Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Assessing Satellite-Based Products in Characterizing Flash Drought Under Climate Change in Northeastern South America

Version 1 : Received: 19 September 2023 / Approved: 20 September 2023 / Online: 21 September 2023 (12:09:04 CEST)

A peer-reviewed article of this Preprint also exists.

Barbosa, H.A. Flash Drought and Its Characteristics in Northeastern South America during 2004–2022 Using Satellite-Based Products. Atmosphere 2023, 14, 1629. Barbosa, H.A. Flash Drought and Its Characteristics in Northeastern South America during 2004–2022 Using Satellite-Based Products. Atmosphere 2023, 14, 1629.

Abstract

In a 1.5°C warmer world, the Northeastern (NE) South America’s ecosystems will experience more severe droughts, associated with decreasing rainfall. The severity of flash drought events based on vegetation and surface soil moisture has not been identified over the Caatinga ecosys-tem. This study aimed to characterize the impact of flash drought events on vegetation response via soil moisture over NE South America during the first two decades of the 2000s. Three drought indices were used to characterize flash droughts: the Standardized Difference Vegetation Index (SDVI) derived from Meteosat Second Generation (MSG), the Standardized Precipitation Index (SPI) from ground-data, and the Surface Soil Moisture (SSM) product-based Soil Moisture and Ocean Salinity (SMOS). Results revealed dramatic impacts of flash drought events on vegetation dynamics that caused abrupt changes in the regional vegetation phenology. The regional patterns of flash drought events in 2012 over NE South America were identified and had a severe impact on its Caatinga-like vegetation-dependent moisture response. In 2012, anomalously long dry spells with negative rainfall anomalies in the non-rainy season and persistent on vege-tation greenness and rapidly decreased soil moisture were prominent, thus identifying NE South America to the impacts of flash drought events. Additionally, the results from the trends analysis of radiance fluxes estimated from the MSG satellites over 18 years revealed that an overall drying trend in the NE South America semiarid ecosystem during the last two decades. Here, flash drought events were identified as the conse-quent rainfall deficiency at SPI-3< −1 for a period of five consecutive weeks or more, which the soil moisture content dropping from the 40th percentile to below the 20th percentile, with the NDVI lower than 0.30 unit. These results could be useful to guide flash-droughts early warning systems in NE South America.

Keywords

Northeastern South America; flash droughts; SEVIRI; NDVI; soil moisture; SPI

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.