Submitted:
19 September 2023
Posted:
20 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Injuries and physiology of joint healing
3. Decision making process
- Intrinsic repair: relies on the limited mitotic capacity of chondrocytes and a somewhat ineffective increase in collagen and proteoglycan production.
- Extrinsic repair: it comes from mesenchymal elements of the subchondral bone that participate in the formation of new connective tissue that can undergo some metaplastic change to form cartilage elements. For it to exist, there must be a method by which blood reaches the subchondral bone to the articular surface, generally through a technique known as microfracture.
3.1. Decision-making process in different pathological scenarios
3.1.1. Intra-articular fragments and fractures
3.1.2. Articular surface restoration
- Mosaicplasty
- 2.
- Implantation of autologous chondrocytes implantation without (ACI) or with matrix (scaffold) support (MACI)
- 3.
- Microfracture
- 4.
- Use of mesenchymal stem cells (MSC)
- 5.
- Grafts
3.1.3. Chondromalacia -progression and decision making process
- Proliferation (hyperplasia and hypertrophy) and hyperemia of the synovial membrane (Figure 14)
- Loss of gloss of the articular surface (Figure 1)
- Discoloration of the articular surface
- Softening of the articular surface (Figure 2)
- Thinning or hypertrophy of the cartilage
- Wear lines on the articular surface (Figure 10)
- Articular surface fibrillation (Figure 4)
- Formation of small craters ( pitting ) on the articular surface
- Chondral fissures of the articular surface
- Partial erosion of the articular surface (Figure 5)
- Complete erosion – (damage of calcified layer) on the articular surface (Figure 6)
- Eburnation - If a full thickness erosion presents a smooth polished appearance exposing porous subchondral bone. (Figure 15)
- 1.
- Thermal chondroplasty
- 2.
- Chondrectomy ( Debridement of the articular surface)
- 3.
- Microfracture (see above)
- 4.
- Synovectomy and soft tissue debridement
3.1.4. Synovial Sepsis
- Reduce intrasynovial bacterial load.
- Eliminate fibrin accumulations that can harbor bacteria.
- Drain the presence of inflammatory mediators and cellular waste products.
3.1.5. Subchondral bone cysts
3.1.6. Large OCD lesions – reattachment of chondral flaps
4. Conclusions
References
- Nelson, B.; Mäkelä, J.; Lawson, T.; Patwa, A.; Barrett, M.; McIlwraith, C.; Hurtig, M.; Snyder, B.; Moorman, V.; Grinstaff, M.; et al. Evaluation of equine articular cartilage degeneration after mechanical impact injury using cationic contrast-enhanced computed tomography. Osteoarthr. Cartil. 2019, 27, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Carballido-Gamio, J.; Majumdar, S.; Li, X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC and contrast-enhanced computed tomography. Magn. Reson. Imaging 2009, 27, 779–784. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C.W.; Frisbie, D.D.; Kawcak, C.E.; van Weeren, P.R. Joint Disease in the Horse. 2016. [Google Scholar] [CrossRef]
- Brommer, H.; Rijkenhuizen, A.B.M.; Brama, P.A.J.; Barneveld, A.; Weeren, P.R. Accuracy of diagnostic arthroscopy for the assessment of cartilage damage in the equine metacarpophalangeal joint. Equine Veter- J. 2004, 36, 331–335. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C. W. , Wright, I., & Nixon, A. J. (2014). Diagnostic and surgical arthroscopy in the horse. Elsevier Health Sciences.
- McIlwraith, C.; Frisbie, D.; Kawcak, C.; Fuller, C.; Hurtig, M.; Cruz, A. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the horse. Osteoarthr. Cartil. 2010, 18, S93–S105. [Google Scholar] [CrossRef] [PubMed]
- White, S.A.; Canada, N.C.; Carmalt, J.L.; Schumacher, J.; Amitrano, F.N.; Ortved, K.; Henry, T.J.; Brounts, S.H.; Arnold, C.E. Long-Term Outcome of Horses Undergoing Unilateral Mandibular Condylectomy and Meniscectomy for Temporomandibular Joint Disease. Front. Veter- Sci. 2022, 9, 898096. [Google Scholar] [CrossRef]
- Walmsley, J.P.; Phillips, T.J.; Townsend, H.G.G. Meniscal tears in horses: an evaluation of clinical signs and arthroscopic treatment of 80 cases. Equine Veter- J. 2003, 35, 402–406. [Google Scholar] [CrossRef]
- Simmons, E.J.; Bertone, A.L.; E Weisbrode, S. Instability-induced osteoarthritis in the metacarpophalangeal joint of horses. Am. J. Veter- Res. 1999, 60, 7–13. [Google Scholar]
- Krafts, K.P. Tissue repair: the hidden drama. Organogenesis. 2010, 6, 225. [Google Scholar] [CrossRef]
- Fugazzola, M.C.; van Weeren, P.R. Surgical osteochondral defect repair in the horse—a matter of form or function? Equine Veter- J. 2020, 52, 489–499. [Google Scholar] [CrossRef]
- Alford, J.W.; Cole, B.J. Cartilage restoration, Part 1. Am J Sports Med. 2005, 33, 295–306. [Google Scholar] [CrossRef]
- McIlwraith, C.W.; Fortier, L.A.; Frisbie, D.D.; Nixon, A.J. Equine Models of Articular Cartilage Repair. CARTILAGE 2011, 2, 317–326. [Google Scholar] [CrossRef]
- Hurtig, M.B.; Fretz, P.B.; E Doige, C.; Schnurr, D.L. Effects of lesion size and location on equine articular cartilage repair. Can. J. Veter- Res. = Rev. Can. de Rech. Veter- 1988, 52, 137–46. [Google Scholar]
- Convery, F.R.; Akeson, W.H.; Keown, G.H.D. The Repair of Large Osteochondral Defects An Experimental Study in Horses. Clin. Orthop. Relat. Res. 1972, 82, 253–262. [Google Scholar] [CrossRef]
- Salonius, E.; Rieppo, L.; Nissi, M.J.; Pulkkinen, H.J.; Brommer, H.; Brünott, A.; Silvast, T.S.; Van Weeren, P.R.; Muhonen, V.; Brama, P.A.J.; et al. Critical-sized cartilage defects in the equine carpus. Connect. Tissue Res. 2019, 60, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Bentley, G. Articular cartilage changes in chondromalacia patellae. J Bone Joint Surg Br. 1985, 67, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Schmid, F. Ultrastructural studies after arthroscopic cartilage shaving. Arthroscopy. 1987, 3, 137. [Google Scholar]
- Hunziker, E.B.; Rosenberg, L.C. Repair of Partial-Thickness Defects in Articular Cartilage. J. Bone Jt. Surg. 1996, 78, 721–33. [Google Scholar] [CrossRef] [PubMed]
- Hanie, E.A.; Sullins, K.E.; Powers, B.E.; Nelson, P.R. Healing of full-thickness cartilage compared with full-thickness cartilage and subchondral bone defects in the equine third carpal bone. Equine Veter- J. 1992, 24, 382–386. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C.W.; Yovich, J.V.; Martin, G.S. Arthroscopic surgery for the treatment of osteochondral chip fractures in the equine carpus. J. Am. Veter- Med Assoc. 1987, 191, 531–540. [Google Scholar]
- McIlwraith, C.W. Surgical versus conservative management of osteochondrosis. Veter- J. 2013, 197, 19–28. [Google Scholar] [CrossRef]
- Nixon, A.J.; Fortier, L.A.; Goodrich, L.R.; Ducharme, N.G. Arthroscopic reattachment of osteochondritis dissecans lesions using resorbable polydioxanone pins. Equine Veter- J. 2004, 36, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Kawcak, C.E.; McILWRAITH, C.W.; Norrdin, R.W.; Park, R.D.; James, S.P. The role of subchondral bone in joint disease: a review. Equine Veter- J. 2010, 33, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Petsatodis, G.; Antonarakos, P.; Chalidis, B.; Papadopoulos, P.; Christoforidis, J.; Pournaras, J. Surgically treated acetabular fractures via a single posterior approach with a follow-up of 2–10 years. Injury 2007, 38, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Makris, E.A.; Gomoll, A.H.; Malizos, K.N.; Hu, J.C.; Athanasiou, K.A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 2015, 11, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Bodó, G.; Vásárhelyi, G.; Hangody, L.; Módis, L. Mosaic arthroplasty of the medial femoral condyle in horses — An experimental study. Acta Veter- Hung. 2014, 62, 155–168. [Google Scholar] [CrossRef]
- Tuska, P.; Tóth, B.; Vásárhelyi, G.; Hangody, L.; Papp, M.; Bodó, G. Evaluation of biomarkers following autologous osteochondral transplantation in the equine stifle joint — An experimental study. Acta Veter- Hung. 2016, 64, 164–178. [Google Scholar] [CrossRef]
- Christensen, B.B.; Olesen, M.L.; Hede, K.T.C.; Bergholt, N.L.; Foldager, C.B.; Lind, M. Particulated Cartilage for Chondral and Osteochondral Repair: A Review. CARTILAGE 2021, 13, 1047S–1057S. [Google Scholar] [CrossRef]
- Nixon, A.J.; Begum, L.; Mohammed, H.O.; Huibregtse, B.; O'Callaghan, M.M.; Matthews, G.L. Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J. Orthop. Res. 2011, 29, 1121–1130. [Google Scholar] [CrossRef]
- Ortved, K.F.; Begum, L.; O Mohammed, H.; Nixon, A.J. Implantation of rAAV5-IGF-I Transduced Autologous Chondrocytes Improves Cartilage Repair in Full-thickness Defects in the Equine Model. Mol. Ther. 2015, 23, 363–373. [Google Scholar] [CrossRef]
- Nixon, A.J.; Sparks, H.D.; Begum, L.; McDonough, S.; Scimeca, M.S.; Moran, N.; Matthews, G.L. Matrix-Induced Autologous Chondrocyte Implantation (MACI) Using a Cell-Seeded Collagen Membrane Improves Cartilage Healing in the Equine Model. J. Bone Jt. Surg. 2017, 99, 1987–1998. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Morisset, S.; Ho, C.P.; Rodkey, W.G.; Steadman, J.R.; Mcllwraith, C.W. Effects of Calcified Cartilage on Healing of Chondral Defects Treated with Microfracture in Horses. Am. J. Sports Med. 2006, 34, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, D.D.; Oxford, J.T.; Southwood, L.; Trotter, G.W.; Rodkey, W.G.; Steadman, J.R.; et al. Early events in cartilage repair after subchon- dral bone microfracture. Clin Orthop Relat Res. 2003, 407, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, D.D.; Trotter, G.W.; Powers, B.E.; Rodkey, W.G.; Steadman, J.R.; Howard, R.D.; et al. Arthroscopic subchondral bone plate microfrac- ture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999, 28, 242–255. [Google Scholar] [CrossRef] [PubMed]
- A Fortier, L.; Potter, H.G.; Rickey, E.J.; Schnabel, L.V.; Foo, L.F.; Chong, L.R.; Stokol, T.; Cheetham, J.; Nixon, A.J. Concentrated Bone Marrow Aspirate Improves Full-Thickness Cartilage Repair Compared with Microfracture in the Equine Model. Minerva Anestesiol. 2010, 92, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Wilke, M.M.; Nydam, D.V.; Nixon, A.J. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J. Orthop. Res. 2007, 25, 913–925. [Google Scholar] [CrossRef]
- Goodrich, L.R.; Chen, A.C.; Werpy, N.M.; Williams, A.A.; Kisiday, J.D.; Su, A.W.; et al. Addition of mesenchymal stem cells to autologous platelet-en- hanced fibrin scaffolds in chondral defects: does it enhance repair? J Bone Joint Surg Am. 2016, 98, 23–34. [Google Scholar] [CrossRef]
- Chu, C.R.; Fortier, L.A.; Williams, A.; Payne, K.A.; McCarrel, T.M.; Bowers, M.E.; et al. Minimally manipulated bone marrow concentrate com- pared with microfracture treatment of full-thickness chondral de- fects: a one-year study in an equine model. J Bone Joint Surg Am. 2018, 100, 138–146. [Google Scholar] [CrossRef]
- Edwards, R.B.; Lu, Y.; Markel, M.D. The basic science of thermally assisted chondroplasty. Clin. Sports Med. 2002, 21, 619–647. [Google Scholar] [CrossRef]
- Lin, C.; Deng, Z.; Xiong, J.; Lu, W.; Chen, K.; Zheng, Y.; Zhu, W. The Arthroscopic Application of Radiofrequency in Treatment of Articular Cartilage Lesions. Front. Bioeng. Biotechnol. 2022, 9, 822286. [Google Scholar] [CrossRef]
- Hewes, C.A.; Schneider, R.K.; Baszler, T.V.; Oaks, J.L. Septic arthritis and granulomatous synovitis caused by infection with Mycobacterium avium complex in a horse. J. Am. Veter- Med Assoc. 2005, 226, 2035–2038. [Google Scholar] [CrossRef]
- Wysocki, A.B. Evaluating and Managing Open Skin Wounds: Colonization Versus Infection. AACN Adv. Crit. Care 2002, 13, 382–397. [Google Scholar] [CrossRef] [PubMed]
- Lugo, J.; Gaughan, E.M. Septic Arthritis, Tenosynovitis, and Infections of Hoof Structures. Veter- Clin. North Am. Equine Pr. 2006, 22, 363–388. [Google Scholar] [CrossRef] [PubMed]
- Theoret, C.L.; Barber, S.M.; Moyana, T.; Townsend, H.G.; Archer, J.F. Repair and Function of Synovium After Arthroscopic Synovectomy of the Dorsal Compartment of the Equine Antebrachiocarpal Joint. Veter- Surg. 1996, 25, 142–153. [Google Scholar] [CrossRef]
- Young, N.; Barker, W.; Minshall, G.; Wright, I. Arthroscopically guided lag screw fixation of subchondral bone cysts in the medial femoral condyle in Thoroughbred racehorses: description of technique and comparative results. Veter- Surg. 2023. [Google Scholar] [CrossRef] [PubMed]
- Santschi, E.M.; Williams, J.M.; Morgan, J.W.; Johnson, C.R.; Bertone, A.L.; Juzwiak, J.S. Preliminary Investigation of the Treatment of Equine Medial Femoral Condylar Subchondral Cystic Lesions With a Transcondylar Screw. Veter- Surg. 2015, 44, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ravanetti, P.; Lechartier, A.; Hamon, M.; Zucca, E. A composite absorbable implant used to treat subchondral bone cysts in 38 horses. Equine Veter- J. 2021, 54, 97–105. [Google Scholar] [CrossRef]
- Rechenberg, B.; Guenther, H.; McIlwraith, C.W.; Leutenegger, C.; Frisbie, D.D.; Akens, M.K.; Auer, J.A. Fibrous Tissue of Subchondral Cystic Lesions in Horses Produce Local Mediators and Neutral Metalloproteinases and Cause Bone Resorption in Vitro. Veter- Surg. 2000, 29, 420–429. [Google Scholar] [CrossRef]
- Sparks, H.D.; Nixon, A.J.; Fortier, L.A.; Mohammed, H.O. Arthroscopic reattachment of osteochondritis dissecans cartilage flaps of the femoropatellar joint: Long-term results. Equine Veter- J. 2011, 43, 650–659. [Google Scholar] [CrossRef]
- Bertuglia, A.; Pallante, M.; Pillon, G.; Valle, D.; Pagliara, E.; Riccio, B. Reattachment of Osteochondritis Dissecans Lesions in the Lateral Femoral Trochlear Ridge With Bioabsorbable Screws in 4 Yearling Standardbreds. J. Equine Veter- Sci. 2023, 123, 104242. [Google Scholar] [CrossRef]















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
