Cardiology book series (CONCARD), pp. 19-36. [CrossRef]
- Villasante Fricke, A. C., Lacobellis, G. (2019). Epicardial Adipose Tissue: Clinical Biomarker of Cardio-Metabolic Risk. International Journal of Molecular Sciences, Volume 20, Issue 23, Pages 5989. Multidisciplinary Digital Publishing Institute (MDPI). [CrossRef]
- Bornachea, O., Vea, A., Llorente-Cortés, V., et al. (2018). Interplay between epicardial adipose tissue, metabolic and cardiovascular diseases. Clínica e Investigación en Arteriosclerosis, Volume 30, Issue 5, Pages 230-239. Elsevier. [CrossRef]
- Toczylowski, K., Gruca, M., Baranowski, M. (2013). Epicardial adipose tissue and its role in cardiac physiology and disease. Postȩpy higieny i medycyny doświadczalnej (Postepy Hig Med Dosw (Online)) Vol. 67, Pages 584-593. [CrossRef]
- Tekin, I., Edem, E. (2018). Association of Epicardial Fat Tissue with Coronary Artery Disease and Left Ventricle Diastolic Function Indicators. Medical Science Monitor, Vol. 24, Pages 6367-6374. International Scientific Information, Inc. [CrossRef]
- Ballasy, N., Jadli, A. S., Edalat, P., Kang, S., Hassanabad, A. F., Gomes, K., Fedak, P. W. M., Patel, V. B. (2021). Potential role of epicardial adipose tissue in coronary artery endothelial cell dysfunction in type 2 diabetes. The FASEB Journal, Volume 35, Issue 10. John Wiley & Sons, Ltd. [CrossRef]
- Ding J, Hsu FC, Harris TB, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90(3):499-504. [CrossRef]
- Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61(13):1388-1395. [CrossRef]
- Wang, Q. C., Wang, Z. Y., Xu, Q., et al. (2021). Exploring the Role of Epicardial Adipose Tissue in Coronary Artery Disease From the Difference of Gene Expression. Frontiers in Physiology, Volume 12, Pages 605811-605811. Frontiers Media SA. [CrossRef]
- Cao, D. X., Maiton, K., Nasir, J. M., et al. (2021). Energy Drink-Associated Electrophysiological and Ischemic Abnormalities: A Narrative Review. Frontiers in Cardiovascular Medicine, Volume 8, Pages 679105-679105. Frontiers Media SA. [CrossRef]
- Vyas, V., Blythe, H., Wood, E. G., Sandhar, B., Sarker, S. J., Balmforth, D., Ambekar, S., Yap, J., Edmondson, S. J., Di Salvo, C., Wong, K., Roberts, N., Uppal, R., Adams, B., Shipolini, A., Oo, A., Lawrence, D., Kolvekar, S., Lall, K., Finlay, M., Longhi, M. P. (2021). Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI insight, Volume 6, Issue 16, Pages 145495. American Society for Clinical Investigation. [CrossRef]
- Pugliese, N. R., Paneni, F., Mazzola, M., et al. (2021). Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. European Journal of Heart Failure, John Wiley & Sons, Ltd, 23rd August 2021.
- Ren, J., Ren, J., Wu, N. N., Wang, S., Wang, S., Sowers, J. R., Zhang, Y. (2021). Obesity Cardiomyopathy: Evidence, Mechanisms and Therapeutic Implications. Physiological Reviews, Volume 101, Issue 4, Pages 1745-1807. American Physiological Society. [CrossRef]
- Samson, W. K., Yosten, G. L. C., Remme, C. A. (2021). A primer on obesity-related cardiomyopathy. Physiological Reviews, Volume 102, Issue 1, Pages 1-6. American Physiological Society. [CrossRef]
- Adalsteinsdottir, B. (2020). Obesity as a modifiable risk factor for hypertrophic cardiomyopathy. European Journal of Preventive Cardiology, Volume 27, Issue 17, Pages 1846-1848. Eur J Prev Cardiol. [CrossRef]
- Gutiérrez-Cuevas, J., Sandoval-Rodriguez, A., Meza-Rios, A., Monroy-Ramirez, H. C., Galicia-Moreno, M., García-Bañuelos, J., Santos, A., Armendáriz-Borunda, J. (2021). Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells, Volume 10, Issue 3, Pages 629. Multidisciplinary Digital Publishing Institute. [CrossRef]
- Vest, A. R., Patel, A. R. (2017). The Heavy Heart: Metabolic Mechanisms and Myocardial Mechanics. Circulation-heart Failure, Volume 10, Issue5. [CrossRef]
- Iacobellis, G. (2021). Aging Effects on Epicardial Adipose Tissue. Front. Aging, 13 May 2021 Sec. Aging and the Immune SystemVol. 2, 13 May 2021. Volume 2 – 2021. [CrossRef]
- Salman, A. A., Salman, M. A., Soliman, A. M., Youssef, A. F. A., Labib, S., Helmy, M. Y., Marie, M. A., Shawkat, M., Mostafa, A., Tourky, M., Sarhan, M. D., Qassem, M. G., Shaaban, H. E., Omar, M. G., Abouelregal, T. E. (2021). Changes of epicardial fat thickness after laparoscopic sleeve gastrectomy: a prospective study. Annals of Medicine, Volume 53, Issue 1, Pages 523-530. Informa UK Limited. [CrossRef]
- Guglielmi, V., Sbraccia, P. (2017). Epicardial adipose tissue: at the heart of the obesity complications. Acta Diabetologica, Volume 54, Issue 9, Pages 805-812. Springer Milan. [CrossRef]
- Sawada, N., Nakanishi, K., Daimon, M., Hirose, K., Yoshida, Y., Ishiwata, J., Hirokawa, M., Koyama, K., Nakao, T., Morita, H., Di Tullio, M. R., Homma, S., Komuro, I. (2021). Independent effect of visceral fat on left atrial phasic function in the general population. Nutrition Metabolism and Cardiovascular Diseases, Volume 31, Issue 12, Pages 3426-3433. Elsevier. [CrossRef]
- Mazur, E. S., Mazur, V. V., Bazhenov, N. D., Kolbasnicov, S. V., Nilova, O. V. (2020). Epicardial obesity and atrial fibrillation: emphasis on atrial fat depot. Vol. 17, Iss: 3, pp. 316-325, 6th December 2020. [CrossRef]
- Harada, M., Nattel, S. (2021). Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Cardiac Electrophysiology Clinics, Volume 13, Issue 1, Pages 25-35. W.B. Saunders Ltd. [CrossRef]
- El Saidy, M. A., Shendy, S. M. (2017). Epicardial fat in patients with metabolic syndrome. Journal of Indian College of Cardiology, Volume 7, Issue 1, Pages 17-22. No longer published by Elsevier.
- Lu, R., Aziz, N. A., Diers, K., Stöcker, T., Reuter, M., Breteler, M. M. B. (2021). Insulin resistance accounts for metabolic syndrome-related alterations in brain structure. Human Brain Mapping, Volume 42, Issue 8, Pages 2434-244. John Wiley & Sons, Ltd. [CrossRef]
- Nyawo, T. A., Pheiffer, C., Mazibuko-Mbeje, S. E., Mthembu, S. X. H., Nyambuya, T. M., Nkambule, B. B., Sadie-Van Gijsen, H., Strijdom, H., Tiano, L., Dludla, P. V. (2021). Physical Exercise Potentially Targets Epicardial Adipose Tissue to Reduce Cardiovascular Disease Risk in Patients with Metabolic Diseases: Oxidative Stress and Inflammation Emerge as Major Therapeutic Targets. Antioxidants, Volume 10, Issue 11, Page 1758. Multidisciplinary Digital Publishing Institute. [CrossRef]
- Gaibazzi, N., Martini, C., Benatti, G., Palumbo, A., Cacciola, G., Tuttolomondo, D. (2021). Atrial Fibrillation and Peri-Atrial Inflammation Measured through Adipose Tissue Attenuation on Cardiac Computed Tomography. Vol. 11, Iss: 11, 11th November 2021, Pages 2087. [CrossRef]
- Peters, D. C., Lamy, J., Sinusas, A. J., Baldassarre, L. A. (2022). Left atrial evaluation by cardiovascular magnetic resonance: sensitive and unique biomarkers. European Heart Journal - Cardiovascular Imaging, 23(1), 14-30. [CrossRef]
- Ghafouri, K., Franke, K., Foo, F. S., Stiles, M. K. (2021). Clinical utility of cardiac magnetic resonance imaging to assess the left atrium before catheter ablation for atrial fibrillation - A systematic review and meta-analysis. International Journal of Cardiology, Volume 339, Pages 192-202. Elsevier. [CrossRef]
- Ishii, Y., Abe, I., Kira, S., Harada, T., Takano, M., Oniki, T., Kondo, H., Teshima, Y., Yufu, K., Shuto, T., Wada, T., Nakagawa, M., Shimada, T., Asayama, Y., Miyamoto, S., Takahashi, N. (2021). Detection of fibrotic remodeling of epicardial adipose tissue in patients with atrial fibrillation: Imaging approach based on histological observation. Vol. 2, Iss: 4, 1st August 2021, Pages 311-323. [CrossRef]
- Vorob'ev, A. M., Ruzov, V. I., Khalaf, K., Egorov, E. I. (2021). Correlation between epicardial adipose tissue and structural and functional parameters of post-infarction myocardium in patients with coronary stenting. pp 6-15, 30th July 2021. [CrossRef]
- Eren, H., Omar, M. B., Kaya, Ü., Öcal, L., Yilmaz, M. F., Akkan, S. (2021). Epicardial adipose tissue may predict new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction. Journal of Cardiovascular Medicine, 22(12), 917-923. [CrossRef]
- Yamaguchi, S., Otaki, Y., Tamarappoo, B., Yoshida, J., Ikenaga, H., Friedman, J. D., Berman, D. S., Dey, D., Shiota, T. (2020). The association between epicardial adipose tissue thickness around the right ventricular free wall evaluated by transthoracic echocardiography and left atrial appendage function. International Journal of Cardiovascular Imaging, 36(4), 585-593. 4. [CrossRef]
- Kusayama, T., Furusho, H., Kashiwagi, H., Kato, T., Murai, H., Usui, S., Kaneko, S., Takamura, M. (2015). Inflammation of left atrial epicardial adipose tissue is associated with paroxysmal atrial fibrillation. Journal of Cardiology Cases, 12, 103-106. [CrossRef]
- Zhu, W., Zhang, H., Guo, L., Hong, K. (2016). Relationship between epicardial adipose tissue volume and atrial fibrillation: A systematic review and meta-analysis. Herz, 41(5), 421-427. [CrossRef]
- Chu, C. Y., Lee, W. H., Hsu, P. C., Lee, M. K., Lee, H. H., Chiu, C. A., Lin, T. H., Lee, C. S., Yen, H. W., Voon, W. C., Lai, W. T., Sheu, S. H., Su, H. M. (2016). Association of increased epicardial adipose tissue thickness with adverse cardiovascular outcomes in patients with atrial fibrillation. Medicine, 95(11). [CrossRef]
- Jardim, M. Z., Costa, B. V. L., Pessoa, M. C., +1 more. (2021). Ultra-processed foods increase noncommunicable chronic disease risk. Nutrition Research, 95, 19-34. [CrossRef]
- Kim, J. S., Kim, S. W., Lee, J. S., Lee, S. K., Abbott, R. D., Lee, K. Y., Lim, H. E., Sung, K. C., Cho, G. Y., Koh, K. K., Kim, S. H., Shin, C., Kim, S. H. (2021). Association of pericardial adipose tissue with left ventricular structure and function: A region-specific effect? Cardiovascular Diabetology, 20(1), 26. [CrossRef]
- Nyawo, T. A., Dludla, P. V., Mazibuko-Mbeje, S. E., Mthembu, S. X. H., Nyambuya, T. M., Nkambule, B. B., Sadie-Van Gijsen, H., Strijdom, H., Pheiffer, C. (2021). A systematic review exploring the significance of measuring epicardial fat thickness in correlation to B-type natriuretic peptide levels as prognostic and diagnostic markers in patients with or at risk of heart failure. Heart Failure Reviews, 1-11. [CrossRef]
- Mariath, A. B., Machado, A. D., Ferreira, L. N. M., Ribeiro, S. M. L. (2021). The possible role of increased consumption of ultra-processed food products in the development of frailty: a threat for healthy ageing? British Journal of Nutrition, 1-6. [CrossRef]
- Mulder, M. J., Kemme, M. J. B., Hopman, L. H. G. A., Kuşgözoğlu, E., Gülçiçek, H., van de Ven, P. M., Hauer, H. A., Tahapary, G. J. M., Götte, M. J. W., van Rossum, A. C., Allaart, C. P. (2021). Comparison of the predictive value of ten risk scores for outcomes of atrial fibrillation patients undergoing radiofrequency pulmonary vein isolation. International Journal of Cardiology, 344, 103-110. 344, 103–110. [CrossRef]
- Monno, K., Okumura, Y., Saito, Y.,et al. (2018). Effect of epicardial fat and metabolic syndrome on reverse atrial remodeling after ablation for atrial fibrillation. Journal of Arrhythmia, 34(6), 607-616. 6. [CrossRef]
- Ahmet Akyel, Kadriye G. Yayla, Mehmet Erat, Hamza Sunman, Mehmet Dogan, Tolga Cimen, Mehmet Aytürk, Ekrem Yeter. (March 3, 2015). Relationship between Epicardial Adipose Tissue Thickness and Atrial Electromechanical Delay in Hypertensive Patients. Echocardiography - a Journal of Cardiovascular Ultrasound and Allied Techniques (Echocardiography), 32(10), 1498-1503. [CrossRef]
- G. Iervasi, Aldo Clerico, R. Bonini, Monica Nannipieri, C. Manfredi, Laura Sabatino, Andrea Biagini, Luigi Donato. (January 1, 1998). Effect of antiarrhythmic therapy with intravenous loading dose of amiodarone: evidence for an altered response in diabetic patients. International Journal of Clinical Pharmacology Research (Int J Clin Pharmacol Res), 18(3), 109-120.
- Scott LD, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol. 2019 Jul 15;287:195-200. [CrossRef]
- Lazzerini PE, Laghi-Pasini F, Acampa M, et al. Systemic Inflammation Rapidly Induces Reversible Atrial Electrical Remodeling: The Role of Interleukin-6-Mediated Changes in Connexin Expression. J Am Heart Assoc. 2019 Aug 20;8(16):e012502. [CrossRef]
- Jalloul Y, Refaat MM. IL-6 Rapidly Induces Reversible Atrial Electrical Remodeling by Downregulation of Cardiac Connexins. Journal of the American Heart Association (JAHA). 2019;8(16):e013091. [CrossRef]
- Kira S, Abe I, Ishii Y, et al. Role of angiopoietin-like protein 2 in atrial fibrosis induced by human epicardial adipose tissue: Analysis using an organo-culture system. Heart Rhythm. 2020;17(9):1591-1601. [CrossRef]
- Palacio L, Ugarte JP, Saiz J, et al. The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study. Cells. 2021;10(10):2769. [CrossRef]
- Pollard CM, Maning J, Lymperopoulos A. Autonomic Nervous System Modulation of the Epicardial Adipose Tissue in Heart Failure and Atrial Fibrillation. Nova Southeastern University; 2020. pp 145-153.
- Manolis AA, Manolis TA, Apostolopoulos EJ, et al. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends in Cardiovascular Medicine. 2021;31(5):290-302. [CrossRef]
- Celotto C, Sánchez C, Mountris KA, Laguna P, Pueyo E. SK Channel Block and Adrenergic Stimulation Counteract Acetylcholine-Induced Arrhythmogenic Effects in Human Atria. University of Zaragoza; July 2020; pp. 2303-2306.
- Dyavanapalli J, Dergacheva O, Wang X, Mendelowitz D. Parasympathetic Vagal Control of Cardiac Function. Current Hypertension Reports. February 5, 2016;18(3):22. [CrossRef]
- Bonaz B, Sinniger V, Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterology and Motility. April 1, 2016;28(4):455-462. [CrossRef]
- Vyas V, Hunter RJ, Longhi MP, Finlay M. Inflammation and adiposity: new frontiers in atrial fibrillation. Europace. November 1, 2020;22(11):1609-1618. [CrossRef]
- Amini M, Rezaeian N, Shafiee-Nick R. Epicardial adipose tissue: anatomical, biomolecular and clinical relations. Adv Exp Med Biol. 2020;1234:19-32. [CrossRef]
- Zuriaga MA, Fuster JJ, Farb MG, et al. Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. Sci Rep. 2017;7:17326. [CrossRef]
- Karampetsou N, Alexopoulos LG, Minia A, Pliaka V, Tsolakos N, Kontzoglou K, Perrea D, Patapis P. Epicardial adipose tissue as an independent cardiometabolic risk factor for coronary artery disease. Cureus. 2022;14(4):e25578. [CrossRef]
- Güntürk EE, Topuz M, Serhatlioğlu F, Akkaya H. Echocardiographically Measured Epicardial Fat Predicts New-onset Atrial Fibrillation after Cardiac Surgery. Brazilian Journal of Cardiovascular Surgery. June 1, 2020;35(3):339-345. [CrossRef]
- Eren, H., Omar, M. B., Kaya, Ü., Öcal, L., Yilmaz, M. F., & Akkan, S. (2021). Epicardial adipose tissue may predict new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction. Journal of Cardiovascular Medicine, 22(12), 917-923. [CrossRef]
- Sridhar, C., & Bhaskar, J. (2021). Correlation of Epicardial Adipose Tissue Thickness with the Presence and Severity of Angiographic Coronary Artery Disease: a Cross-Sectional Study. International Journal of Research, 8(2), 586-590.01 Jan 2021-International Journal of Research-Vol. 8, Iss: 2, pp 586-590.
- Louka, A. M., Tsagkaris, C., & Stoica, A. (2021). Clinical risk scores for the prediction of incident atrial fibrillation: a modernized review. Romanian Journal of Internal Medicine, 59(4), 321-327. Published Online: 20 Nov 2021. Received: 13 Nov 2020. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
