Submitted:
27 September 2023
Posted:
28 September 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Methods
Data sources
Empirical formulas
Thermodynamic properties of live matter
Biosynthesis reactions
Thermodynamic properties of biosynthesis
Results
Discussion
Empirical formula and thermodynamic properties of live matter
Biosynthesis reaction and thermodynamic properties of biosynthesis
Virus-host and virus-virus interactions
Conclusions
Supplementary Materials
Acknowledgments
Author statement
Conflicts of Interest statement
References
- Abdelrahman, Z., Li, M., & Wang, X. (2020). Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Frontiers in immunology, 11, 552909. [CrossRef]
- Aleem, A., Akbar Samad, A. B., & Vaqar, S. (2023). Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19). In StatPearls. StatPearls Publishing.
- Alexandersen, S., Chamings, A. & Bhatta, T.R. (2020). SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 11, 6059. [CrossRef]
- Almehdi, A. M., Khoder, G., Alchakee, A. S., Alsayyid, A. T., Sarg, N. H., & Soliman, S. S. M. (2021). SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection, 49(5), 855–876. [CrossRef]
- Amin, R., Sohrabi, MR., Zali, AR. et al. (2022). Five consecutive epidemiological waves of COVID-19: a population-based cross-sectional study on characteristics, policies, and health outcome. BMC Infect Dis 22, 906. [CrossRef]
- Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature medicine, 26(4), 450–452. [CrossRef]
- Annamalai, K. (2021). Oxygen Deficient (OD) Combustion and Metabolism: Allometric Laws of Organs and Kleiber’s Law from OD Metabolism? Systems, 9(3), 54. MDPI AG. [CrossRef]
- Assael, M.J., Maitland, G.C., Maskow, T., von Stockar, U., Wakeham, W.A. & Will, S. (2022). Commonly Asked Questions in Thermodynamics, 2nd ed. Boca Raton, FL: CRC Press. ISBN: 9780367338916. [CrossRef]
- Atkins, P. W., & de Paula, J. (2011). Physical Chemistry for the Life Sciences (2nd edition), W. H. Freeman and Company. ISBN-13: 978-1429231145.
- Atkins, P.W. & de Paula, J. (2014). Physical Chemistry: Thermodynamics, Structure, and Change, 10th Edition. New York: W. H. Freeman and Company. ISBN-13: 978-1429290197.
- Balmer, R.T. (2010). Modern Engineering Thermodynamics, Cambridge, MA: Academic Press. [CrossRef]
- Bartas, M., Volná, A., Beaudoin, C. A., Poulsen, E. T., Červeň, J., Brázda, V., Špunda, V., Blundell, T. L., & Pečinka, P. (2022). Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA. Briefings in bioinformatics, 23(3), bbac045. [CrossRef]
- Battley E. H. (2013). A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation. The Quarterly review of biology, 88(2), 69–96. [CrossRef]
- Battley, E. H., & Stone, J. R. (2000). A comparison of values for the entropy and the entropy of formation of selected organic substances of biological importance in the solid state, as determined experimentally or calculated empirically. Thermochimica acta, 349(1-2), 153-161. [CrossRef]
- Battley, E.H. (1999a). An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochimica Acta, 326(1-2), 7-15. [CrossRef]
- Battley, E.H. (1999b). The thermodynamics of microbial growth. In: Handbook of Thermal Analysis and Calorimetry, vol. 4: From Macromolecules to Man; E.B. Kemp, ed., Amsterdam: Elsevier, 219-235. [CrossRef]
- Battley, E.H. (1998). The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochimica Acta, 309 (1-2), 17-37. [CrossRef]
- Battley, E.H. (1992). On the enthalpy of formation of Escherichia coli K-12 cells, Biotechnology and Bioengineering, 39, 5-12. [CrossRef]
- Brant, A.C., Tian, W., Majerciak, V. et al. (2021). SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 11, 136. [CrossRef]
- Campi, G., Perali, A., Marcelli, A. et al. (2022). Sars-Cov2 world pandemic recurrent waves controlled by variants evolution and vaccination campaign. Sci Rep 12, 18108. [CrossRef]
- Cao, C., Cai, Z., Xiao, X. et al. (2021). The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun 12, 3917. [CrossRef]
- Carabelli, A.M., Peacock, T.P., Thorne, L.G. et al. (2023). SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 21, 162–177. [CrossRef]
- CDC (2023a). Risk Assessment Summary for SARS CoV-2 Sublineage BA.2.86 [Online] Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/respiratory-viruses/whats-new/covid-19-variant.html#:~:text=Huma n%20cases%3A%20As%20of%20August,CDC's%20Traveler%2Dbased%20Genomic%20Surveillance (accessed on 31 August 2023).
- CDC (2023b). SARS-CoV-2 Variant Classifications and Definitions [Online] Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html (accessed on 5 September 2023).
- Chai, J., Cai, Y., Pang, C. et al. (2021). Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Nat Commun 12, 3433. [CrossRef]
- Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C., Poon, R. W., Tsoi, H. W., Lo, S. K., Chan, K. H., Poon, V. K., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C., Chen, H., Hui, C. K., … Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet (London, England), 395(10223), 514–523. [CrossRef]
- Chen, Y., Liu, Q., Zhou, L., Zhou, Y., Yan, H., & Lan, K. (2022). Emerging SARS-CoV-2 variants: Why, how, and what's next?. Cell insight, 1(3), 100029. [CrossRef]
- Chen, Z., Du, R., Galvan Achi, J. M., Rong, L., & Cui, Q. (2021). SARS-CoV-2 cell entry and targeted antiviral development. Acta pharmaceutica Sinica. B, 11(12), 3879–3888. [CrossRef]
- CNBC (2023) New Covid-19 variant ‘Pirola’ or BA.2.86: Is it more dangerous, should India be worried? Here's all you need to know. Available online: https://www.cnbctv18.com/healthcare/new-covid-19-variant-pirola-or-ba286-is-it-more-dangerous-should-india-be-worried-heres-all-you-need-to-know-17673131.htm (accessed on 31 August 2023).
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5, 536–544. [CrossRef]
- Cubuk, J., Alston, J.J., Incicco, J.J. et al. (2021). The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 12, 1936. [CrossRef]
- Degueldre, C. (2021). Single virus inductively coupled plasma mass spectroscopy analysis: A comprehensive study. Talanta, 228, 122211. 1222. [CrossRef]
- Demirel, Y. (2014). Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 3rd ed. Amsterdam: Elsevier. ISBN: 9780444595812.
- Dolan, K. A., Dutta, M., Kern, D. M., Kotecha, A., Voth, G. A., & Brohawn, S. G. (2022). Structure of SARS-CoV-2 M protein in lipid nanodiscs. eLife, 11, e81702. [CrossRef]
- Dolan, P. T., Whitfield, Z. J., & Andino, R. (2018). Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annual review of virology, 5(1), 69–9. 1. [CrossRef]
- Domingo, E., García-Crespo, C., Lobo-Vega, R., & Perales, C. (2021). Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses, 13(9), 1882. [CrossRef]
- Drake, J. W., & Holland, J. J. (1999). Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13910–13913. [CrossRef]
- Dubey, A., Choudhary, S., Kumar, P., & Tomar, S. (2021). Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Current microbiology, 79(1), 20. [CrossRef]
- Duffy S. (2018). Why are RNA virus mutation rates so damn high?. PLoS biology, 16(8), e3000003. [CrossRef]
- Dutta, A. (2022) COVID-19 waves: variant dynamics and control. Sci Rep 12, 9332. [CrossRef]
- ECDC (2023). SARS-CoV-2 variants of concern as of 24 August 2023 [Online] European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 5 September 2023).
- Elbe, S. and Buckland-Merrett, G. (2017) Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Challenges, 1:33-46. [CrossRef]
- Elena, S. F., Miralles, R., Cuevas, J. M., Turner, P. E., & Moya, A. (2000). The two faces of mutation: extinction and adaptation in RNA viruses. IUBMB life, 49(1), 5–9. [CrossRef]
- EuroNews (2023). First Eris, now BA.2.86. Should we be worried about the latest, 'radically different' COVID variant? Available online: https://www.euronews.com/next/2023/08/22/first-eris-now-ba286-should-we-be-worried-about-the-latest-radically-different-covid-varia (accessed on 31 August 2023).
- Gale P. (2022). Using thermodynamic equilibrium models to predict the effect of antiviral agents on infectivity: Theoretical application to SARS-CoV-2 and other viruses. Microbial risk analysis, 21, 100198. [CrossRef]
- Gale P. (2020). How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV. Microbial risk analysis, 15, 100104. [CrossRef]
- Gale P. (2019). Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. Microbial risk analysis, 12, 27–43. [CrossRef]
- Gale P. (2018). Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus. Microbial risk analysis, 8, 1–13. [CrossRef]
- Gobeil, S. M., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Stalls, V., Kopp, M. F., Manne, K., Li, D., Wiehe, K., Saunders, K. O., Edwards, R. J., Korber, B., Haynes, B. F., Henderson, R., & Acharya, P. (2021). Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science (New York, N.Y.), 373(6555), eabi6226. [CrossRef]
- Guosheng, L., Yi, L., Xiangdong, C., Peng, L., Ping, S., & Songsheng, Q. (2003). Study on interaction between T4 phage and Escherichia coli B by microcalorimetric method. Journal of virological methods, 112(1-2), 137–143. [CrossRef]
- Hardenbrook, N. J., & Zhang, P. (2022). A structural view of the SARS-CoV-2 virus and its assembly. Current opinion in virology, 52, 123–134. [CrossRef]
- Harvey, W.T., Carabelli, A.M., Jackson, B. et al. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19, 409–424. [CrossRef]
- Head, R. J., Lumbers, E. R., Jarrott, B., Tretter, F., Smith, G., Pringle, K. G., Islam, S., & Martin, J. H. (2022). Systems analysis shows that thermodynamic physiological and pharmacological fundamentals drive COVID-19 and response to treatment. Pharmacology research & perspectives, 10(1), e00922. [CrossRef]
- Hellingwerf, K. J., Lolkema, J. S., Otto, R., Neijssel, O. M., Stouthamer, A. H., Harder, W., ... & Westerhoff, H. V. (1982). Energetics of microbial growth: an analysis of the relationship between growth and its mechanistic basis by mosaic non-equilibrium thermodynamics. FEMS Microbiology Letters, 15(1), 7-17. [CrossRef]
- Holmes, E. C., Goldstein, S. A., Rasmussen, A. L., Robertson, D. L., Crits-Christoph, A., Wertheim, J. O., Anthony, S. J., Barclay, W. S., Boni, M. F., Doherty, P. C., Farrar, J., Geoghegan, J. L., Jiang, X., Leibowitz, J. L., Neil, S. J. D., Skern, T., Weiss, S. R., Worobey, M., Andersen, K. G., Garry, R. F., … Rambaut, A. (2021). The origins of SARS-CoV-2: A critical review. Cell, 184(19), 4848–4856. [CrossRef]
- Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature reviews. Microbiology, 19(3), 141–154. [CrossRef]
- Huang, Y., Yang, C., Xu, Xf. et al. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41, 1141–1149. [CrossRef]
- Hurst Jr, J. E., & Harrison, B.K. (1992). Estimation of liquid and solid heat capacities using a modified Kopp's rule. Chemical Engineering Communications, 112(1), 21-30. [CrossRef]
- Ichikawa, T., Torii, S., Suzuki, H., Takada, A., Suzuki, S., Nakajima, M., Tampo, A., & Kakinoki, Y. (2022). Mutations in the nonstructural proteins of SARS-CoV-2 may contribute to adverse clinical outcome in patients with COVID-19. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 122, 123–129. [CrossRef]
- Jack, A., Ferro, L. S., Trnka, M. J., Wehri, E., Nadgir, A., Nguyenla, X., Costa, K., Stanley, S., Schaletzky, J., & Yildiz, A. (2021). SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. bioRxiv : the preprint server for biology, 2020.09.14.295824. [CrossRef]
- Jackson, C.B., Farzan, M., Chen, B. et al. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23, 3–20. [CrossRef]
- Kaniadakis, G., Baldi, M.M., Deisboeck, T.S. et al. (2020). The κ-statistics approach to epidemiology. Sci Rep 10, 19949. [CrossRef]
- Ke, Z., Oton, J., Qu, K. et al. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502. [CrossRef]
- Khan, J., Asoom, L. I. A., Khan, M., Chakrabartty, I., Dandoti, S., Rudrapal, M., & Zothantluanga, J. H. (2021). Evolution of RNA viruses from SARS to SARS-CoV-2 and diagnostic techniques for COVID-19: a review. Beni-Suef University journal of basic and applied sciences, 10(1), 60. [CrossRef]
- Khare, S., et al (2021) GISAID’s Role in Pandemic Response. China CDC Weekly, 3(49): 1049-1051. 1051. [CrossRef]
- Kordyukova, L. V., Moiseenko, A. V., Serebryakova, M. V., Shuklina, M. A., Sergeeva, M. V., Lioznov, D. A., & Shanko, A. V. (2023). Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine. Viruses, 15(2), 480. [CrossRef]
- Kumar, R., Srivastava, Y., Muthuramalingam, P., Singh, S. K., Verma, G., Tiwari, S., Tandel, N., Beura, S. K., Panigrahi, A. R., Maji, S., Sharma, P., Rai, P. K., Prajapati, D. K., Shin, H., & Tyagi, R. K. (2023). Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses, 15(4), 856. [CrossRef]
- Kumar, S., & Saxena, S. K. (2021). Structural and molecular perspectives of SARS-CoV-2. Methods (San Diego, Calif.), 195, 23–28. [CrossRef]
- Lee, J. Y., Wing, P. A. C., Gala, D. S., Noerenberg, M., Järvelin, A. I., Titlow, J., Zhuang, X., Palmalux, N., Iselin, L., Thompson, M. K., Parton, R. M., Prange-Barczynska, M., Wainman, A., Salguero, F. J., Bishop, T., Agranoff, D., James, W., Castello, A., McKeating, J. A., & Davis, I. (2022). Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. eLife, 11, e74153. [CrossRef]
- Lucia, U., Grisolia, G., & Deisboeck, T. S. (2021). Thermodynamics and SARS-CoV-2: neurological effects in post-Covid 19 syndrome. Atti della Accademia Peloritana dei Pericolanti, 99(2), A3. [CrossRef]
- Lucia, U., Grisolia, G., & Deisboeck, T. S. (2020a). Seebeck-like effect in SARS-CoV-2 bio-thermodynamics. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 98(2), 6. [CrossRef]
- Lucia, U., Deisboeck, T. S., & Grisolia, G. (2020b). Entropy-based pandemics forecasting. Frontiers in Physics, 8, 274. [CrossRef]
- Magazine, N., Zhang, T., Wu, Y., McGee, M. C., Veggiani, G., & Huang, W. (2022). Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses, 14(3), 640. [CrossRef]
- Mandala, V.S., McKay, M.J., Shcherbakov, A.A. et al. (2020). Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 27, 1202–1208. [CrossRef]
- Maskow, T., Kiesel, B., Schubert, T., Yong, Z., Harms, H., & Yao, J. (2010). Calorimetric real time monitoring of lambda prophage induction. Journal of virological methods, 168(1-2), 126–132. [CrossRef]
- Mesquita, F. S., Abrami, L., Sergeeva, O., Turelli, P., Qing, E., Kunz, B., Raclot, C., Paz Montoya, J., Abriata, L. A., Gallagher, T., Dal Peraro, M., Trono, D., D'Angelo, G., & van der Goot, F. G. (2021). S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity. Developmental cell, 56(20), 2790–2807.e8. 2807. [CrossRef]
- Motsa, B. B., & Stahelin, R. V. (2021). Lipid-protein interactions in virus assembly and budding from the host cell plasma membrane. Biochemical Society transactions, 49(4), 1633–1641. [CrossRef]
- Nasir, A., Aamir, U. B., Kanji, A., Bukhari, A. R., Ansar, Z., Ghanchi, N. K., Masood, K. I., Samreen, A., Islam, N., Ghani, S., Syed, M. A., Wassan, M., Mahmood, S. F., & Hasan, Z. (2023). Tracking SARS-CoV-2 variants through pandemic waves using RT-PCR testing in low-resource settings. PLOS global public health, 3(6), e0001896. [CrossRef]
- NCBI (2023a). SARS-CoV-2 Variants Overview [Online] National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/activ (accessed on 5 September 2023).
- NCBI (2023b). NCBI Database [Online]. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 24 September 2023).
- NCBI (2023c). Nucleocapsid phosphoprotein [Severe acute respiratory syndrome coronavirus 2] [Online]. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/protein/QIK50455.1 (accessed on 24 September 2023).
- NCBI (2023d). Membrane protein [Severe acute respiratory syndrome coronavirus 2] [Online] National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/protein/QHR63293.1 (accessed on 24 September 2023).
- NCBI (2023e). Spike glycoprotein [Severe acute respiratory syndrome coronavirus 2] [Online] National Center for Biotechnology Informatio. Available online: https://www.ncbi.nlm.nih.gov/protein/QHR63290.2 (accessed on 24 September 2023).
- Neuman, B.W. and Buchmeier, M.J. (2016). Supramolecular architecture of the coronavirus particle. Advances in Virus Research, 96, 1-27. [CrossRef]
- Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F., Connelly, S., Droese, B., Klaus, J. P., Makino, S., Sawicki, S. G., Siddell, S. G., Stamou, D. G., Wilson, I. A., Kuhn, P., & Buchmeier, M. J. (2011). A structural analysis of M protein in coronavirus assembly and morphology. Journal of structural biology, 174(1), 11–22. [CrossRef]
- Neuman, B. W., Adair, B. D., Yoshioka, C., Quispe, J. D., Orca, G., Kuhn, P., Milligan, R. A., Yeager, M., & Buchmeier, M. J. (2006). Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of virology, 80(16), 7918–7928. [CrossRef]
- Özilgen, M., & Yilmaz, B. (2021). COVID-19 disease causes an energy supply deficit in a patient. International journal of energy research, 45(2), 1157–1160. [CrossRef]
- Ozilgen, M. and Sorgüven, E. (2017). Biothermodynamics: Principles and Applications. Boca Raton: CRC Press. [CrossRef]
- Patel, S.A. and Erickson, L.E. (1981). Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnology and Bioengineering, 23, 2051-2067. [CrossRef]
- Pateras, J., Vaidya, A., & Ghosh, P. (2022). Network Thermodynamics-Based Scalable Compartmental Model for Multi-Strain Epidemics. Mathematics, 10(19), 3513. [CrossRef]
- Perdikari, T. M., Murthy, A. C., Ryan, V. H., Watters, S., Naik, M. T., & Fawzi, N. L. (2020). SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. The EMBO journal, 39(24), e106478. [CrossRef]
- Popovic, M.E., Mihailović, M. and Pavlović, S. (2023a). Upcoming epidemic storm: Empirical formulas, biosynthesis reactions, thermodynamic properties and driving forces of multiplication of the omicron XBB.1.9.1, XBF and XBB.1.16 (Arcturus) variants of SARS-CoV-2. Microbial Risk Analysis, 25, 100273. [CrossRef]
- Popovic, M., Pantović Pavlović, M., & Pavlović, M. (2023b). Ghosts of the past: Elemental composition, biosynthesis reactions and thermodynamic properties of Zeta P.2, Eta B.1.525, Theta P.3, Kappa B.1.617.1, Iota B.1.526, Lambda C.37 and Mu B.1.621 variants of SARS-CoV-2. Microbial risk analysis, 24, 100263. [CrossRef]
- Popovic, M., Tadić, V., & Mihailović, M. (2023c). From genotype to phenotype with biothermodynamics: empirical formulas, biosynthesis reactions and thermodynamic properties of preproinsulin, proinsulin and insulin molecules. Journal of biomolecular structure & dynamics, 1–13. [CrossRef]
- Popovic, M. (2023a). SARS-CoV-2 strain wars continues: Chemical and thermodynamic characterization of live matter and biosynthesis of Omicron BN.1, CH.1.1 and XBC variants. Microbial Risk Analysis, 24, 100260. [CrossRef]
- Popovic M. E. (2023b). XBB.1.5 Kraken cracked: Gibbs energies of binding and biosynthesis of the XBB.1.5 variant of SARS-CoV-2. Microbiological research, 270, 127337. [CrossRef]
- Popovic M. (2023c). Never ending story? Evolution of SARS-CoV-2 monitored through Gibbs energies of biosynthesis and antigen-receptor binding of Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants. Microbial risk analysis, 23, 10025. [CrossRef]
- Popovic M. (2023d). The SARS-CoV-2 Hydra, a tiny monster from the 21st century: Thermodynamics of the BA.5.2 and BF.7 variants. Microbial risk analysis, 23, 100249. [CrossRef]
- Popovic, M. (2023e). Thermodynamics of Bacteria-Phage Interactions: T4 and Lambda Bacteriophages, and E. Coli Can Coexist in Natural Ecosystems due to the Ratio of their Gibbs Energies of Biosynthesis. Thermal Science, 27(1), 411-431. [CrossRef]
- Popovic, M., & Popovic, M. (2022). Strain Wars: Competitive interactions between SARS-CoV-2 strains are explained by Gibbs energy of antigen-receptor binding. Microbial risk analysis, 21, 100202. [CrossRef]
- Popovic, M. (2022a). Formulas for death and life: Chemical composition and biothermodynamic properties of Monkeypox (MPV, MPXV, HMPXV) and Vaccinia (VACV) viruses. Thermal Science, 26(6A), 4855-4868. [CrossRef]
- Popovic M. (2022b). Beyond COVID-19: Do biothermodynamic properties allow predicting the future evolution of SARS-CoV-2 variants?. Microbial risk analysis, 22, 100232. [CrossRef]
- Popovic, M. (2022c). Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022). Vaccines, 10(12), 2112. [CrossRef]
- Popovic, M. (2022d). Omicron BA.2.75 Sublineage (Centaurus) Follows the Expectations of the Evolution Theory: Less Negative Gibbs Energy of Biosynthesis Indicates Decreased Pathogenicity. Microbiology Research, 13(4), 937–952. [CrossRef]
- Popovic, M. (2022e). Strain wars 3: Differences in infectivity and pathogenicity between Delta and Omicron strains of SARS-CoV-2 can be explained by thermodynamic and kinetic parameters of binding and growth. Microbial Risk Analysis, 22, 100217. 0021. [CrossRef]
- Popovic, M. (2022f). Strain Wars 4 - Darwinian evolution through Gibbs’ glasses: Gibbs energies of binding and growth explain evolution of SARS-CoV-2 from Hu-1 to BA.2. Virology, 575, 36-42. [CrossRef]
- Popovic M. (2022g). Atom counting method for determining elemental composition of viruses and its applications in biothermodynamics and environmental science. Computational biology and chemistry, 96, 107621. [CrossRef]
- Popovic, M. (2022h). Why doesn’t Ebola virus cause pandemics like SARS-CoV-2? Microbial Risk Analysis, 22, 100236. [CrossRef]
- Popovic, M., Stenning, G. B. G., Göttlein, A., & Minceva, M. (2021). Elemental composition, heat capacity from 2 to 300 K and derived thermodynamic functions of 5 microorganism species. Journal of biotechnology, 331, 99–107. [CrossRef]
- Popovic, M., & Minceva, M. (2021). Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions. Microorganisms, 9(10), 2060. [CrossRef]
- Popovic, M. and Minceva, M. (2020a). A thermodynamic insight into viral infections: do viruses in a lytic cycle hijack cell metabolism due to their low Gibbs energy? Heliyon, 6(5), e03933. [CrossRef]
- Popovic, M., & Minceva, M. (2020b). Thermodynamic insight into viral infections 2: empirical formulas, molecular compositions and thermodynamic properties of SARS, MERS and SARS-CoV-2 (COVID-19) viruses. Heliyon, 6(9), e04943.
- Popovic, M. E., & Minceva, M. (2020c). Thermodynamic properties of human tissues. Thermal Science, 24(6 Part B), 4115-4133. [CrossRef]
- Popovic M. (2019). Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon, 5(6), e01950. [CrossRef]
- Rahbar, M.R., Jahangiri, A., Khalili, S. et al. (2021). Hotspots for mutations in the SARS-CoV-2 spike glycoprotein: a correspondence analysis. Sci Rep 11, 23622. [CrossRef]
- Rahman, S., Hossain, M. J., Nahar, Z., Shahriar, M., Bhuiyan, M. A., & Islam, M. R. (2022). Emerging SARS-CoV-2 Variants and Subvariants: Challenges and Opportunities in the Context of COVID-19 Pandemic. Environmental health insights, 16, 11786302221129396. [CrossRef]
- Rajagopalan, M. (2021). Knowing Our Rival–Coronaviridae: The Virus Family. IntechOpen. [CrossRef]
- Ramesh, S., Govindarajulu, M., Parise, R. S., Neel, L., Shankar, T., Patel, S., Lowery, P., Smith, F., Dhanasekaran, M., & Moore, T. (2021). Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines, 9(10), 1195. [CrossRef]
- Riedel, S., Hobden, J.A., Miller, S., Morse, S.A., Mietzner, T.A., Detrick, B., Mitchell, T.G., Sakanari, J.A., Hotez, P. and Mejia, R. (2019). Jawetz, Melnick and Adelberg’s Medical Microbiology, 28th ed., New York: McGraw-Hill. ISBN-13: 978-1260012026.
- Sanjuán, R., Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cell. Mol. Life Sci. 73, 4433–4448. [CrossRef]
- Satarker, S., & Nampoothiri, M. (2020). Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Archives of medical research, 51(6), 482–491. [CrossRef]
- Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., … Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic acids research, 50(D1), D20–D26. [CrossRef]
- Schoeman, D., Fielding, B.C. (2019). Coronavirus envelope protein: current knowledge. Virol J 16, 69. [CrossRef]
- Schulte, M. B., Draghi, J. A., Plotkin, J. B., & Andino, R. (2015). Experimentally guided models reveal replication principles that shape the mutation distribution of RNA viruses. eLife, 4, e03753. [CrossRef]
- Senthilazhagan, K., Sakthimani, S., Kallanja, D., & Venkataraman, S. (2023). SARS-CoV-2: analysis of the effects of mutations in non-structural proteins. Archives of virology, 168(7), 186. Archives of virology. [CrossRef]
- Shu, Y. and McCauley, J. (2017) GISAID: from vision to reality. EuroSurveillance, 22(13). [CrossRef]
- Şimşek, B., Özilgen, M., & Utku, F. Ş. (2021). How much energy is stored in SARS-CoV-2 and its structural elements?. Energy Storage, e298. [CrossRef]
- Singh, H., Dahiya, N., Yadav, M., & Sehrawat, N. (2022). Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale, 2022, 733630. [CrossRef]
- Souza, P. F. N., Mesquita, F. P., Amaral, J. L., Landim, P. G. C., Lima, K. R. P., Costa, M. B., Farias, I. R., Belém, M. O., Pinto, Y. O., Moreira, H. H. T., Magalhaes, I. C. L., Castelo-Branco, D. S. C. M., Montenegro, R. C., & de Andrade, C. R. (2022). The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. International journal of biological macromolecules, 208, 105–125. [CrossRef]
- Taha, B. A., Al-Jubouri, Q., Al Mashhadany, Y., Hafiz Mokhtar, M. H., Bin Zan, M. S. D., Bakar, A. A. A., & Arsad, N. (2023). Density estimation of SARS-CoV2 spike proteins using super pixels segmentation technique. Applied soft computing, 138, 110210. [CrossRef]
- hakur, V., Bhola, S., Thakur, P. et al. (2022). Waves and variants of SARS-CoV-2: understanding the causes and effect of the COVID-19 catastrophe. Infection 50, 309–325. [CrossRef]
- Thornton, W. M. (1917). XV. The relation of oxygen to the heat of combustion of organic compounds. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33(194), 196-203. [CrossRef]
- Trancossi, M., Carli, C., Cannistraro, G., Pascoa, J., & Sharma, S. (2021). Could thermodynamics and heat and mass transfer research produce a fundamental step advance toward and significant reduction of SARS-COV-2 spread?. International journal of heat and mass transfer, 170, 120983. [CrossRef]
- Troyano-Hernáez, P., Reinosa, R., & Holguín, Á. (2021). Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020: A Global and Regional Approach by Epidemiological Week. Viruses, 13(2), 243. 20 September. [CrossRef]
- V’kovski, P., Kratzel, A., Steiner, S. et al. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19, 155–170. [CrossRef]
- Villa, T. G., Abril, A. G., Sánchez, S., de Miguel, T., & Sánchez-Pérez, A. (2021). Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Archives of microbiology, 203(2), 443–464. [CrossRef]
- Von Stockar, U. (2013a). Live cells as open non-equilibrium systems. In Urs von Stockar, ed., Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering, Lausanne: EPFL Press, 475-534.
- Von Stockar, U. (2013b). Biothermodynamics of live cells: energy dissipation and heat generation in cellular structures. In: Biothermodynamics: the role of thermodynamics in Biochemical Engineering, von Stockar, U., ed., Lausanne: EPFL Press, pp. 475-534.
- von Stockar, U., & Liu, J. (1999). Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochimica et biophysica acta, 1412(3), 191–211. [CrossRef]
- Wang, W., Chen, J., Yu, X., & Lan, H. Y. (2022). Signaling mechanisms of SARS-CoV-2 Nucleocapsid protein in viral infection, cell death and inflammation. International journal of biological sciences, 18(12), 4704–4713. [CrossRef]
- Westerhoff, H. V., Lolkema, J. S., Otto, R., & Hellingwerf, K. J. (1982). Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochimica et biophysica acta, 683(3-4), 181–220. [CrossRef]
- WHO (2023a). WHO Coronavirus (COVID-19) Dashboard [Online] World Health Organization. Available online: https://covid19.who.int/ (accessed on 31 August 2023).
- WHO (2023b). Tracking SARS-CoV-2 variants [Online] World Health Organization. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 5 September 2023).
- WHO (2021). WHO-convened Global Study of Origins of SARS-CoV-2: China Part. [Online] World Health Organization. Available online: https://www.who.int/docs/default-source/coronaviruse/who-convened-global-study-of-origins-of-sars-cov-2-china-part-joint-report.pdf (accessed on 2 September 2023).
- Wu, W., Cheng, Y., Zhou, H., Sun, C., & Zhang, S. (2023). The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virology journal, 20(1), 6. [CrossRef]
- Wu, C., Qavi, A. J., Hachim, A., Kavian, N., Cole, A. R., Moyle, A. B., Wagner, N. D., Sweeney-Gibbons, J., Rohrs, H. W., Gross, M. L., Peiris, J. S. M., Basler, C. F., Farnsworth, C. W., Valkenburg, S. A., Amarasinghe, G. K., & Leung, D. W. (2021). Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. iScience, 24(6), 102681. [CrossRef]
- Yang, Y., Xiao, Z., Ye, K. et al. (2020). SARS-CoV-2: characteristics and current advances in research. Virol J 17, 117. [CrossRef]
- Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C., Zhang, J., Weng, T., Zhang, Z., Wu, Z., Cheng, L., Shi, D., Lu, X., Lei, J., Crispin, M., Shi, Y., Li, L., & Li, S. (2020). Molecular Architecture of the SARS-CoV-2 Virus. Cell, 183(3), 730–738.e13. [CrossRef]
- Yilmaz, B., Ercan, S., Akduman, S., & Özilgen, M. (2020). Energetic and exergetic costs of COVID-19 infection on the body of a patient. International Journal of Exergy, 32(3), 314-327. [CrossRef]
- Zeng, C., Evans, J. P., King, T., Zheng, Y. M., Oltz, E. M., Whelan, S. P. J., Saif, L., Peeples, M. E., & Liu, S. L. (2021). SARS-CoV-2 Spreads through Cell-to-Cell Transmission. bioRxiv : the preprint server for biology, 2021.06.01.446579. [CrossRef]
- Zhang, L., Richards, A., Barrasa, M. I., Hughes, S. H., Young, R. A., & Jaenisch, R. (2021). Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2105968118. [CrossRef]
- Zhu, Z., Lian, X., Su, X. et al. (2020). From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21, 224. [CrossRef]
| Name | nC | nH | nO | nN | nP | nS | Mr (g/C-mol) | Mr(tot) (MDa) |
|---|---|---|---|---|---|---|---|---|
| BA.2.86 virus particle | 1 | 1.639023 | 0.284130 | 0.230031 | 0.006440 | 0.003765 | 21.75 | 219.7 |
| BA.2.86 nucleocapsid | 1 | 1.570946 | 0.343118 | 0.312432 | 0.006007 | 0.003349 | 23.75 | 117.6 |
| Name | ΔfH⁰ (kJ/C-mol) | Sm⁰ (J/C-mol K) | ΔfG⁰ (kJ/C-mol) |
|---|---|---|---|
| BA.2.86 virus particle | -64.43 | 30.70 | -24.64 |
| BA.2.86 nucleocapsid | -75.41 | 32.47 | -33.32 |
| Name | Reactants | → | Products | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Amino acid | CH2O | O2 | HPO42- | HCO3- | Bio | SO42- | H2O | H2CO3 | ||
| BA.2.86 virus particle | 1.023637 | 0.010469 | 0.000000 | 0.006440 | 0.025596 | → | 1 | 0.019238 | 0.067397 | 0.059701 |
| BA.2.86 nucleocapsid | 1.390323 | 0.000000 | 0.492478 | 0.006007 | 0.043774 | → | 1 | 0.027894 | 0.055049 | 0.434097 |
| Name | ΔbsH⁰ (kJ/C-mol) | ΔbsS⁰ (J/C-mol K) | ΔbsG⁰ (kJ/C-mol) |
|---|---|---|---|
| BA.2.86 virus particle | -4.80 | 6.94 | -6.94 |
| BA.2.86 nucleocapsid | -232.88 | -37.48 | -221.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).