Submitted:
13 September 2023
Posted:
15 September 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Patients and Methods
Study population
Assessment of Arterial Stiffness Parameters
Assessment of Plasma GDF-15 Levels
Statistical Analysis
Results
Discussion
Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; Alkatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Avezum, A.; Makdisse, M.; Spencer, F.; Gore, J.M.; Fox, K.A.; Montalescot, G.; A Eagle, K.; White, K.; Mehta, R.H.; Knobel, E.; et al. Impact of age on management and outcome of acute coronary syndrome: Observations from the global registry of acute coronary events (GRACE). Am. Hear. J. 2005, 149, 67–73. [Google Scholar] [CrossRef]
- Kayikcioglu, M.; Ozkan, H.S.; Yagmur, B. Premature Myocardial Infarction: A Rising Threat. Balk. Med J. 2021, 39, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; et al. HHS Public Access. 2015, 64, 337–345. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Preusch, M.R.; Baeuerle, M.; Albrecht, C.; Blessing, E.; Bischof, M.; A Katus, H.; Bea, F. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur. J. Med Res. 2013, 18, 1–6. [Google Scholar] [CrossRef]
- Kempf, T.; Sinning, J.-M.; Quint, A.; Bickel, C.; Sinning, C.; Wild, P.S.; Schnabel, R.; Lubos, E.; Rupprecht, H.J.; Münzel, T.; et al. Growth-Differentiation Factor-15 for Risk Stratification in Patients With Stable and Unstable Coronary Heart Disease. Circ. Cardiovasc. Genet. 2009, 2, 286–292. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, D.; Wang, X.; Zhu, H.; Jin, H.; Zhao, R.; Jiang, L.; Lu, Q.; Yi, F.; Wan, X.; et al. Growth differentiation factor–15 predicts the prognoses of patients with acute coronary syndrome: a meta-analysis. BMC Cardiovasc. Disord. 2016, 16, 1–7. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Duprez, D.; Starmans-Kool, M.J.; Safar, M.E.; Giannattasio, C.; Cockcroft, J.; Kaiser, D.R.; Thuillez, C. Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am. J. Hypertens. 2002, 15, 445–452. [Google Scholar] [CrossRef]
- Pence, B.D. Growth Differentiation Factor-15 in Immunity and Aging. Front. Aging 2022, 3, 837575. [Google Scholar] [CrossRef]
- Li, M.; Duan, L.; Cai, Y.-L.; Li, H.-Y.; Hao, B.-C.; Chen, J.-Q.; Liu, H.-B. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc. Diabetol. 2020, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Eggers, K.M.; Kempf, T.; Allhoff, T.; Lindahl, B.; Wallentin, L.; Wollert, K.C. Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. Eur. Hear. J. 2008, 29, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, L.; Zhang, Q. Increased Serum Level of Growth Differentiation Factor 15 (GDF-15) is Associated with Coronary Artery Disease. Cardiovasc. Ther. 2016, 34, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Bonaca, M.P.; Morrow, D.A.; Braunwald, E.; Cannon, C.P.; Jiang, S.; Breher, S.; Sabatine, M.S.; Kempf, T.; Wallentin, L.; Wollert, K.C. Growth Differentiation Factor-15 and Risk of Recurrent Events in Patients Stabilized After Acute Coronary Syndrome. Arter. Thromb. Vasc. Biol. 2011, 31, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Hagström, E.; James, S.K.; Bertilsson, M.; Becker, R.C.; Himmelmann, A.; Husted, S.; Katus, H.A.; Steg, P.G.; Storey, R.F.; Siegbahn, A.; et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study. Eur. Hear. J. 2015, 37, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Bonaterra, G.A.; Zügel, S.; Thogersen, J.; Walter, S.A.; Haberkorn, U.; Strelau, J.; Kinscherf, R.; M, v.S.; Y, Z.; T, d.A.V.; et al. Growth Differentiation Factor-15 Deficiency Inhibits Atherosclerosis Progression by Regulating Interleukin-6–Dependent Inflammatory Response to Vascular Injury. J. Am. Hear. Assoc. 2012, 1, e002550. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Oh, B.-H. Aging and Arterial Stiffness. Circ. J. 2010, 74, 2257–2262. [Google Scholar] [CrossRef]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of Exercise Modalities on Arterial Stiffness and Wave Reflection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLOS ONE 2014, 9, e110034–e110034. [Google Scholar] [CrossRef]
- Bonarjee, V.V.S. Arterial Stiffness: A Prognostic Marker in Coronary Heart Disease. Available Methods and Clinical Application. Front. Cardiovasc. Med. 2018, 5, 64. [Google Scholar] [CrossRef]
- Sunbul, M.; Agirbasli, M.; Durmus, E.; Kivrak, T.; Akin, H.; Aydin, Y.; Ergelen, R.; Yilmaz, Y. Arterial stiffness in patients with non-alcoholic fatty liver disease is related to fibrosis stage and epicardial adipose tissue thickness. Atherosclerosis 2014, 237, 490–493. [Google Scholar] [CrossRef]
- Kim, H.-L.; Kim, S.-H. Pulse Wave Velocity in Atherosclerosis. Front. Cardiovasc. Med. 2019, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Ryu, S.; Lee, S.H.; Kim, B.J.; Kim, B.-S.; Kang, J.-H.; Cheong, E.S.; Kim, J.-Y.; Park, J.B.; Sung, K.-C. Association between brachial-ankle pulse wave velocity and progression of coronary artery calcium: a prospective cohort study. Cardiovasc. Diabetol. 2015, 14, 1–9. [Google Scholar] [CrossRef]
- Cavalcante, J.L.; Lima, J.A.; Redheuil, A.; Al-Mallah, M.H. Aortic Stiffness. J. Am. Coll. Cardiol. 2011, 57, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front. Physiol. 2015, 6, 365. [Google Scholar] [CrossRef] [PubMed]
- Abderrahman, H.A.; Al-Abdallat, I.M.; Idhair, A.K. Age threshold for proper definition of premature coronary artery disease in males. J. Forensic Leg. Med. 2018, 58, 45–49. [Google Scholar] [CrossRef]
- Rathore, V.; Singh, N.; Mahat, R.K. Risk Factors of Acute Myocardial Infarction: A Review. Eurasian J. Med Investig. 2018. [Google Scholar] [CrossRef]
- Dugani, S.B.; Hydoub, Y.M.; Ayala, A.P.; Reka, R.; Nayfeh, T.; Ding, J.; McCafferty, S.N.; Alzuabi, M.; Farwati, M.; Murad, M.H.; et al. Risk Factors for Premature Myocardial Infarction: A Systematic Review and Meta-analysis of 77 Studies. Mayo Clin. Proceedings: Innov. Qual. Outcomes 2021, 5, 783–794. [Google Scholar] [CrossRef]
- Gulati, R.; Behfar, A.; Narula, J.; Kanwar, A.; Lerman, A.; Cooper, L.; Singh, M. Acute Myocardial Infarction in Young Individuals. Mayo Clin. Proc. 2020, 95, 136–156. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Li, N. Predictive and Prognostic Value of High-density Lipoprotein Cholesterol in Young Male Patients with Acute Myocardial Infarction. Chin. Med J. 2017, 130, 77–82. [Google Scholar] [CrossRef]
- Casiglia, E.; Tikhonoff, V.; Virdis, A.; Masi, S.; Barbagallo, C.M.; Bombelli, M.; Bruno, B.; Cicero, A.F.; Cirillo, M.; Cirillo, P.; et al. Serum uric acid and fatal myocardial infarction: detection of prognostic cut-off values: The URRAH (Uric Acid Right for Heart Health) study. J. Hypertens. 2020, 38, 412–419. [Google Scholar] [CrossRef]
- Cheng, J.; Lyu, Y.; Mei, Y.; Chen, Q.; Liu, H.; Li, Y. Serum growth differentiation factor-15 and non-esterified fatty acid levels in patients with coronary artery disease and hyperuricemia. Lipids Heal. Dis. 2023, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Demiray, A.; Afsar, B.; Covic, A.; Kuwabara, M.; Ferro, C.J.; Lanaspa, M.A.; Johnson, R.J.; Kanbay, M. The Role of Uric Acid in the Acute Myocardial Infarction: A Narrative Review. Angiology 2021, 73, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Daya, N.; Matsushita, K.; Wang, D.; E Ndumele, C.; Al Rifai, M.; Hoogeveen, R.C.; Ballantyne, C.M.; Selvin, E. Growth Differentiation Factor (GDF)-15 and Cardiometabolic Outcomes among Older Adults: The Atherosclerosis Risk in Communities Study. Clin. Chem. 2021, 67, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E. J.; et al. Heart disease and stroke statistics - 2018 update: A report from the American Heart Association; 2018; vol. 137. [Google Scholar]
- Choi, E.-K.; Choi, S.I.; Rivera, J.J.; Nasir, K.; Chang, S.-A.; Chun, E.J.; Kim, H.-K.; Choi, D.-J.; Blumenthal, R.S.; Chang, H.-J. Coronary Computed Tomography Angiography as a Screening Tool for the Detection of Occult Coronary Artery Disease in Asymptomatic Individuals. J. Am. Coll. Cardiol. 2008, 52, 357–365. [Google Scholar] [CrossRef] [PubMed]
| Patients (n=30) | Controls (n=15) | p | |
|---|---|---|---|
| Age (years) | 39.6±5.3 | 40.2±3.4 | 0.694 |
| Gender (male) (n-%) | 23 (76.7) | 11(73.7) | 1 |
| BMI (kg/m2) | 28.6±5.3 | 27.2±3.9 | 0.350 |
| Coronary heart disease (n-%) | 7 (21.1) | 0 | 0.77 |
| Hypertension (n-%) | 6 (20) | 1 (6.7) | 0.395 |
| Diabetes mellitus (n-%) | 11 (36.6) | 3 (20) | 0.255 |
| Hyperlipidemia (n-%) | 4 (13.3) | 0 | 0.285 |
| Smoker (n-%) | 10 (33.3) | 6 (40) | 0.660 |
| Family history (n-%) | 4 (13.3) | 2 (13.3) | 1 |
|
Clinical presentation Anterior STEMI (n-%) Inferior STEMI (n-%) NSTEMI/USAP (n-%) |
12 (40) 9 (30) 9 (30) |
- - - |
| Patients (n=30) | Controls (n=15) | P | |
|---|---|---|---|
| Hemoglobin (g/dL) | 14.5±2 | 14.4±2 | 0.838 |
| Hematocrit (%) | 41.8±5 | 43±5.3 | 0.470 |
| Creatinin (mg/dL) | 0.82±0.15 | 0.77±0.11 | 0.323 |
| Total cholesterol (mg/dL) | 173±42 | 185±25 | 0.159 |
| Triglycerides (mg/dL) | 155±56 | 126±68 | 0.020 |
| LDL cholesterol (mg/dL) | 111±32 | 112±30 | 0.885 |
| HDL cholesterol (mg/dL) | 37±13 | 51±12 | <0.001 |
| Uric acid (mg/dL) | 5.9±1.4 | 4.8±1 | 0.007 |
| NT-ProBNP (ng/mL) | 0.22±0.03 | 0.19±0.03 | 0.004 |
| GDF-15, (Pg/mL) | 105.9±196 | 25.9±10 | 0.002 |
| Patients (n=30) | Controls (n=15) | P | |
|---|---|---|---|
| Peripheral systolic blood pressure (mmHg) | 115±16 | 123±11 | 0.115 |
| Peripheral diastolic blood pressure (mmHg) | 77±13 | 78±11 | 0.656 |
| Peripheral mean blood pressure (mmHg) | 95±11 | 98±11 | 0.455 |
| Peripheral pulse pressure (mmHg) | 38±9 | 44±9 | 0.037 |
| Heart rate (beat/min) | 75±12 | 83±10 | 0.023 |
| Cardiac output (l/min) | 5±0.6 | 4.9±0.8 | 0.419 |
| Cardiac index (l/min/m2) | 2.6±0.4 | 2.6±0.5 | 0.762 |
| Central systolic blood pressure (mmHg) | 107±15 | 113±11 | 0.094 |
| Central diastolic blood pressure (mmHg) | 78±13 | 80±11 | 0.515 |
| Central pulse pressure (mmHg) | 29±8 | 33±7 | 0.088 |
| Reflecting magnitude (%) | 61±11 | 61±6 | 0.819 |
| Augmentation index (%) | 14±10 | 18±8 | 0.117 |
| PWV (m/s) | 6.04±0.8 | 6.09±0.7 | 0.700 |
| GDF-15 | Uric acid | HDL | Triglyceride |
|---|---|---|---|
| P | 0.011 | 0.013 | 0.048 |
| R2 | 0.376 | -0.368 | 0.296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
