Submitted:
28 August 2023
Posted:
29 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. miRNAs in hematopoiesis and MDS pathogenesis
1.2. miRNA deregulation and cytogenetic abnormalities in MDS
1.3. miRNAs as potential prognostic biomarkers in MDS
1.4. miRNAs as potential predictive biomarkers in MDS
2. Circular RNAs
3. Long non-coding RNAs
4. PIWI-interacting RNAs
5. Ribosomal RNAs
6. Small nuclear and small nucleolar RNAs
7. Transfer RNAs and their derived fragments
8. Short interfering RNAs
| Class of ncRNAs | ncRNA | Sample | Reference |
|---|---|---|---|
| miRNAs | miR-125a | BM | Gañán-Gómez 2014 [48] |
| miR-22 | BM and PB (plasma) | Ma 2020 [65] | |
| miR-196b-5p | BM | Wen 2017 [67] | |
| miR-29b | BM | Kirimura 2016 [68] | |
| miR-320c, miR-320d | BM | Wan 2021 [70] | |
| miR-194-5p | BM | Choi 2015 [54] | |
| miR-661 | BM | Kang 2019 [61] | |
| miR-126, miR-155, miR-124a | BM | Choi 2019 [72] | |
| miR-181a-2-3p | BM | Liang 2022 [64] Kontandreopoulou 2022 [71] |
|
| miR-125b-5p, miR-155-5p | BM | Kontandreopoulou 2022 [71] |
|
| miR-451a, miR-223-3p | PB (plasma) | Dostalova-Merkerova 2017 [74] | |
| let-7a, miR-144, miR-16, miR-25, miR-451, miR-651, and miR-655 | PB (plasma) | Zuo 2015 [73] | |
| miR-1237-3p, miR-548av-5p |
PB (extracellular vesicles) | Hrustincova 2020 | |
| circRNAs | hsa_circRNA_100352 hsa_circRNA_104056 hsa_circRNA_102817 | BM and PB (MNCs) | Wu 2020 [98] |
| lncRNAs | KCNQ10T1 | PB (serum) | Zhang 2020 [116] |
| HOXB-AS3 | BM | Huang 2019 [117] | |
| H19, WT1-AS, LEF1-AS, TCL6 | BM | Szikszai 2020 [120] | |
| TC07000551.hg.1 TC08000489.hg.1 TC02004770.hg.1 TC03000701.hg.1 | BM | Yao 2017 [121] | |
| piRNAs | hsa_piR_019420 | PB (EVs) | Hrustincova 2020 [75] |
| snoRNAs | U33 | PB (EVs) | Hrustincova 2020 [75] |
| tDRs | tDR-Asp family | FFPE preparations | Guo 2017 [159] |
| Class of ncRNAs | ncRNA/ gene | Sample | Reference |
|---|---|---|---|
| miRNAs | miR-143, miR-145 | BM | Venner 2013 [79] |
| miR-145, miR-146 | BM | Oliva 2013 [78] | |
| miR-34a and miR-34a* | PB | Merkerova 2015 [81] | |
| miR-17-3p, miR-100-5p, miR-133b miR-10b-5p, miR-15a-5p/b-5p, miR-24-3p, miR-148b-3p |
BM |
Krejcik 2018 [82] |
|
| miR-124 | BM | Wang 2017 [86] | |
| miR-21 | PB (serum) | Kim, 2014 [85] | |
| miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, miR-199a-3p | PB (plasma) | Hrustincova 2020 [75] | |
| miR-192-5p | BM and PB | Mongiorgi 2023 [83] | |
| miR-92a | PB(plasma) | Li 2022 [88] | |
| circRNAs | hsa_circ_0006595 | BM | Merkerova 2022 [100] |
| lncRNAs | AC010127.5, CTC-482H14.5, RP11-557C18.3, RP4-580N22.1, RP11-419K12.2, MIR4512, MIR3164, RF00019, RPS6P16, RP11-478C6.2, RP11-177A2.5, RP4-740C4.7, AC097382.5, RP11-736I24.4 | BM | Merkerova 2022 [100] |
| tRNA/tDRs | chr6.tRNA157.ValCAC chr11.tRNA17.ValTAC chrM.tRNA12.TS1 chrX.tRNA4.ValTAC MT-TS1 chr1.tRNA35.GlyGCC chr21.tRNA2.GlyGCC chr19.tRNA9.PseudoTTT |
BM | Guo 2015 [158] |
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shastri, A.; Will, B.; Steidl, U.; Verma, A. Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 2017, 129, 1586-1594. [CrossRef]
- Cazzola, M. Myelodysplastic Syndromes. N Engl J Med 2020, 383, 1358-1374. [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703-1719. [CrossRef]
- Greenberg, P.; Cox, C.; LeBeau, M.M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D., et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997, 89, 2079-2088. [CrossRef]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Ossa, J.E.A.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L., et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evidence 2022, 1, EVIDoa2200008. [CrossRef]
- Fenaux, P.; Haase, D.; Santini, V.; Sanz, G.F.; Platzbecker, U.; Mey, U. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up(†☆). Ann Oncol 2021, 32, 142-156. [CrossRef]
- Ogawa, S. Genetics of MDS. Blood 2019, 133, 1049-1059. [CrossRef]
- Hamilton, A.J.; Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286, 950-952. [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843-854. [CrossRef]
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855-862. [CrossRef]
- Eddy, S.R. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001, 2, 919-929. [CrossRef]
- Smit, S.; Widmann, J.; Knight, R. Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res 2007, 35, 3339-3354. [CrossRef]
- Aravin, A.; Gaidatzis, D.; Pfeffer, S.; Lagos-Quintana, M.; Landgraf, P.; Iovino, N.; Morris, P.; Brownstein, M.J.; Kuramochi-Miyagawa, S.; Nakano, T., et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006, 442, 203-207. [CrossRef]
- Bachellerie, J.P.; Cavaille, J.; Huttenhofer, A. The expanding snoRNA world. Biochimie 2002, 84, 775-790. [CrossRef]
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P., et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458, 223-227. [CrossRef]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 2019, 16. [CrossRef]
- Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem 2021, 65, 625-639. [CrossRef]
- Wilson, A.; Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006, 6, 93-106. [CrossRef]
- Veryaskina, Y.A.; Titov, S.E.; Kovynev, I.B.; Fedorova, S.S.; Pospelova, T.I.; Zhimulev, I.F. MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae 2021, 13, 4-15. [CrossRef]
- Kotaki, R.; Koyama-Nasu, R.; Yamakawa, N.; Kotani, A. miRNAs in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017, 18. [CrossRef]
- Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297. [CrossRef]
- Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136, 215-233. [CrossRef]
- Londin, E.; Loher, P.; Telonis, A.G.; Quann, K.; Clark, P.; Jing, Y.; Hatzimichael, E.; Kirino, Y.; Honda, S.; Lally, M., et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 2015, 112, E1106-1115. [CrossRef]
- Montagner, S.; Dehó, L.; Monticelli, S. MicroRNAs in hematopoietic development. BMC Immunol 2014, 15, 14. [CrossRef]
- Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83-86. [CrossRef]
- Herrera-Merchan, A.; Cerrato, C.; Luengo, G.; Dominguez, O.; Piris, M.A.; Serrano, M.; Gonzalez, S. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle 2010, 9, 3277-3285. [CrossRef]
- Khalaj, M.; Woolthuis, C.M.; Hu, W.; Durham, B.H.; Chu, S.H.; Qamar, S.; Armstrong, S.A.; Park, C.Y. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal. J Exp Med 2017, 214, 2453-2470. [CrossRef]
- Guo, S.; Lu, J.; Schlanger, R.; Zhang, H.; Wang, J.Y.; Fox, M.C.; Purton, L.E.; Fleming, H.H.; Cobb, B.; Merkenschlager, M., et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 2010, 107, 14229-14234. [CrossRef]
- Georgantas, R.W., 3rd; Hildreth, R.; Morisot, S.; Alder, J.; Liu, C.G.; Heimfeld, S.; Calin, G.A.; Croce, C.M.; Civin, C.I. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 2007, 104, 2750-2755. [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6, 259-269. [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20-51. [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017, 16, 203-222. [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002, 99, 15524-15529. [CrossRef]
- Pons, A.; Nomdedeu, B.; Navarro, A.; Gaya, A.; Gel, B.; Diaz, T.; Valera, S.; Rozman, M.; Belkaid, M.; Montserrat, E., et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma 2009, 50, 1854-1859. [CrossRef]
- Lu, J.; Guo, S.; Ebert, B.L.; Zhang, H.; Peng, X.; Bosco, J.; Pretz, J.; Schlanger, R.; Wang, J.Y.; Mak, R.H., et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008, 14, 843-853. [CrossRef]
- Liu, Z.; Wang, P.; Yuan, S.; Wang, Y.; Cao, P.; Wen, F.; Li, H.; Zhu, L.; Liang, L.; Wang, Z., et al. LncRNA BC200/miR-150-5p/MYB positive feedback loop promotes the malignant proliferation of myelodysplastic syndrome. Cell Death Dis 2022, 13, 126. [CrossRef]
- Ramsay, R.G.; Barton, A.L.; Gonda, T.J. Targeting c-Myb expression in human disease. Expert Opin Ther Targets 2003, 7, 235-248. [CrossRef]
- Liu, W.; Wu, M.; Huang, Z.; Lian, J.; Chen, J.; Wang, T.; Leung, A.Y.; Liao, Y.; Zhang, Z.; Liu, Q., et al. c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia 2017, 31, 222-233. [CrossRef]
- Kumar, M.S.; Narla, A.; Nonami, A.; Mullally, A.; Dimitrova, N.; Ball, B.; McAuley, J.R.; Poveromo, L.; Kutok, J.L.; Galili, N., et al. Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood 2011, 118, 4666-4673. [CrossRef]
- Xiao, C.; Srinivasan, L.; Calado, D.P.; Patterson, H.C.; Zhang, B.; Wang, J.; Henderson, J.M.; Kutok, J.L.; Rajewsky, K. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008, 9, 405-414. [CrossRef]
- Brinkmann, K.; Ng, A.P.; de Graaf, C.A.; Di Rago, L.; Hyland, C.D.; Morelli, E.; Rautela, J.; Huntington, N.D.; Strasser, A.; Alexander, W.S., et al. miR17~92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. Cell Death Differ 2020, 27, 1475-1488. [CrossRef]
- Vasilatou, D.; Papageorgiou, S.G.; Kontsioti, F.; Kontos, C.K.; Tsiotra, P.; Mpakou, V.; Pavlou, M.A.; Economopoulou, C.; Dimitriadis, G.; Dervenoulas, J., et al. Expression analysis of mir-17-5p, mir-20a and let-7a microRNAs and their target proteins in CD34+ bone marrow cells of patients with myelodysplastic syndromes. Leuk Res 2013, 37, 251-258. [CrossRef]
- Lam, J.; van den Bosch, M.; Wegrzyn, J.; Parker, J.; Ibrahim, R.; Slowski, K.; Chang, L.; Martinez-Høyer, S.; Condorelli, G.; Boldin, M., et al. miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun 2018, 9, 2418. [CrossRef]
- Arabanian, L.S.; Fierro, F.A.; Stölzel, F.; Heder, C.; Poitz, D.M.; Strasser, R.H.; Wobus, M.; Borhäuser, M.; Ferrer, R.A.; Platzbecker, U., et al. MicroRNA-23a mediates post-transcriptional regulation of CXCL12 in bone marrow stromal cells. Haematologica 2014, 99, 997-1005. [CrossRef]
- Li, X.; Xu, F.; Chang, C.; Byon, J.; Papayannopoulou, T.; Deeg, H.J.; Marcondes, A.M. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica 2013, 98, 414-419. [CrossRef]
- Bhagat, T.D.; Zhou, L.; Sokol, L.; Kessel, R.; Caceres, G.; Gundabolu, K.; Tamari, R.; Gordon, S.; Mantzaris, I.; Jodlowski, T., et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood 2013, 121, 2875-2881. [CrossRef]
- Aslan, D.; Garde, C.; Nygaard, M.K.; Helbo, A.S.; Dimopoulos, K.; Hansen, J.W.; Severinsen, M.T.; Treppendahl, M.B.; Sjø, L.D.; Grønbæk, K., et al. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations. Oncotarget 2016, 7, 9951-9963. [CrossRef]
- Gañán-Gómez, I.; Wei, Y.; Yang, H.; Pierce, S.; Bueso-Ramos, C.; Calin, G.; Boyano-Adánez Mdel, C.; García-Manero, G. Overexpression of miR-125a in myelodysplastic syndrome CD34+ cells modulates NF-κB activation and enhances erythroid differentiation arrest. PLoS One 2014, 9, e93404. [CrossRef]
- Tulstrup, M.; Soerensen, M.; Hansen, J.W.; Gillberg, L.; Needhamsen, M.; Kaastrup, K.; Helin, K.; Christensen, K.; Weischenfeldt, J.; Grønbæk, K. TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis. Nat Commun 2021, 12, 6061. [CrossRef]
- Song, S.J.; Ito, K.; Ala, U.; Kats, L.; Webster, K.; Sun, S.M.; Jongen-Lavrencic, M.; Manova-Todorova, K.; Teruya-Feldstein, J.; Avigan, D.E., et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013, 13, 87-101. [CrossRef]
- Bersanelli, M.; Travaglino, E.; Meggendorfer, M.; Matteuzzi, T.; Sala, C.; Mosca, E.; Chiereghin, C.; Di Nanni, N.; Gnocchi, M.; Zampini, M., et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J Clin Oncol 2021, 39, 1223-1233. [CrossRef]
- Alkhatabi, H.A.; McLornan, D.P.; Kulasekararaj, A.G.; Malik, F.; Seidl, T.; Darling, D.; Gaken, J.; Mufti, G.J. RPL27A is a target of miR-595 and may contribute to the myelodysplastic phenotype through ribosomal dysgenesis. Oncotarget 2016, 7, 47875-47890. [CrossRef]
- Jang, S.J.; Choi, I.S.; Park, G.; Moon, D.S.; Choi, J.S.; Nam, M.H.; Yoon, S.Y.; Choi, C.H.; Kang, S.H. MicroRNA-205-5p is upregulated in myelodysplastic syndromes and induces cell proliferation via PTEN suppression. Leuk Res 2016, 47, 172-177. [CrossRef]
- Choi, J.S.; Nam, M.H.; Yoon, S.Y.; Kang, S.H. MicroRNA-194-5p could serve as a diagnostic and prognostic biomarker in myelodysplastic syndromes. Leuk Res 2015, 39, 763-768. [CrossRef]
- Starczynowski, D.T.; Kuchenbauer, F.; Argiropoulos, B.; Sung, S.; Morin, R.; Muranyi, A.; Hirst, M.; Hogge, D.; Marra, M.; Wells, R.A., et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010, 16, 49-58. [CrossRef]
- Hussein, K.; Theophile, K.; Büsche, G.; Schlegelberger, B.; Göhring, G.; Kreipe, H.; Bock, O. Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res 2010, 34, 328-334. [CrossRef]
- Barroga, C.F.; Pham, H.; Kaushansky, K. Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 2008, 36, 1585-1592. [CrossRef]
- Votavova, H.; Grmanova, M.; Dostalova Merkerova, M.; Belickova, M.; Vasikova, A.; Neuwirtova, R.; Cermak, J. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J Hematol Oncol 2011, 4, 1. [CrossRef]
- Bousquet, M.; Quelen, C.; Rosati, R.; Mansat-De Mas, V.; La Starza, R.; Bastard, C.; Lippert, E.; Talmant, P.; Lafage-Pochitaloff, M.; Leroux, D., et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 2008, 205, 2499-2506. [CrossRef]
- Fang, J.; Varney, M.; Starczynowski, D.T. Implication of microRNAs in the pathogenesis of MDS. Curr Pharm Des 2012, 18, 3170-3179. [CrossRef]
- Kang, S.H.; Choi, J.S. MicroRNA-661 upregulation in myelodysplastic syndromes induces apoptosis through p53 activation and associates with decreased overall survival. Leuk Lymphoma 2019, 60, 2779-2786. [CrossRef]
- Kang, S.H.; Kim, H.B.; Choi, J.S. Upregulation of microRNA-597 in myelodysplastic syndromes induces apoptosis through FOSL2 inhibition. Eur J Haematol 2022, 109, 680-685. [CrossRef]
- Sokol, L.; Caceres, G.; Volinia, S.; Alder, H.; Nuovo, G.J.; Liu, C.G.; McGraw, K.; Clark, J.A.; Sigua, C.A.; Chen, D.T., et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol 2011, 153, 24-32. [CrossRef]
- Liang, X.; Shi, Z.; Huang, X.; Wan, C.; Zhu, S.; Wu, M.; Li, Z.; Tang, Z.; Li, J.; Zhao, W., et al. MiR-181a-2-3p as a potential diagnostic and prognostic marker for myelodysplastic syndrome. Hematology 2022, 27, 1246-1252. [CrossRef]
- Ma, Y.; Qiao, T.; Meng, Y. Increased expression of miR-22 corresponds to the high-risk subtypes of myelodysplastic syndromes and lower OS rate. Leuk Lymphoma 2020, 61, 1763-1765. [CrossRef]
- Kuang, X.; Chi, J.; Wang, L. Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. Hematology 2016, 21, 593-602. [CrossRef]
- Wen, J.; Huang, Y.; Li, H.; Zhang, X.; Cheng, P.; Deng, D.; Peng, Z.; Luo, J.; Zhao, W.; Lai, Y., et al. Over-expression of miR-196b-5p is significantly associated with the progression of myelodysplastic syndrome. Int J Hematol 2017, 105, 777-783. [CrossRef]
- Kirimura, S.; Kurata, M.; Nakagawa, Y.; Onishi, I.; Abe-Suzuki, S.; Abe, S.; Yamamoto, K.; Kitagawa, M. Role of microRNA-29b in myelodysplastic syndromes during transformation to overt leukaemia. Pathology 2016, 48, 233-241. [CrossRef]
- Dostalova Merkerova, M.; Krejcik, Z.; Votavova, H.; Belickova, M.; Vasikova, A.; Cermak, J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 2011, 19, 313-319. [CrossRef]
- Wan, C.; Wen, J.; Liang, X.; Xie, Q.; Wu, W.; Wu, M.; Liu, Z. Identification of miR-320 family members as potential diagnostic and prognostic biomarkers in myelodysplastic syndromes. Sci Rep 2021, 11, 183. [CrossRef]
- Kontandreopoulou, C.-N.; Syriopoulou, S.; Diamantopoulos, P.T.; Giannakopoulou, N.; Vlachopoulou, D.; Katsiampoura, P.; Stafylidis, C.; Dimou, M.; Galanopoulos, A.; Papageorgiou, S., et al. Micrornas Analysis in Patients with Myelodysplastic Syndrome. Possible Implications in Risk Stratification. Blood 2022, 140, 6958-6959. [CrossRef]
- Choi, Y.; Hur, E.H.; Moon, J.H.; Goo, B.K.; Choi, D.R.; Lee, J.H. Expression and prognostic significance of microRNAs in Korean patients with myelodysplastic syndrome. Korean J Intern Med 2019, 34, 390-400. [CrossRef]
- Zuo, Z.; Maiti, S.; Hu, S.; Loghavi, S.; Calin, G.A.; Garcia-Manero, G.; Kantarjian, H.M.; Medeiros, L.J.; Cooper, L.J.; Bueso-Ramos, C.E. Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Mod Pathol 2015, 28, 373-382. [CrossRef]
- Dostalova Merkerova, M.; Hrustincova, A.; Krejcik, Z.; Votavova, H.; Ratajova, E.; Cermak, J.; Belickova, M. Microarray profiling defines circulating microRNAs associated with myelodysplastic syndromes. Neoplasma 2017, 64, 571-578. [CrossRef]
- Hrustincova, A.; Krejcik, Z.; Kundrat, D.; Szikszai, K.; Belickova, M.; Pecherkova, P.; Klema, J.; Vesela, J.; Hruba, M.; Cermak, J., et al. Circulating Small Noncoding RNAs Have Specific Expression Patterns in Plasma and Extracellular Vesicles in Myelodysplastic Syndromes and Are Predictive of Patient Outcome. Cells 2020, 9. [CrossRef]
- Gaballa, M.R.; Besa, E.C. Myelodysplastic syndromes with 5q deletion: pathophysiology and role of lenalidomide. Ann Hematol 2014, 93, 723-733. [CrossRef]
- Lee, J.H.; List, A.; Sallman, D.A. Molecular pathogenesis of myelodysplastic syndromes with deletion 5q. Eur J Haematol 2019, 102, 203-209. [CrossRef]
- Oliva, E.N.; Cuzzola, M.; Aloe Spiriti, M.A.; Poloni, A.; Laganà, C.; Rigolino, C.; Morabito, F.; Galimberti, S.; Ghio, R.; Cortelezzi, A., et al. Biological activity of lenalidomide in myelodysplastic syndromes with del5q: results of gene expression profiling from a multicenter phase II study. Ann Hematol 2013, 92, 25-32. [CrossRef]
- Venner, C.P.; Woltosz, J.W.; Nevill, T.J.; Deeg, H.J.; Caceres, G.; Platzbecker, U.; Scott, B.L.; Sokol, L.; Sung, S.; List, A.F., et al. Correlation of clinical response and response duration with miR-145 induction by lenalidomide in CD34(+) cells from patients with del(5q) myelodysplastic syndrome. Haematologica 2013, 98, 409-413. [CrossRef]
- Krejčík, Z.; Beličková, M.; Hruštincová, A.; Kléma, J.; Zemanová, Z.; Michalová, K.; Čermák, J.; Jonášová, A.; Dostálová Merkerová, M. Aberrant expression of the microRNA cluster in 14q32 is associated with del(5q) myelodysplastic syndrome and lenalidomide treatment. Cancer Genet 2015, 208, 156-161. [CrossRef]
- Merkerova, M.D.; Krejcik, Z.; Belickova, M.; Hrustincova, A.; Klema, J.; Stara, E.; Zemanova, Z.; Michalova, K.; Cermak, J.; Jonasova, A. Genome-wide miRNA profiling in myelodysplastic syndrome with del(5q) treated with lenalidomide. Eur J Haematol 2015, 95, 35-43. [CrossRef]
- Krejcik, Z.; Belickova, M.; Hrustincova, A.; Votavova, H.; Jonasova, A.; Cermak, J.; Dyr, J.E.; Merkerova, M.D. MicroRNA profiles as predictive markers of response to azacitidine therapy in myelodysplastic syndromes and acute myeloid leukemia. Cancer Biomark 2018, 22, 101-110. [CrossRef]
- Mongiorgi, S.; De Stefano, A.; Ratti, S.; Indio, V.; Astolfi, A.; Casalin, I.; Pellagatti, A.; Paolini, S.; Parisi, S.; Cavo, M., et al. A miRNA screening identifies miR-192-5p as associated with response to azacitidine and lenalidomide therapy in myelodysplastic syndromes. Clin Epigenetics 2023, 15, 27. [CrossRef]
- Yun, J.; Ji, Y.S.; Jang, G.H.; Lim, S.H.; Kim, S.H.; Kim, C.K.; Bae, S.B.; Won, J.H.; Park, S.K. TET2 Mutation and High miR-22 Expression as Biomarkers to Predict Clinical Outcome in Myelodysplastic Syndrome Patients Treated with Hypomethylating Therapy. Curr Issues Mol Biol 2021, 43, 917-931. [CrossRef]
- Kim, Y.; Cheong, J.W.; Kim, Y.K.; Eom, J.I.; Jeung, H.K.; Kim, S.J.; Hwang, D.; Kim, J.S.; Kim, H.J.; Min, Y.H. Serum microRNA-21 as a potential biomarker for response to hypomethylating agents in myelodysplastic syndromes. PLoS One 2014, 9, e86933. [CrossRef]
- Wang, H.; Zhang, T.T.; Jin, S.; Liu, H.; Zhang, X.; Ruan, C.G.; Wu, D.P.; Han, Y.; Wang, X.Q. Pyrosequencing quantified methylation level of miR-124 predicts shorter survival for patients with myelodysplastic syndrome. Clin Epigenetics 2017, 9, 91. [CrossRef]
- Liu, H.; Pattie, P.; Chandrasekara, S.; Spencer, A.; Dear, A.E. Epigenetic regulation of miRNA-124 and multiple downstream targets is associated with treatment response in myeloid malignancies. Oncol Lett 2016, 12, 2175-2180. [CrossRef]
- Li, H.; Xie, C.; Lu, Y.; Chang, K.; Guan, F.; Li, X. Exosomal miR92a Promotes Cytarabine Resistance in Myelodysplastic Syndromes by Activating Wnt/β-catenin Signal Pathway. Biomolecules 2022, 12. [CrossRef]
- Awasthi, R.; Singh, A.K.; Mishra, G.; Maurya, A.; Chellappan, D.K.; Gupta, G.; Hansbro, P.M.; Dua, K. An Overview of Circular RNAs. Adv Exp Med Biol 2018, 1087, 3-14. [CrossRef]
- Jiao, S.; Wu, S.; Huang, S.; Liu, M.; Gao, B. Advances in the Identification of Circular RNAs and Research Into circRNAs in Human Diseases. Front Genet 2021, 12, 665233. [CrossRef]
- Bach, D.H.; Lee, S.K.; Sood, A.K. Circular RNAs in Cancer. Mol Ther Nucleic Acids 2019, 16, 118-129. [CrossRef]
- Guo, S.S.; Li, B.X.; Zou, D.B.; Yang, S.J.; Sheng, L.X.; Ouyang, G.F.; Mu, Q.T.; Huang, H. Tip of the iceberg: roles of circRNAs in hematological malignancies. Am J Cancer Res 2020, 10, 367-382.
- Dostalova Merkerova, M.; Krejcik, Z.; Szikszai, K.; Kundrat, D. Circular RNAs in Hematopoiesis with a Focus on Acute Myeloid Leukemia and Myelodysplastic Syndrome. Int J Mol Sci 2020, 21. [CrossRef]
- Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.L.; Cherry, S.; Wilusz, J.E. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell 2017, 68, 940-954.e943. [CrossRef]
- Wedge, E.; Ahmadov, U.; Hansen, T.B.; Gao, Z.; Tulstrup, M.; Come, C.; Nonavinkere Srivatsan, S.; Ahmed, T.; Jespersen, J.S.; Schlotmann, B.C., et al. Impact of U2AF1 mutations on circular RNA expression in myelodysplastic neoplasms. Leukemia 2023, 37, 1113-1125. [CrossRef]
- Wedge, E.; Côme, C.R.M.; Hansen, J.W.; Jespersen, J.S.; Dahl, M.; Schöllkopf, C.; Raaschou-Jensen, K.; Porse, B.; Weischenfeldt, J.; Kristensen, L.S., et al. P751: CHARACTERIZING CIRCULAR RNA EXPRESSION IN MYELODYSPLASTIC SYNDROME. HemaSphere 2022, 6, 646-647. [CrossRef]
- Deng, F.; Zhang, C.; Lu, T.; Liao, E.J.; Huang, H.; Wei, S. Roles of circRNAs in hematological malignancies. Biomark Res 2022, 10, 50. [CrossRef]
- Wu, W.L.; Li, S.; Zhao, G.J.; Li, N.Y.; Wang, X.Q. Identification of circular RNAs as novel biomarkers and potentially functional competing endogenous RNA network for myelodysplastic syndrome patients. Cancer Sci 2021, 112, 1888-1898. [CrossRef]
- Zhou, F.; Zhang, S.; Huo, M.; Zhou, Y.; Jiang, L.; Zhou, H.; Qu, Y. The Circular RNA Circ-ANAPC7 as a Biomarker for the Risk Stratification of Myelodysplastic Syndrome. Indian Journal of Hematology and Blood Transfusion 2022, 10.1007/s12288-022-01594-2. [CrossRef]
- Merkerova, M.D.; Klema, J.; Kundrat, D.; Szikszai, K.; Krejcik, Z.; Hrustincova, A.; Trsova, I.; Le, A.V.; Cermak, J.; Jonasova, A., et al. Noncoding RNAs and Their Response Predictive Value in Azacitidine-treated Patients With Myelodysplastic Syndrome and Acute Myeloid Leukemia With Myelodysplasia-related Changes. Cancer Genomics Proteomics 2022, 19, 205-228. [CrossRef]
- Gao, N.; Li, Y.; Li, J.; Gao, Z.; Yang, Z.; Li, Y.; Liu, H.; Fan, T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front Oncol 2020, 10, 598817. [CrossRef]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021, 22, 96-118. [CrossRef]
- Wagner, L.A.; Christensen, C.J.; Dunn, D.M.; Spangrude, G.J.; Georgelas, A.; Kelley, L.; Esplin, M.S.; Weiss, R.B.; Gleich, G.J. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 2007, 109, 5191-5198. [CrossRef]
- Brannan, C.I.; Dees, E.C.; Ingram, R.S.; Tilghman, S.M. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990, 10, 28-36. [CrossRef]
- Venkatraman, A.; He, X.C.; Thorvaldsen, J.L.; Sugimura, R.; Perry, J.M.; Tao, F.; Zhao, M.; Christenson, M.K.; Sanchez, R.; Yu, J.Y., et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 2013, 500, 345-349. [CrossRef]
- Andrea, H.; Katarina, S.; Zdeněk, K.; Nikoleta, L.; Michaela Dostálová, M. Noncoding RNAs in Myelodysplastic Syndromes. In Recent Developments in Myelodysplastic Syndromes, Ota, F., Ed. IntechOpen: Rijeka, 2018. [CrossRef]
- Wu, Z.; Gao, S.; Zhao, X.; Chen, J.; Keyvanfar, K.; Feng, X.; Kajigaya, S.; Young, N.S. Long noncoding RNAs of single hematopoietic stem and progenitor cells in healthy and dysplastic human bone marrow. Haematologica 2019, 104, 894-906. [CrossRef]
- Hu, W.; Yuan, B.; Flygare, J.; Lodish, H.F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 2011, 25, 2573-2578. [CrossRef]
- Qiu, Y.; Xu, M.; Huang, S. Long noncoding RNAs: emerging regulators of normal and malignant hematopoiesis. Blood 2021, 138, 2327-2336. [CrossRef]
- Benetatos, L.; Hatzimichael, E.; Dasoula, A.; Dranitsaris, G.; Tsiara, S.; Syrrou, M.; Georgiou, I.; Bourantas, K.L. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 2010, 34, 148-153. [CrossRef]
- Wong, N.K.; Huang, C.L.; Islam, R.; Yip, S.P. Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies. J Hematol Oncol 2018, 11, 131. [CrossRef]
- Zhang, Z.; Liu, T.; Wang, K.; Qu, X.; Pang, Z.; Liu, S.; Liu, Q.; Du, J. Down-regulation of long non-coding RNA MEG3 indicates an unfavorable prognosis in non-small cell lung cancer: Evidence from the GEO database. Gene 2017, 630, 49-58. [CrossRef]
- Tian, Z.Z.; Guo, X.J.; Zhao, Y.M.; Fang, Y. Decreased expression of long non-coding RNA MEG3 acts as a potential predictor biomarker in progression and poor prognosis of osteosarcoma. Int J Clin Exp Pathol 2015, 8, 15138-15142.
- Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 2012, 48, R45-53. [CrossRef]
- Wang, W.; Xie, Y.; Chen, F.; Liu, X.; Zhong, L.L.; Wang, H.Q.; Li, Q.C. LncRNA MEG3 acts a biomarker and regulates cell functions by targeting ADAR1 in colorectal cancer. World J Gastroenterol 2019, 25, 3972-3984. [CrossRef]
- Zhang, S.F.; Jin, L.; Chen, Y.F. Significance of LncRNA KCNQ1OT1 expression in diagnosis and prognosis judgment of myelodysplastic syndrome. Eur Rev Med Pharmacol Sci 2020, 24, 5558-5563. [CrossRef]
- Huang, H.H.; Chen, F.Y.; Chou, W.C.; Hou, H.A.; Ko, B.S.; Lin, C.T.; Tang, J.L.; Li, C.C.; Yao, M.; Tsay, W., et al. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer 2019, 19, 617. [CrossRef]
- Symeonidis, A.; Chatzilygeroudi, T.; Chondrou, V.; Sgourou, A. Contingent Synergistic Interactions between Non-Coding RNAs and DNA-Modifying Enzymes in Myelodysplastic Syndromes. Int J Mol Sci 2022, 23. [CrossRef]
- Zhao, X.; Yin, H.; Li, N.; Zhu, Y.; Shen, W.; Qian, S.; He, G.; Li, J.; Wang, X. An Integrated Regulatory Network Based on Comprehensive Analysis of mRNA Expression, Gene Methylation and Expression of Long Non-coding RNAs (lncRNAs) in Myelodysplastic Syndromes. Front Oncol 2019, 9, 200. [CrossRef]
- Szikszai, K.; Krejcik, Z.; Klema, J.; Loudova, N.; Hrustincova, A.; Belickova, M.; Hruba, M.; Vesela, J.; Stranecky, V.; Kundrat, D., et al. LncRNA Profiling Reveals That the Deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 Is Associated with Higher-Risk Myelodysplastic Syndrome. Cancers (Basel) 2020, 12. [CrossRef]
- Yao, C.-Y.; Chen, C.-H.; Huang, H.-H.; Hou, H.-A.; Lin, C.-C.; Tseng, M.-H.; Kao, C.-J.; Lu, T.-P.; Chou, W.-C.; Tien, H.-F. A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes. In Blood Adv, 2017; Vol. 1, pp 1505-1516. [CrossRef]
- Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O'Carroll, D.; Zamore, P.D. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019, 20, 89-108. [CrossRef]
- Klattenhoff, C.; Theurkauf, W. Biogenesis and germline functions of piRNAs. Development 2008, 135, 3-9. [CrossRef]
- Yuan, C.; Qin, H.; Ponnusamy, M.; Chen, Y.; Lin, Z. PIWI-interacting RNA in cancer: Molecular mechanisms and possible clinical implications (Review). Oncol Rep 2021, 46. [CrossRef]
- Chen, S.; Ben, S.; Xin, J.; Li, S.; Zheng, R.; Wang, H.; Fan, L.; Du, M.; Zhang, Z.; Wang, M. The biogenesis and biological function of PIWI-interacting RNA in cancer. J Hematol Oncol 2021, 14, 93. [CrossRef]
- Genzor, P.; Cordts, S.C.; Bokil, N.V.; Haase, A.D. Aberrant expression of select piRNA-pathway genes does not reactivate piRNA silencing in cancer cells. Proc Natl Acad Sci U S A 2019, 116, 11111-11112. [CrossRef]
- Beck, D.; Ayers, S.; Wen, J.; Brandl, M.B.; Pham, T.D.; Webb, P.; Chang, C.C.; Zhou, X. Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic Syndromes. BMC Med Genomics 2011, 4, 19. [CrossRef]
- Merkerova, M.D.; Krejcik, Z. Transposable elements and Piwi-interacting RNAs in hemato-oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021, 59. [CrossRef]
- Sloan, K.E.; Warda, A.S.; Sharma, S.; Entian, K.D.; Lafontaine, D.L.J.; Bohnsack, M.T. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2017, 14, 1138-1152. [CrossRef]
- Baßler, J.; Hurt, E. Eukaryotic Ribosome Assembly. Annu Rev Biochem 2019, 88, 281-306. [CrossRef]
- Elhamamsy, A.R.; Metge, B.J.; Alsheikh, H.A.; Shevde, L.A.; Samant, R.S. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022, 82, 2344-2353. [CrossRef]
- Moss, T.; Langlois, F.; Gagnon-Kugler, T.; Stefanovsky, V. A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 2007, 64, 29-49. [CrossRef]
- Bielczyk-Maczyńska, E.; Lam Hung, L.; Ferreira, L.; Fleischmann, T.; Weis, F.; Fernández-Pevida, A.; Harvey, S.A.; Wali, N.; Warren, A.J.; Barroso, I., et al. The Ribosome Biogenesis Protein Nol9 Is Essential for Definitive Hematopoiesis and Pancreas Morphogenesis in Zebrafish. PLoS Genet 2015, 11, e1005677. [CrossRef]
- Tummala, H.; Walne, A.J.; Williams, M.; Bockett, N.; Collopy, L.; Cardoso, S.; Ellison, A.; Wynn, R.; Leblanc, T.; Fitzgibbon, J., et al. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation. Am J Hum Genet 2016, 99, 115-124. [CrossRef]
- Penzo, M.; Montanaro, L. Turning Uridines around: Role of rRNA Pseudouridylation in Ribosome Biogenesis and Ribosomal Function. Biomolecules 2018, 8. [CrossRef]
- Narla, A.; Ebert, B.L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010, 115, 3196-3205. [CrossRef]
- Cheah, J.J.C.; Hahn, C.N.; Hiwase, D.K.; Scott, H.S.; Brown, A.L. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017, 106, 163-174. [CrossRef]
- Akef, A.; McGraw, K.; Cappell, S.D.; Larson, D.R. Ribosome biogenesis is a downstream effector of the oncogenic U2AF1-S34F mutation. PLoS Biol 2020, 18, e3000920. [CrossRef]
- Raval, A.; Sridhar, K.J.; Patel, S.; Turnbull, B.B.; Greenberg, P.L.; Mitchell, B.S. Reduced rRNA expression and increased rDNA promoter methylation in CD34+ cells of patients with myelodysplastic syndromes. Blood 2012, 120, 4812-4818. [CrossRef]
- Raval, A.; Pollyea, D.A.; Shridhar, K.J.; Patel, S.; Greenberg, P.L.; Mitchell, B.S. Ribosomal RNA Expression In CD34+ Hematopoietic Progenitor Cells Inversely Correlates with Ribosomal DNA Methylation In Myelodysplastic Syndromes. Blood 2010, 116, 1682-1682. [CrossRef]
- Lambert, M.; Benmoussa, A.; Provost, P. Small Non-Coding RNAs Derived From Eukaryotic Ribosomal RNA. Noncoding RNA 2019, 5. [CrossRef]
- Cherlin, T.; Magee, R.; Jing, Y.; Pliatsika, V.; Loher, P.; Rigoutsos, I. Ribosomal RNA fragmentation into short RNAs (rRFs) is modulated in a sex- and population of origin-specific manner. BMC Biol 2020, 18, 38. [CrossRef]
- Morais, P.; Adachi, H.; Yu, Y.T. Spliceosomal snRNA Epitranscriptomics. Front Genet 2021, 12, 652129. [CrossRef]
- Huang, Z.H.; Du, Y.P.; Wen, J.T.; Lu, B.F.; Zhao, Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov 2022, 8, 259. [CrossRef]
- Wajahat, M.; Bracken, C.P.; Orang, A. Emerging Functions for snoRNAs and snoRNA-Derived Fragments. Int J Mol Sci 2021, 22. [CrossRef]
- Dong, J.; Wang, H.; Zhang, Z.; Yang, L.; Qian, X.; Qian, W.; Han, Y.; Huang, H.; Qian, P. Small but strong: Pivotal roles and potential applications of snoRNAs in hematopoietic malignancies. Front Oncol 2022, 12, 939465. [CrossRef]
- Calvo Sánchez, J.; Köhn, M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021, 7. [CrossRef]
- Challakkara, M.F.; Chhabra, R. snoRNAs in hematopoiesis and blood malignancies: A comprehensive review. J Cell Physiol 2023, 10.1002/jcp.31032. [CrossRef]
- Chlon, T.M.; Stepanchick, E.; Hershberger, C.E.; Daniels, N.J.; Hueneman, K.M.; Kuenzi Davis, A.; Choi, K.; Zheng, Y.; Gurnari, C.; Haferlach, T., et al. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell 2021, 28, 1966-1981.e1966. [CrossRef]
- Michel, C.I.; Holley, C.L.; Scruggs, B.S.; Sidhu, R.; Brookheart, R.T.; Listenberger, L.L.; Behlke, M.A.; Ory, D.S.; Schaffer, J.E. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab 2011, 14, 33-44. [CrossRef]
- Berg, M.D.; Brandl, C.J. Transfer RNAs: diversity in form and function. RNA Biol 2021, 18, 316-339. [CrossRef]
- Avcilar-Kucukgoze, I.; Kashina, A. Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology. Front Mol Biosci 2020, 7, 610617. [CrossRef]
- Weng, Q.; Wang, Y.; Xie, Y.; Yu, X.; Zhang, S.; Ge, J.; Li, Z.; Ye, G.; Guo, J. Extracellular vesicles-associated tRNA-derived fragments (tRFs): biogenesis, biological functions, and their role as potential biomarkers in human diseases. J Mol Med (Berl) 2022, 100, 679-695. [CrossRef]
- Lee, Y.S.; Shibata, Y.; Malhotra, A.; Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009, 23, 2639-2649. [CrossRef]
- Mei, Y.; Yong, J.; Liu, H.; Shi, Y.; Meinkoth, J.; Dreyfuss, G.; Yang, X. tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 2010, 37, 668-678. [CrossRef]
- Liberante, F.G.; Lappin, K.; Barros, E.M.; Vohhodina, J.; Grebien, F.; Savage, K.I.; Mills, K.I. Altered splicing and cytoplasmic levels of tRNA synthetases in SF3B1-mutant myelodysplastic syndromes as a therapeutic vulnerability. Sci Rep 2019, 9, 2678. [CrossRef]
- Gattermann, N.; Wulfert, M.; Junge, B.; Germing, U.; Haas, R.; Hofhaus, G. Ineffective hematopoiesis linked with a mitochondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome. Blood 2004, 103, 1499-1502. [CrossRef]
- Guo, Y.; Bosompem, A.; Mohan, S.; Erdogan, B.; Ye, F.; Vickers, K.C.; Sheng, Q.; Zhao, S.; Li, C.I.; Su, P.F., et al. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics 2015, 16, 727. [CrossRef]
- Guo, Y.; Strickland, S.A.; Mohan, S.; Li, S.; Bosompem, A.; Vickers, K.C.; Zhao, S.; Sheng, Q.; Kim, A.S. MicroRNAs and tRNA-derived fragments predict the transformation of myelodysplastic syndromes to acute myeloid leukemia. Leuk Lymphoma 2017, 58, 1-15. [CrossRef]
- Guzzi, N.; Muthukumar, S.; Cieśla, M.; Todisco, G.; Ngoc, P.C.T.; Madej, M.; Munita, R.; Fazio, S.; Ekström, S.; Mortera-Blanco, T., et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol 2022, 24, 299-306. [CrossRef]
- Guzzi, N.; Cieśla, M.; Ngoc, P.C.T.; Lang, S.; Arora, S.; Dimitriou, M.; Pimková, K.; Sommarin, M.N.E.; Munita, R.; Lubas, M., et al. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell 2018, 173, 1204-1216.e1226. [CrossRef]
- Magee, R.; Rigoutsos, I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020, 48, 9433-9448. [CrossRef]
- Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A.; Mehmandoost, N.; Moazzen, F.; Mazraeh, A.; Marmari, V., et al. Molecular Mechanisms and Biological Functions of siRNA. Int J Biomed Sci 2017, 13, 48-57.
- Friedrich, M.; Aigner, A. Therapeutic siRNA: State-of-the-Art and Future Perspectives. BioDrugs 2022, 36, 549-571. [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642-655. [CrossRef]
- Sloand, E.M.; Pfannes, L.; Chen, G.; Shah, S.; Solomou, E.E.; Barrett, J.; Young, N.S. CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 2007, 109, 2399-2405. [CrossRef]
- Madan, V.; Kanojia, D.; Li, J.; Okamoto, R.; Sato-Otsubo, A.; Kohlmann, A.; Sanada, M.; Grossmann, V.; Sundaresan, J.; Shiraishi, Y., et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 2015, 6, 6042. [CrossRef]
- Mackin, S.J.; O'Neill, K.M.; Walsh, C.P. Comparison of DNMT1 inhibitors by methylome profiling identifies unique signature of 5-aza-2'deoxycytidine. Epigenomics 2018, 10, 1085-1101. [CrossRef]
- Wang, Y.; Kellner, J.; Liu, L.; Zhou, D. Inhibition of p38 mitogen-activated protein kinase promotes ex vivo hematopoietic stem cell expansion. Stem Cells Dev 2011, 20, 1143-1152. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
